Lectore 7
Adding marked points In orler to cant curres with calition imposed, we need a way of specitging that or stible maps satisty the canditions. This is dme by including marked piants in the donain.
$\bar{m}_{g, n}(x, \beta)=\left\{\begin{array}{l}f:\left(C, x_{1},-, x_{n}\right) \longrightarrow X, \quad C \text { ib comeutd, possibly nodal } \\ \text { cure of arithnedic gemes } g, x_{i} \in C \text { are distinct mon-radl } \\ \text { points, } f_{*}[c]=\beta \quad\left|A_{n}+\left(f:\left(c, x_{1}, \cdots, x_{n}\right) \rightarrow X\right)\right|<\infty\end{array}\right\}$
$v \operatorname{dim} \bar{m}_{g, n}(x, \beta)=-k_{x} \cdot \beta+(\operatorname{dim} x-3)(1-g)+n$
stability \Rightarrow every gemes 0 colkapsing congment must have 3 or more special paints (mativel or nudal).
$\overline{M_{g, n}}=\bar{M}_{g, n}(\rho t, 0)$ Deligne-Mumford moduli spero of stable comes. Naceupty for $2 g+n \geqslant 3$ smoth arbifeld of dimension $3_{g}-3+n$. $\bar{m}_{0, n}$ is a manifild. examples $\bar{m}_{0,3}=p t$
upto isomerphism $\left(\mathbb{R}^{\prime}, x_{1}, x_{2}, x_{3}\right) \cong\left(\mathbb{R}^{\prime}, 0,1,0\right)$

$$
\bar{m}_{0,4}=\mathbb{P}^{\prime} \quad m_{0,4}=\mathbb{P}^{\prime}-\{0,1, \infty\}
$$

given $\left(\mathbb{T}^{\prime}, x_{1}, x_{2}, x_{3}, x_{4}\right) \in M_{0,4}$ we get the cross-atio: $\lambda=\frac{\left(x_{3}-x_{1}\right)\left(x_{4}-x_{2}\right)}{\left(x_{3}-x_{2}\right)\left(x_{4}-x_{1}\right)}$ cross-ratio is invariant under mobius transformations and so gives
a well define map $M_{0,4} \longrightarrow \mathbb{R}^{\prime}-\{0,1, \infty\}$
what happens when points cane together?

\hat{i}
unique stable curve with this troulogical type.
$\overline{M_{0,4}}=\mathbb{P}^{1}$ the $\frac{3}{}$ points in the bovidery $\bar{m}_{0,4}-M_{0,4}$ correspond to

$\stackrel{1}{4}_{\substack{1 \\ 3}}^{1}$
$\bar{m}_{0,5}=B l_{\text {ups }} \mathbb{P}^{2}$ to see this, choose 4 distinct points $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{P}^{2}$, no 38 which are colineer (updo automorphisms of \mathbb{P}^{2} this is unique).

We define a map

$$
\left.B\right|_{\left\{x_{1} \ldots k_{4}\right\}} \mathbb{P}^{2} \longrightarrow \bar{M}_{0,5} \text { as follows }
$$

$$
\begin{aligned}
\left.\mathbb{B}\right|_{\left\{x_{1} \cdot x_{1}\right\}} \mathbb{P}^{2} & \longrightarrow{\overline{m_{0}}, 5} \\
z & \longmapsto\left(C, x_{1}, \cdots, x_{4}, z\right)
\end{aligned}
$$

When z mo x x_{i} the blow up includes $\mathbb{P}^{\prime}=\mathbb{P}\left(T_{x_{i}} \cdot P^{2}\right)$ i.e z is x_{i} pres a tangent direction. C is then the vaigue conic passing through x_{1}, \cdots, x_{4} and having the specified tangent direction at x_{i}
The corregending stable curves

Try to convince yourself that this map is bijeccive. What do the boundary components look like and what do they correspmod to in $\left.B\right|_{\text {wets }} \mathbb{P}^{2}$?
hectare 8
Gromor-wittem lnurints The moduli sones with marred points have evaluation maps

$$
\begin{aligned}
& {\overline{m_{g, n}}}(x, \beta) \xrightarrow{e v_{1} x \cdots \times v_{n}} X \times \cdots \times X \\
& {\left[f:\left(c, x_{1}, x_{n}\right) \rightarrow X\right] \longmapsto\left(f(x), \cdots, f\left(x_{n}\right)\right)}
\end{aligned}
$$

Suppose we wanted to count the number of lines passing through points $p i g \in \mathbb{P}^{2}$. We coll look at

More genemenly, if $A_{1}, \cdots, A_{n} \subset X$ are submenifols and $\operatorname{ev}_{1}^{-1}\left(A_{1}\right) \cap \cdots \cap \operatorname{ev}^{-1}\left(A_{n}\right) \subset \bar{m}_{g, a}(x, \beta)$ is frise, then it is the number of genes g corves of degree β meeting the cycles A_{1}, \cdots, A_{a}.

