Lecture 33) $D T / G W / G V$ invariants for local $\mathbb{P}^{2} \quad \beta=[L] \& \beta=2[L]$

$$
\begin{aligned}
& X=\operatorname{total}\left(\theta(-3) \longrightarrow \mathbb{P}^{2}\right) \\
& Z_{\beta}^{D T}(x)=\sum_{n}^{1} N_{p, n}^{D T}(x)(-q)^{n} \\
& =\sum_{n} e\left(I_{n}(x, \beta), \nu\right)(-q)^{n} \\
& \text { value of Bolorod free om trout find } \\
& \text { points }\left[I_{z}\right] \in I_{n}(x, \beta)^{\top} \text { is }(-1)^{(c \beta)+n} \\
& =\sum_{n}(-1)^{c(p)+n} \#\left\{I_{n}(x, \beta)^{\top}\right\}(-q)^{n} \\
& = \pm \sum_{n}^{1} \#\left\{I_{n}(x, \beta)^{\top}\right\} q^{n} \\
& Z_{[L]}^{D T}= \pm 3 V_{\phi \phi D}^{2}(q) \cdot V_{\phi \phi \phi}(q) \cdot q^{x\left(\theta_{L}\right)} \\
& V_{\phi \phi \phi}=M(\delta)=\prod_{m=1}^{\infty}\left(1-g^{n}\right)^{-m} \\
& V_{\phi \phi_{D}}=M(\delta) \frac{1}{1-8}
\end{aligned}
$$

$$
\begin{aligned}
& Z_{[L]}= \pm 3 m(g)^{3} \frac{1}{(1-q)^{2}} q^{1}= \pm 3 q+\theta\left(g^{2}\right) \\
& I_{1}(x,[L])=\mathbb{R}^{2} \text { so } N_{1,[L]}=e_{\text {var }}\left(\mathbb{R}^{2}\right)=3 \text { so } \\
& Z_{[L]}=-3 \mathrm{~m}(\mathrm{~g})^{3} \frac{8}{(1-g)^{2}} \quad \text { Recall } \quad z_{\beta}^{\prime}=\frac{z_{\beta}}{z_{0}} \text { so } Z_{[L]}^{\prime}=\frac{-38}{(1-g)^{2}} \quad \begin{array}{l}
\text { Invorint } \\
\text { under } \\
q \leftrightarrow g^{-1}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& = \pm\left(3 V_{\phi \phi \square}^{2} V_{\phi \Delta 0} q^{x\left(\theta_{2}\right)+1}+3 V_{\phi \phi \theta}^{2} V_{\phi \phi \phi}\left(q^{x\left(\theta_{c_{2}}\right)}+q^{x\left(\theta_{c_{3}}\right)}\right)\right) \\
& V_{\phi \phi \Delta}=V_{\phi \phi \phi} \frac{1}{1-8} \quad V_{\phi \Delta D}=V_{\phi \phi \phi}\left(g^{-1}+\frac{1}{(1-g)^{2}}\right) \quad V_{\phi \phi B}=V_{\phi \phi \phi} \frac{1}{(1-8)\left(1-\delta^{2}\right)}
\end{aligned}
$$

$X\left(\theta_{c_{1}}\right)=X\left(\theta_{c_{2}}\right)=1$ sime $c_{1} c_{2} \subset \mathbb{R}^{2}<X$ conics so heve $X=1$ by aljunction
we will see how to compente $X\left(\theta_{c_{3}}\right)$ later $X\left(\theta_{c_{3}}\right)=5$

$$
\begin{aligned}
& Z_{2[1]}= \pm 3 \mathrm{~m}(8)^{3}\left(\frac{1}{(1-8)^{2}}\left(q^{-1}+\frac{1}{(1-8)^{2}}\right) q^{2}+\frac{8+8^{5}}{(1-8)^{2}\left(1-q^{2}\right)^{2}}\right) \\
& Z_{2[l]}^{\prime}= \pm 3 \frac{8}{(1-g)^{2}}\left[1+\frac{8}{(1-8)^{2}}+\frac{1+g^{4}}{\left(1-8^{2}\right)^{2}}\right] \triangleleft \quad \text { Invariant under } \quad 8 \leftrightarrow 8^{-1} \text { ? jes! } \\
& Z_{2[L]}= \pm 3\left(q+\theta\left(q^{2}\right)\right)\left(1+q+\theta\left(q^{2}\right)+1+\theta\left(q^{2}\right)\right) M(q)^{3}= \pm 6\left(q+\theta\left(q^{2}\right)\right) \\
& \text { so } \pm 6=-N_{1,2[l]}=-e_{\text {vir }}\left(I_{1}(x, 2[l])\right)=-e_{\text {vir }}\left(\mathbb{P}^{5}\right)=-(-6)=+6 \\
& z_{2[l]}^{\prime}=3 \frac{q}{(1-q)^{2}}\left[1+\frac{8}{(1-q)^{2}}+\frac{1+8^{4}}{\left(1-8^{2}\right)^{2}}\right]
\end{aligned}
$$

Digression on how to compute $X\left(\theta_{C_{\lambda}}\right)$
Let $X=\operatorname{tot}\left(\theta_{p^{\prime}}\left(-m_{1}\right) \oplus \theta_{p^{\prime}}\left(-m_{2}\right)\right) \quad m_{1}+m_{2}=2 \quad$ (in or case $\left.\begin{array}{l}m_{1}=1 \\ m_{2}=-3\end{array}\right)$
Let C_{λ} be the pure dim'I I sabscheve of X (no cerveded points) which is T invariant and restricted to the fibers of $X \xrightarrow{\pi} \rightarrow \mathbb{R}^{\prime}$ is the monomial subschere of c^{2} given by λ.

