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Digression on how to compute XIOCs) :
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#xOca is a bundle of rank /Im!· If E is a vector space then

of course elts of E are linear functions on E and Hence SymbE are homogeneous

degree n polynomial functions. If EIRY is a rector bundle them sections of
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Thus **0c= Olim+jm2)

j

=> X (0c) = X(+Oc) = & (im+ im2 + 1) 4 4

i
, jed 3 3

= (6) + m, i + mess J - I I &-- I I

t

Ji - O O 000
-

= (6) + m
, (7) + mc(2) ↑

i

di Je

In our case m.
= + m

=
= 3 ( = (2) x = (1,1)

or d = (1, 1) J = (2)

s x(0q) = = =
105

Lecture34

Ed+
(x) = 1 -

g(
v + g((1 +

2=g2
+ n] v + 0(3)

We are done with geometry ,
we now can use DT/GW and GV formula

to determine GW and GV invariants. Nontrivial formula mongering.
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In our topological vertex computations ,
we exploited the fact that if

M is a variety with the action of a forus
,

then e(M) = e(MT)· We also want

to use the fact that Enter characteric is ric : it behaves well under

products and stratifications . There is a very nice way of formalizing this

use the Granthendiest
group

:

Don the Gothendieck group of varieties over I is

Ko(Varc) = free Abelian group generated by isomorphism classes

of varieties with the relation

[v] = [v-z] + [z] if ZCV closed

it is a ring under [v7 . [W] = [UXW]· It has unit 1 = [pt).



Remark : If F-P is a Zariski locally trivial fibration ,
then

& [P] = [FJ · [B] in Ko(Vare)

of Let U= B-z be a Zariski open set
where D is trivial

,
then

(P) = [P(n] + [P/z] = [FxU] + [P12] by induction on the dimension of the

base
,

we may assume [P1z] = [][F] and so

[P] = [F) . [u] + [F] .[z] = [F) . ([u] + <z]) = [F] - [B]

Example
"
-

**
- 303 -

"
is Ear locally trivial so

[c" - 303] = [+] · [M] Let 1 = [Ac] 1 = [p+]

-1 = (1-1) . [] = [M]= = H..

Prop : Euler characteristic is a ring homomorphism C : Ko(Varc) ->*

[v] = e(V)

e. g. e(M") = n+

Theorem there exists a ring homomorphism W : KolVarc) - ECt)
-

(the weight polynomial) such that if V is a smooth projective variety

then W([V]) = EdimHYX) +" (the Poincare Poly) ·
Moreover W(C) = +.

t

e
. g. Wt(4) = 1+ ++ ... ++
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+
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"
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"
+ + "
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example : [Gln()] = (1) - 1) . (IL"-#) . (IL" -#2) ... (I - 1 )
-

why ? Glu has a fibration Fr -Glu [G(n]= [1"-1](Fl]

↓ map matrix to first column

v
, 4"- 303

then F! has a fibration For - Fr↓ -
2nd column F' = [H - 12] . [F7]

Vz &"- Espanu, 3 = "- K

and so on : F - Fu
↓ 3rd column

C"- Espan V
,un3 = K"- I
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