Recall that intersection is dual to cup product under Pincore Duality.
If $\bar{M}_{y, n}(x, \beta)$ is a smoth manifid and $e v_{i}^{-1}\left(A_{i}\right)$ are sabmeniffls intersecting troussursely, then the \# of paints in $\bigcap_{i} e v_{i}^{-1}\left(n_{i}\right)$ is given bs

$$
\begin{aligned}
& N_{g, \beta}^{G \omega}\left(A_{1}, \cdots, A_{n}\right)=\int^{\alpha} e V_{1}^{*}\left(P D\left(A_{1}\right)\right) \cup \cdots \cup e V_{n}^{*}\left(P D\left(A_{n}\right)\right) \\
& {\left[\bar{m}_{g, n}(x, \beta)\right] \ltimes \text { fundemential class } \in H_{2 \operatorname{dim} \bar{m}_{g m}(x, \beta)}\left(\bar{m}_{g, n}(x, \beta)\right)}
\end{aligned}
$$

The above makes sense even if $\operatorname{ev}_{i}^{-1}\left(A_{i}\right)$ do not intersect transversely, but it does require the fundamental class $\left[\bar{m}_{g, n}(x, \beta)\right]$ which a prior requires $\bar{m}_{g n}(x, \beta)$ to be smith. We've seen examples where $\bar{m}_{g, n}(x, \beta)$ has multiple components of different dimensions and it in't clear what we should do in that case.

Theorem There exists a class $\left[\bar{m}_{g, n}(x, \beta)\right]^{\text {vir }} \in H_{*}\left(\bar{m}_{g, n}(x, \beta) ; Q\right)$ (the virtual findamumel class) of degree $2 \operatorname{virdim}\left(\bar{m}_{g, n}(x, \beta)\right)$

This is not really a the rem without specifying the desired papeerties of this class, but lats vaguely say that it behoves "as if" it were the fundamental class. In particular, if $\bar{m}_{s, n}(x, \beta)$ is smooth and it the expected din, then []$^{\text {vire }}=$ sued coss also $\quad N_{g, \beta}^{G N}\left(A_{1}, \cdots, A_{n}\right):=\int_{\left[V_{1}\right.} e_{1}^{*}\left(P D\left(A_{1}\right)\right) \cup \cdots \cup V_{n}^{*}\left(P D\left(A_{1}\right)\right) \quad$ ia a deformation imverint $\left[\bar{m}_{\text {mn }}(x, p)\right]^{\text {Dir }}$
Here is the way to think of it:

Model case: suppose M : spinal as the zero bows of a section of a vector bundle:

Then M has expected dimension $d-r$:
If s i transverse to the zero section, then M; smooth and $\operatorname{dim} d-r$. If s is not trausurse, then M is singular adar langer then expected dinemsim. In the transverse case, the fondaneatel class satisfies

$$
i_{*}[M]=\underbrace{\operatorname{PD}(\underbrace{C_{r}(E)}_{\epsilon H^{2 r}(Y)})}_{\in H_{2 d-2 r}(Y)}
$$

In general, the class $P D\left(C_{r}(E)\right) \in H_{2 v \text { vim }}(Y)$ does still cone from a class on M : there is a chess $[M]^{\text {vir }} \in H_{2 v \operatorname{din}}(M)$ s.r.

$$
i_{*}[m]^{\text {sir }}=P D\left(C_{r}(E)\right)
$$

The coifs of $\left[\bar{m}_{g, n}(x, \beta)\right]^{\text {air }}$ are in Q because even if it is sloth, it may be an orbifold (think manifold quatiented by a finite group).

$$
N_{g_{1} \beta}^{G N}\left(A_{1} \cdots A_{N}\right)=0 \text { unless }-K_{x} \cdot \beta+(\operatorname{dian} X-3)(1-g)+n=\sum_{i} \operatorname{codin} A_{i}
$$

$$
\Rightarrow \quad-k_{x} \cdot \beta+(\operatorname{din} x-3)(1-g)=\sum_{i=1}^{n}\left(\operatorname{ded}-A_{i}-1\right)
$$

each cycle A_{i} imposes codim $A_{i}-1$ conditions
e.g. - Divisors impose no conditios, intersection can be detorminal cohmologicaly

- eack point on a sunfuce imposes 1 condition.

On a CY3, virthal dim is alwags O so all we beve are the innuriants with mo ingertias:

$$
N_{g, \beta}^{G N}=\int_{\left[\bar{m}_{0}(x, \beta)\right]^{\text {vir }}} 1 \in \mathbb{Q} \quad \begin{aligned}
& \text { often not "enveneative", regaed as a } \\
& \text { virtiad count. }
\end{aligned}
$$

GW invariants are the closest to the envmentive interperation when $\overline{M_{g, n}}(x, \beta)$
is smoth and of the espected dinemsion. For exauple, if $g=0$ and $X=p^{N}$
then $H^{\prime}\left(c, f^{*} T X\right)=0$ for all stalle maps $\left[f: c \rightarrow \mathbb{R}^{N}\right] \in \bar{M}_{0, n}\left(\mathbb{P}^{N}, \beta\right)$ and so modali gre is smoth. Kontsuvich used GW theny of \mathbb{P}^{2} to solve for
$N_{d}=\#$ rationd curres of $\operatorname{bog} d$ in \mathbb{P}^{2} passing throyh $3 d-1$ points

$$
=N_{0, d[c]}^{G W, \mathbb{P}^{2}}(\underbrace{p^{t}, \ldots, p^{+}}_{3 d-1})=\int_{\left[\bar{m}_{0,3 k-1}\left(\mathbb{P}^{2}, d[v)\right]\right] \text { mo need for vir here }} e v_{1}^{*}\left(P D\left(p_{1}\right) v \cdots v v_{z-1}^{*}(P D(p t))\right.
$$

genus 0 GW inuriints can be packeged tugether into Quantun Cohomobogy
Quartum Cohomolegy is a deformant of the vsal ap product $H^{*}(x) \otimes H^{*}(x) \rightarrow H^{*}(x)$ which dapunds and veriens porameters and is briit from gemes O GW invariants.

The fuct that quandim cohorology is assocititive cones from a non-trivial relation among the GW invarients (the WDVV eguation) which cones from $\bar{m}_{0,4}$.

Lecture 9
Geenvs O GN potantial Assime $H^{*}(x ; Q)=H^{\text {ev }}(x ; Q)$ for sieplicity
Let $T_{0}, \underbrace{T_{1}, \cdots, T_{p}}, \cdots T_{m} \in H^{*}(x ; Q)$ be a hasis

$$
1 \quad H^{2} \text { drosen so } \beta_{i}:=T_{i}, \beta \in \mathbb{N} \text { for }
$$

ang effatione arre closs β.
Let $g_{i j}=\int_{x} T_{i} \cup T_{j}$ Poinacle pairing $g^{i j}$ inverse matrix.
Let $\left\{T^{j}\right\}$ be ded basis: $T^{j}=g^{i j} T_{i} \quad$ (summetion convention).
We use "correlober" notetitin horroved from playsics:

$$
N_{o, \beta}^{6 w}\left(\alpha_{1} \cdots \alpha_{n}\right)=\left\langle\alpha_{1}, \cdots, \alpha_{n}\right\rangle_{0, \beta}^{X}
$$

Thase are symmetic in the entries and multiliner so we ve momonid notation:
for example $\langle\underbrace{\left.p^{t}, \cdots, p t\right\rangle_{0, \alpha[L]}^{p^{2}}}_{3 d-1}=\left\langle p^{p+1-1}\right\rangle_{0, \alpha[L]}^{p^{2}}$
or mose generally

$$
\langle\underbrace{T_{0} \cdots, T_{0}}_{n_{0}}, \underbrace{T_{1}, \cdots, T_{1}}_{n_{1}}, \cdots, \underbrace{T_{m} \cdots T_{m}}_{n_{m}}\rangle_{0, \beta}^{x}=\left\langle T_{0}^{n_{0}} T_{1}^{n_{1}} \ldots T_{m}^{n_{m}}\right\rangle_{0, \beta}
$$

Consier formal veriaches $t_{0}, \cdots, t_{m}, g_{1}, \cdots, g_{p}$ and lat $\gamma=\sum_{i=0}^{m} t_{i} T_{i}$
Def'n The glemes 0 GW putantial is

$$
F:=\sum_{\beta}\langle\exp (\gamma)\rangle_{0, \beta}^{\gamma} q^{\beta} \quad \text { where } q^{\beta}:=q_{1}^{\beta_{1}} q_{p}^{\beta_{p}} \quad \beta_{i}=T_{i}-\beta
$$

$$
\begin{aligned}
F & =\sum_{\beta}\langle\exp (\gamma)\rangle_{0, \beta}^{x} g^{\beta} \quad \text { where } g^{\beta}:=q_{1}^{\beta_{1}} \ldots q_{p}^{\beta_{p}} \quad \beta_{i}=T_{i} \cdot \beta \\
& =\sum_{\beta}\left\langle\prod_{i=0}^{n} e^{t_{i} T_{i}}\right\rangle_{0, \beta}^{x} g^{\beta} \\
& =\sum_{\beta}^{1}\left\langle\sum_{k_{0}, k_{1}, \cdots, k_{m}}^{1} \frac{t_{0}^{k_{0}} T_{0}^{k_{0}}}{k_{0}!} \cdots \frac{t_{m}^{k_{m}} T_{m}^{k_{m}}}{k_{m}!}\right\rangle_{0, \beta}^{x} q^{\beta} \\
& \left.=\sum_{\beta}^{1} \sum_{k_{0}, k_{m}}^{1}\left\langle T_{0}^{k_{0}} \cdots T_{m}^{k_{m}}\right\rangle_{0, \beta}^{x} \frac{t_{0}^{k_{0}} \cdots t_{m}^{k_{m}}}{k_{0}!\cdots k_{m}!} q^{\beta} \in \mathbb{Q} \llbracket q_{1}, \cdots, \delta_{p}, t_{0}, \cdots, t_{m} \rrbracket\right]
\end{aligned}
$$

generating function for all possible games 0 ow inverants.
This is a formal power series encoding all passible genes 0 inverints. The unviables t_{i} kep rock of insertions, the wriables g_{i} keep track of dire (nardesy class of the curve).

- Even thagh this is a formal ferection, in physics it has meaning as an actual function and so we expect same convergence papertios.

The formalism is designed so that wine can extract individual invariants by taking derivatives:

$$
\begin{aligned}
& \frac{\partial^{l} F}{\partial t_{i_{1}} \ldots \partial t_{i_{l}}}=\sum_{\beta}\left\langle\operatorname{eap}(\gamma) T_{i_{1}} \tau_{i_{2}}\right\rangle_{0, \beta}^{x} g^{\beta} \quad \text { so } \\
& \left.\quad \frac{\partial^{l} F}{\partial t_{i_{1}} \ldots \partial t_{i_{l}}}\right|_{t=0}=\sum_{\beta}\left\langle T_{i_{1}, \cdots,}, T_{i_{l}}\right\rangle_{0, \beta} g^{\beta}
\end{aligned}
$$

What about $g=0$? The consent cost in the g 's correspuls to the $\beta=0$ imprints

$$
\begin{aligned}
& \left\langle\gamma_{1}, \cdots, \gamma_{n}\right\rangle_{0,0}^{x}=\int_{\left[\overline{m_{0, n}}(x, 0)\right]^{i r}} e v_{1}^{x}\left(\gamma_{1}\right) \cup \cdots v_{n}^{*}\left(\gamma_{n}\right) \\
& \bar{m}_{0, n}(x, 0)=X \times \overline{m_{0, n}} \quad e v_{i}=\pi_{x} \quad \text { projection motto } \quad X \\
& \operatorname{vdim} \bar{m}_{0, n}(x, 0)=\operatorname{dim} x-3+n=\operatorname{dim} x+n-3
\end{aligned}
$$

so $\bar{M}_{0, n}(x, 0)$ is snewith and of the expected $\operatorname{dim} \Rightarrow\left[\bar{m}_{0, n}(x, 0)\right]^{\text {vire }}=\left[X \times \bar{m}_{0, n}\right]$

$$
\begin{aligned}
\left\langle\gamma_{1}, \cdots, \gamma_{n}\right\rangle_{0,0} & =\int_{\left[x \times \bar{m}_{0, n}\right]} \pi_{x}^{*}\left(\gamma_{1}\right)_{v} \cup \pi_{x}^{*}\left(\gamma_{n}\right) \\
& = \begin{cases}0 & \text { if } n \neq 3 \\
\int_{x} \gamma_{1} \cup \gamma_{2} \cup \gamma_{3} & \text { if } n=3\end{cases} \\
\left.F(t, g)\right|_{g=0} & =\frac{1}{6} \int_{x}\left(t_{0} T_{0}+\cdots+t T_{m}\right)^{3} \quad \text { cubic nolgnminal } \\
F_{\alpha \beta \gamma}: & =\frac{\partial^{3} F}{\partial t_{\alpha} \partial t_{p} \partial t_{\gamma}} \text { satisfies }\left.\quad F_{\alpha \beta \gamma}\right|_{g=0}=\int_{x} T_{\alpha} \cup T_{\beta} \cup T_{\gamma}
\end{aligned}
$$

so $\left.F_{o p r}\right|_{g=0}=g_{e r}$ (poninceré pairing) which allows us to recover cup product purely from F :

Lemma: $T_{\alpha} \cup T_{\beta}=\left.F_{\alpha \beta z}\right|_{g^{\prime} 0} g^{2 \varepsilon^{\prime}} T_{\varepsilon^{\prime}} \quad(u \operatorname{sing}$ sumatin comerina)
prosf: Sime the privere pairing is me-dygente, to shoo the abve hols it sutfices to shen equality wolds aftor andying $\int_{[x]} T_{r} \cup(-)$ to hath siles for ang T_{r} :
heature 10

$$
\begin{aligned}
\int_{\{x]} T_{\alpha} \cup T_{\beta} \nu T_{\gamma} & \left.\stackrel{?}{=} F_{\alpha \beta z}\right|_{g=0} g^{\varepsilon \varepsilon \varepsilon^{\varepsilon \prime}} \int_{[x]} T_{\varepsilon \varepsilon^{\prime}} T_{\gamma} \\
& =\left.F_{\alpha \beta \varepsilon}\right|_{g=0} g^{\varepsilon \varepsilon^{\prime}} g_{\varepsilon^{\prime} \gamma}=\left.F_{\alpha \beta \gamma}\right|_{g=0} \quad \text { the }
\end{aligned}
$$

Def'n We define the quandum prodent \star on $H^{*}(x) \otimes \mathbb{Q} \mathbb{I}_{8}, \beta_{8}, t_{0}, \cdots, t_{0} 0$ by the fromere

$$
T_{\alpha} \nRightarrow T_{\beta}=F_{\alpha \beta \gamma} g^{2 \varepsilon^{\prime}} T_{\varepsilon^{\prime}}
$$

Alore shous trat when $g=0, *=0$. obvinsly commadutive
Therem *is an associative product.

$$
\begin{aligned}
\left(T_{\alpha} * T_{\beta}\right) * T_{\gamma} & =\left(F_{\alpha \beta \varepsilon} g^{\varepsilon \varepsilon^{\prime}} T_{\varepsilon^{\prime}}\right) * \sigma_{\gamma} \\
& =F_{\alpha \beta \varepsilon} g^{\varepsilon \varepsilon^{\prime}} F_{\varepsilon^{\prime} \gamma \delta} g^{\delta \delta^{\prime}} T_{\delta^{\prime}} \\
\left(T_{\beta} * T_{\gamma}\right) * T_{\alpha} & =F_{\beta \gamma \varepsilon} g^{\varepsilon \varepsilon^{\prime}} F_{\varepsilon^{\prime} \alpha \delta} g^{\delta \delta^{\prime}} T_{\delta^{\prime}}
\end{aligned}
$$

- Associoine $\Leftrightarrow F_{\alpha \beta \varepsilon} g^{\varepsilon \varepsilon^{\prime}} F_{\varepsilon^{\prime} \gamma \delta}=F_{\beta \gamma \varepsilon} g^{\varepsilon \varepsilon^{\prime}} F_{s^{\prime} \alpha \beta}$

$$
\left.\Leftrightarrow \quad F_{\alpha \beta \varepsilon} g^{2 \varepsilon^{\prime}} F_{\varepsilon^{\prime} \gamma \delta} \text { is symetric in (} \alpha, \beta, \gamma, \delta\right)
$$

Theorem (*) Holds and is called the wDVV equation.
We will prove this by pulling back the obvious relation on $\bar{M}_{0,4}$. First

Lat's prove sine single relations and stanley sane examples.
String Equation: $\left\langle\alpha_{1} \cdots \alpha_{n} T_{0}\right\rangle_{0, \beta}=0 \quad$ unless $\beta=0 \quad n=2$
af recall $\nabla_{0}=1$ so

$$
\left\langle\alpha_{1} \cdots \alpha_{n} T_{0}\right\rangle_{0, \beta}=\int_{\left[m_{0, n+1}(x, \beta)\right]^{v i r}} e v_{1}^{+}\left(\alpha_{1}\right) v \cdots e v_{n}^{*}\left(\alpha_{n}\right) \cup \underbrace{e v_{n+1}^{*}\left(T_{0}\right)}_{1}
$$

so integrand pulls buck from $\bar{m}_{0, n}(x, \beta)$ whenever the "forgetful" map
$\bar{m}_{0, n+1}(x, \beta) \xrightarrow{\pi} \bar{m}_{0, n}(x, \beta) \quad$ exists \quad which is always except when $\beta=0, n=2$)
If $\bar{M}_{0, n}(x, \beta)$ is of the expected dimension then $e v_{1}^{*}\left(x_{1}\right) v \cdots$ ven ${ }^{*}\left(\alpha_{n}\right)$ must be zero sine it in a class of dare vim $\bar{m}_{0, n+1}(x, \beta)$ but pulls back from $\bar{m}_{0, n}(x, \beta)$, a spae dinemsion 1 less. In geneal we need a property of the virtual class.

Only an-zeno invariant $\left\langle\alpha_{1} \cdot \alpha_{1} T_{0}\right\rangle_{0, \beta}$ if or $n=2 \beta=0$ and $\left\langle\alpha_{1} \alpha_{2} T_{0}\right\rangle_{0,0}^{x}=\int_{[x]} \alpha_{1}, \alpha_{2}$
So $\frac{\partial F}{\partial t_{0}}=\sum_{\beta}^{1}\left\langle\exp (\gamma) T_{0}\right\rangle_{, \beta} g^{\beta}=\frac{1}{2}\left\langle\gamma^{2} T_{0}\right\rangle_{0,0}=\frac{1}{2} \int_{[x]} \gamma^{2}=\frac{1}{2} \sum_{i, j} t_{i} t_{j} g_{i j}$
so $F_{o \alpha \beta}=g_{\alpha \beta} \Rightarrow T_{0}$ is the idurity for $\not \approx$.

Divisor Equation for $i \in\{1,2, \cdots, \beta\} \quad\left\langle\gamma^{n}, T_{i}\right\rangle_{0, \beta}=\left(T_{i} ; \beta\right)\left\langle\gamma^{n}\right\rangle_{0,0}$ unless $n=2 \quad \beta=0$.

This formula : at least clear in the gametic interpretation of inscrsias.

$\beta \cdot T_{i}$ choices for where to put the $(n+1) s^{+}$moved print.

$$
\begin{aligned}
& \text { Divisor Equation } \Rightarrow \frac{\partial F}{\partial t_{i}}=\sum_{\beta}\left\langle\exp (r) \tau_{i}\right\rangle_{0, \beta} \delta^{\beta}=\beta_{i} \sum_{\beta}\langle\exp (\gamma)\rangle_{0, \beta} q^{\beta}+\frac{1}{2}\left\langle\gamma^{2} T_{i}\right)_{0, p} \\
&=q_{i} \frac{\partial F}{\partial q_{i}}+\frac{1}{2} \int_{[\times]} \gamma^{2} T_{i} \\
& \Rightarrow\left(\frac{\partial}{\partial t_{i}}-q_{i} \frac{\partial}{\partial q_{i}}\right) F_{\alpha \beta \gamma}=0 \quad i \in\{1, \cdots, p\}
\end{aligned}
$$

Except for cubic terms in t when $8=0$, the dependence on g_{i}, t_{i} is as a function of $g_{i} e^{t_{i}}$

Lacture 11
axaple $\mathbb{P}^{\prime} \quad T_{0}=1 \quad T_{1}=\left[\begin{array}{ll} \\ \text { pit }\end{array}\right]^{\prime}$
$\beta=0 \quad$ only namereoco inverimet: $\quad t_{0} \quad\left\langle T_{0} T_{0} T_{1}\right\rangle_{0,0}=1$
$\beta \neq 0 \quad \beta=d\left[\mathbb{R}^{\prime}\right] \quad\left\langle\nabla_{1}^{l}\right\rangle_{d\left[R^{\prime}\right]}=d^{l}\langle \rangle_{d\left[R^{\prime}\right]}= \begin{cases}0 & d \neq 1 \\ 1 & d=1 \quad \text { ince } v \operatorname{din} \bar{m}_{0}\left(\mathbb{R}^{\prime}, d\left[R^{\prime}\right]\right) \\ =2 d-2\end{cases}$
so $F=\frac{t_{0}^{2} t_{1}}{2}+q \sum_{l} \frac{1}{l!}\left\langle T_{1}^{l}\right\rangle_{[r]} t_{1}^{l}=\frac{t_{0}^{2} t_{1}}{2}+g e^{t_{1}}$
$F_{001}=1, F_{111}=g e^{t_{1}}$, all other tripl drimefines are zero.

$$
T_{1} * T_{1}=F_{11 \varepsilon} g^{\varepsilon \varepsilon \prime} T_{\varepsilon^{\prime}}=F_{110} T_{1}+F_{111} T_{0}=q e^{t_{1}} T_{0}
$$

Sive $T_{0}=$ iduntity in ordinary and guntion coh we write it as 1 .

$$
H^{*}\left(\mathbb{P}^{\prime}\right) \cong \mathbb{Q}\left[T_{1}\right] / T_{1}^{2} \quad, Q H^{*}\left(\mathbb{R}^{\prime}\right)=\mathbb{Q}\left[t_{1}, g\right]\left[T_{1}\right] /\left(T_{1}^{2}-g^{t_{1}}\right)
$$

"small guentim cohomology" is the $t \rightarrow 0$ limit

$$
q H^{*}\left(\mathbb{R}^{\prime}\right)=\mathbb{Q}[T, 8] /\left(T^{2}-q\right)
$$

we defornad a nilmtat ring do a semi-sighle are.

Example $\mathbb{P}^{2} H^{*}\left(\mathbb{R}^{2}\right)=\mathbb{Q}[H] / H^{3}$ generated by $1, H, H^{2}=P^{t}$

$$
\begin{array}{lll}
T_{0} & T_{1} & T_{2}
\end{array}
$$

$$
t_{0} t_{1} t_{2}
$$

$$
\begin{aligned}
&\langle H, H, 1\rangle_{0,0}=1 \quad\langle p t, 1,1\rangle=1 \\
& F=\frac{1}{2} t_{0} t_{1}^{2}+\frac{1}{2} t_{0}^{2} t_{2}+\sum_{d=1}^{\infty} \sum_{n_{1} A_{2}}^{1}\left\langle H^{n_{1}} p^{n_{2}}\right\rangle_{0, d[H]} g^{d} \frac{t_{1}^{n_{1}}}{n_{1}!} \frac{t_{2}^{n_{2}}}{n_{2}!} \\
&=\frac{1}{2} t_{0} t_{1}^{2}+\frac{1}{2} t_{0}^{2} t_{2}+\sum_{d=1}^{\infty} 8^{d} \sum_{n_{1}}^{1} \frac{d^{n_{1} t_{1}}}{n_{1}!}\left\langle p t^{3+1}\right\rangle_{0, d[1] 1} \frac{t_{2}^{3 n-1}}{(3 n-1)!} \\
&=\frac{1}{2} t_{0} t_{1}^{2}+\frac{1}{2} t_{0}^{2} t_{2}+\sum_{d=1}^{\infty}\left(g e^{t_{1}}\right)^{d} \frac{t_{2}^{3-1}}{(3 d-1)!} N_{d}
\end{aligned}
$$

$N_{d}=\left\langle p+t^{3 n-1}\right\rangle_{0, d[n]}=q$ decree d rational curves passing thigh $3 A-1 p t s$.
Homework: Coyote the gumption products $H \neq H, H \neq p t, p^{+} \neq p t$.
Show that $q H^{*}\left(\mathbb{P}^{2}\right)=\mathbb{Q}[H, 8] /\left(H^{3}-8\right)$

Associativity and Katsevich's formula
Recall that associativity in equivent to the expression
$(\alpha \beta \mid \gamma \delta):=F_{\alpha \beta \varepsilon} g^{2 \varepsilon^{\prime}} F_{\varepsilon^{\prime} \gamma \delta}$ being symmetric in the indices.
we study $(11 \mid 22)=(12 / 12)$ anting that $g_{i j}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right)=g^{i j}$

$$
F_{222}=F_{112}^{2}-F_{111} F_{122}
$$

Let $Q=g e^{t_{1}}$ then

$$
\begin{array}{ll}
F_{222}=\sum_{d=2}^{\infty} Q^{d} \frac{t_{2}^{3 d-4}}{(3 d-4)!} N_{d} & F_{112}=\sum_{d=1}^{\infty} N_{d} d^{2} Q^{d} \frac{t_{2}^{3 d-2}}{(3 d-2)!} \\
F_{122}=\sum_{d=1}^{\infty} N_{d} d Q^{d} \frac{t_{2}^{3 d-3}}{(3 d-3)!} & F_{111}=\sum_{d=1}^{\infty} N_{d} d^{3} Q^{d} \frac{t_{2}^{3 d-1}}{(3 d-1)!}
\end{array}
$$

Set $Q=1$ then $F_{222}=F_{112}^{2}-F_{111} F_{122}$ becomes:

$$
\sum_{d=2}^{\infty} N_{d} \frac{t_{2}^{3 d-4}}{\left(3 d_{1}-4\right)!}=\sum_{d_{1}=1}^{\infty} \sum_{d_{2}=1}^{\infty} N_{d_{1}} N_{d_{2}}\left[\frac{d_{1}^{2} d_{2}^{2} t_{2}^{3\left(d_{1}+d_{2}\right)-4}}{\left(3 d_{1}-2\right)!\left(3 d_{2}-2\right)!}-\frac{d_{1}^{3} d_{2} t_{2}^{3\left(d_{1}+d_{2}\right)-4}}{\left(3 d_{1}-1\right)!\left(3 d_{2}-3\right)!}\right]
$$

So $\quad N_{d}=\sum_{\substack{d_{1}+d_{2}=d \\ d_{i}>0}} N_{d_{1}} N_{d_{2}}\left[d_{1}^{2} d_{2}^{2}\binom{3 d-4}{3 d_{1}-2}-d_{1}^{3} d_{2}\binom{3 d-4}{3 d_{1}-1}\right]$

Lecture 12
Sketch of prof of GoV og'n in the care where $\bar{m}_{0, n}(x, \beta)$ is smooth $\forall n$.
Recall anat we need to prove that the expression $(i j \mid k e)=F_{i j a} g^{a b} F_{\text {one }}$
is Symmetric in the indics (i, j, k, l)
Consider the integer
where $\rho: \bar{m}_{0, n+4}(x, \beta) \longrightarrow \bar{m}_{0,4} \longleftarrow \cong \mathbb{R}^{\prime}$

$$
\left[f:\left(c, x_{1}, \cdots, x_{n+4}\right) \rightarrow x\right] \longmapsto\left(c, x_{1}, \cdots x_{4}\right)_{s t}
$$

(*) $)_{\text {jj ex, }, f} \in \mathbb{Q}[t-t]$

Sine we are assuming that everything is smooth $p^{*}\left(p t^{v}\right)=\left(\rho^{-1}(p t)\right)^{v}$ and so
$(*)_{i j k e, n, p}=\frac{1}{n!} \int_{\left[\rho^{-1}(r+1]\right.} e v_{1}^{*}\left(T_{i}\right) v \cdot \operatorname{vev}_{4}^{*}\left(T_{l}\right) v e v_{s}^{*}(\gamma) v \cdot \operatorname{vev} v_{n+4}^{*}(\gamma)$
Aside: we will use the following if scm then $\int_{m} s^{P D} \cup \alpha=\int_{s} \alpha$
Sine they are all hanolgos, we can choose any pint in $\bar{m}_{0,4} \cong \mathbb{P}^{\prime}$, e.g.

$$
\begin{aligned}
& p t=\left\{X_{i 2}^{X_{i, ~}^{3}}\right\} \text { or } p t=\left\{X_{13}^{y_{2}^{2}} x^{4}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \subset \bigcup_{\substack{A \cup B=\{5, \ldots, N v\} \\
\beta_{1}+\beta_{2}=\beta}} \bar{m}_{0,1 n+3}\left(x, \beta_{1}\right) \times \bar{m}_{0, a_{2}+3}\left(x, \beta_{2}\right)
\end{aligned}
$$

Fact in $H^{*}\left(X_{*} \times x\right)=H^{*}(x) \otimes H^{*}(x) \quad \Delta^{P D}=T_{a} \otimes T^{a}$

$$
\begin{aligned}
& \beta_{1}+\beta_{2}=\beta \quad\left[\bar{m}_{0, n_{1}+3}\left(x, \beta_{1}\right) \times \bar{m}_{0, n_{2}+3}\left(x, \beta_{2}\right)\right] \quad v_{R} e v_{1}^{*}\left(T_{2}\right) v_{R} e v_{2}^{*}\left(T_{R}\right) v_{R} e V_{3}^{*}\left(\theta_{v} \cdots v_{R} e v_{R_{2}+3}^{*}(x)\right.
\end{aligned}
$$

$$
\begin{aligned}
&=\sum_{\substack{n_{1}+n_{2}=n \\
\beta_{1}+\beta_{2}=\beta}} \frac{1}{n_{1} \cdot n_{2}!}\left\langle\gamma^{n_{1}} T_{i} T_{j} T_{a}\right\rangle_{\beta_{1}}\left\langle\gamma^{n_{2}} T^{a} T_{k} T_{l}\right\rangle_{\beta_{2}} \\
& \text { so } \quad \sum_{n, \beta}(*)_{i j k l, a^{\prime}, \beta} g^{\beta}=\left(\sum_{\beta_{1}}\left\langle\exp (\gamma) T_{i} T_{j} T_{a}\right\rangle_{\beta_{1} \beta^{\beta_{1}}}\right)\left(\sum_{\beta_{2}}\left\langle\exp (x) T^{a} T_{k} T_{l}\right\rangle_{\beta^{2}}\right. \\
&=F_{i j a} g^{a b} F_{b k l}
\end{aligned}
$$

Since the original definition of $(*)_{i j e e, n, \beta}$ was symmetric in (ijke) we find the cher os which proves the theorem.

Lecture 13
Return to the main targets of interest: $C\left\{3 s\right.$. Sine $v \operatorname{dim} \bar{m}_{g}(x, \beta)=0$ there are no interesting insertions (we canstick in divisors bunt they are determined by zero insertion incorints). All she information is cuntinad in the $t=0$ series.

Associativity in gumbos cohomolegy (wow) tells us nothing:

$$
\begin{array}{rcccc}
H^{*}(x)= & H^{0}(x) \oplus & H^{2}(x) & \oplus & H^{y}(x) \\
T_{0} & \sigma_{1} \cdots T_{p} & \nabla_{1}^{v}, \ldots, T_{p}^{v} & \oplus H^{6}(x) \\
1 & \text { divines } & \text { cure closes } & T^{v}
\end{array}
$$

Since vain $\bar{m}_{g}(x, \beta)=0$ any curve inversion or β insersim is zero if $\beta * 0$.
Thus $F_{i j k}=\underset{4}{\text { cost }}$ if any $\delta i, j, k$ are indies correspading to cones or points

WDVV: $(i j k e)=F_{i j a} g^{a b} F_{b k e}$-either a or b will be a point or divisor

WDVV: $\quad(i j k e)=F_{i j a g} g^{a b} F_{\text {bk }}$ - either a or b will be a point or divisor
\Rightarrow we get 0 unless one o ijke is the 0 index, but then

$$
(0 i j k)=F_{o i a} g^{a b} F_{b j k}=g_{i a} g^{a b} F_{b j k}=F_{i j k} \text { so smutty tells us nothing. }
$$

Sine insertions tell us nathiey nev, we only use the $t=0$ series.
Def'n The gave g GW potential of a CY3 X is

$$
\begin{aligned}
& F_{x}^{g}=\sum_{\beta} N_{g, \beta}(x) v^{\beta} \quad N_{g, \beta}(x)=\langle \rangle_{g \beta}^{x}=\int_{\left[\bar{m}_{g}(x, \beta]^{v i r}\right.} 1 \\
& v_{1}^{\beta_{1}} \ldots v_{p}^{\beta_{p}} \text { for } \beta_{i}=\beta \cdot T_{i} \quad T_{1}, \ldots, T_{p} \text { pas basis for } H^{2}(x) \\
& \text { (prninsly } g_{i} \text {) }
\end{aligned}
$$

Ded'n The all genes potential is $F_{x}=\sum_{g \geqslant 0} F^{g} \lambda^{2-2} \in \mathbb{Q} \llbracket v \nabla \|((\lambda))$
Lavicant series in λ, the string capping consist.
Deft The GW partition function is given by

$$
z=\exp (F)
$$

Hiv Sha that if we write

$$
Z=\sum_{x} \sum_{\beta} N_{x, \beta}^{0} \lambda^{-2 x} v^{\beta}
$$

Then $N_{x, \beta}^{\dot{0}}$ can be intenperted as possiblydiscunueted GW inemerints:

The relationship between enumerative geometry (litoal curve canting) and GW theory is vary complicated on a C43. To illustrate, we take some classical envmentive facts and stall them in the content of GW theory.

Lat $X=X_{(s)} \subset \mathbb{P}^{4}$ be a generic smooth quintic 3 -fol

- There are 2875 lives on $X \quad$ (By hefschutz hyporplere them $\left.H^{2}(x) \equiv H^{2}\left(\mathbb{P}^{4}\right)=Z\right)$
so $H_{2}(x)=Z$ generated by class of a lina)
- There are 609,250 quadric curves (all genus 0)
- There are no curves of genus >0 in degree 1 or 2

What about the corresponding GW invariants? For $\beta=d[$ line $]$ we just write d

$$
N_{g, d}(x) \text { for }(g, d)=(0,1),(0,2),(1,1)
$$

$N_{0,1}=2875$ the maps must be isomorphisms and their inge

Contribution of the set of double covers of a fixed line is $\frac{1}{8}$ (not a trivial computation).

$N_{b, 1}=\frac{1}{12} \cdot 2875$ (not zero) each of the line contribute $\frac{1}{12}$ coming from maps

GW invariants have catrimations coming from multiple cues and degenerate maps
(having collapsing caypments).
Lecture 14]
Fundamental Problem what : the contribution of an isolated core of games g and degree β in X to $N_{g+h, d \beta}$ (and to what extent does the question make sense?).

Def'n A smith guano g curve $C_{g} \subset X$; called suparrigid if $V h, d \bar{m}_{g+h}(G, d[c])$ union 8 is av conneutal capments of $\bar{m}_{g+h}(X, d[c])$. In otherwomls $C_{n} c X$ dotssit deform and more our no multiple of C_{g} (ie. multiple cover) deforms (even infinitesimally).

$$
\left.\left[f: c_{g+n} \rightarrow c_{g} c x\right] \in \bar{m}_{g+n}\left(c_{g}, d\left[c_{g}\right]\right) \subset \bar{m}_{g^{+1}}\left(x, d c_{g}\right)\right)
$$

Sine $\bar{M}_{g}\left(c_{0}, d\left[c_{0}\right]\right) \subset \bar{M}_{g}\left(x, d\left[c_{0}\right]\right)$ is a union of connected coronets it males sense to restrict the virthel class

$$
\begin{aligned}
& N_{g+h, d}^{G i v}\left(c_{g} c x\right)=\int_{\left[\bar{m}_{g+n}(x, d[g])\right]^{\text {lir }}} 1 \\
&\left.\right|_{\left[\bar{m}_{g+h}\left(c_{g}, d[c,]\right)\right.} \\
&=\int_{\left[\bar{m}_{g+h}\left(c_{g}, d[g]\right)\right]^{\text {vire }}} c_{0}(\theta b) \\
& \text { virdin }=0=(2-2 g) d+2(g+h)-2 \\
&=2 h+(2-2 g)(d-1)
\end{aligned}
$$

$C_{D}(O b)$ is D th churn class of
Obstruction sheaf. Fibers of obstruction shat are $H^{\prime}\left(C_{g+h}, f^{*} N_{c^{\prime} \mid x}\right)$
Lecture 15
Example: if $C_{0} \subset X$ has $C_{0} \cong \mathbb{P}^{\prime}$ and $N_{c / X} \cong \theta_{\mathbb{R}^{\prime}}(-1) \oplus \mathcal{Q p}_{p}(-1)$ then C_{0} is super rigid.
bul \mathbb{T}^{\prime}, ak. a. resold cmiroul

$$
\left.N_{h, d}\left(c_{0} c x\right)=\int_{\left[\bar{m}_{h}\left(\mathbb{R}^{\prime}, d\left[\mathbb{R}^{\prime}\right)\right]^{\text {vir }}\right.} \quad 4-\theta_{b}\right)=N_{h, d}\left(\operatorname{Tot}\left(\theta_{p}(-1) \oplus \theta_{p^{1}(-1)}\right)\right)
$$

This can be computed using the \mathbb{C}^{x} action: the \mathbb{C}^{x} action on tret \mathbb{P}^{\prime} induces an action of \mathbb{C}^{x} on the moduli space by composition. $\lambda \in \mathbb{C}^{x}$ then

$$
\lambda \cdot\left[f: c \rightarrow \mathbb{R}^{\prime}\right]=\left[c \xrightarrow{f} \mathbb{R}^{\prime} \xrightarrow{\lambda} \mathbb{P}^{\prime}\right]
$$

Integration on a smash prog manifold with a \mathbb{C}^{x} can be due by Atiyah-Bott
 by contributions from the \mathbb{C}^{x} fixed locus.