To compute $X\left(\theta_{C_{\lambda}}\right)$ we congente $X\left(\pi_{*} \theta_{C_{\lambda}}\right) \quad[\ln$ greer, for $f: V \rightarrow W$ ga shat a V, $\sum_{k}(-1)^{k} \operatorname{dim} H^{k}(v, f)=\sum_{i, j}^{\prime}(-1)^{i+j} \operatorname{dim} H^{i}\left(w, R^{j} f, g\right)$, since $R^{j} \pi_{*} \theta_{q_{A}}=0$ for $\left.j>0, X\left(\theta_{c_{A}}\right)=X\left(\pi_{*} \theta_{c_{\lambda}}\right)\right]$.
$\pi_{*} \theta_{G_{n}}$ ib a bundle of rank $|\lambda| m \mathbb{P}^{\prime}$. If E is a vector space then of course efts of E^{V} are linear sinctians an E and heme $S_{y m}{ }^{n} E^{v}$ are hergenews degree n polynomial function. If $E \xrightarrow{\pi} Y$ is a rector bundle then sections of $S_{y m}{ }^{n} E^{v}$ are polynomial functions an the filters of π. So for $E=\theta\left(-m_{1}\right) \oplus \theta\left(-m_{2}\right)$, the monomial $x_{1}^{i} x_{2}^{j}$ is a section of $\theta\left(m_{1}\right)^{\Delta i} \otimes \theta\left(m_{2}\right)^{\otimes j}=\theta_{\nabla^{\prime}}\left(i m_{1}+j m_{2}\right)$

Thus $\pi_{*} \theta_{C_{\lambda}}=\underset{i, j \in \lambda}{\oplus} \theta\left(i m_{1}+j m_{2}\right)$

$$
\begin{aligned}
& \Rightarrow \quad X\left(\theta_{c_{\lambda}}\right)=X\left(\pi+\theta_{c_{r}}\right)=\sum_{i, j \in \lambda}^{\prime}\left(i m_{1}+i m_{2}+1\right) \\
& =|\lambda|+m_{1} \sum_{i, j} i+m_{2} \underbrace{}_{i, j \in \lambda} j \\
& =|\lambda|+m_{1}\binom{\lambda^{+}}{2}+m_{2}\binom{\lambda}{2}
\end{aligned}
$$

In or case $m_{1}=-1 \quad m_{2}=3 \quad \lambda=(2) \quad \lambda^{\prime}=(1,1)$

$$
\text { or } \lambda=(1,1) \quad \lambda^{\prime}=(2)
$$

so $x\left(\theta_{c_{G}}\right)=\left\{\begin{array}{l}2-1+0 \\ 2+0+3\end{array}=1\right.$ or 5
Lecture 34

$$
Z_{D T}^{\prime}(x)=1-\frac{38}{(1-8)^{2}} v+\frac{38}{(1-8)^{2}}\left[1+\frac{8}{(1-8)^{2}}+\frac{1+8^{4}}{\left(1-8^{2}\right)^{2}}\right] v^{2}+\theta\left(v^{3}\right)
$$

We are done with geosoctry, we now can use DJ/aw and GV formula to determine GW and GV ineriacts. Nontrivial formula mongering.

$$
\begin{aligned}
& z_{D T}^{\prime}=\exp \left\{\sum_{\substack{g \geqslant 0 \\
\beta \geq 0 \\
k>0}} n_{g, \beta} \frac{v^{k \beta}}{k}(-1)^{g-1}\left(\frac{q^{k}}{\left(1-q^{k}\right)^{2}}\right)^{1-g}\right\}
\end{aligned}
$$

We want $n_{g, d[1]}(x)$ for $d=1$ i: $2 \quad x=\operatorname{tatel}\left(a l(-3) \rightarrow \mathbb{R}^{2}\right)$

$$
\begin{aligned}
& Z_{D T}^{\prime}(x)=1-\frac{38}{(1-8)^{2}} v+\frac{38}{(1-8)^{2}}\left[1+\frac{8}{(1-8)^{2}}+\frac{1+8^{4}}{\left(1-8^{2}\right)^{2}}\right] v^{2}+\theta\left(v^{3}\right) \\
& Z_{D T}^{\prime}(x)=\exp \left\{\sum_{\substack{g \geqslant 0 \\
\beta \neq 0 \\
k>0}} n_{g, \beta} \frac{v^{k \beta}}{k}(-1)^{g-1}\left(\frac{q^{k}}{\left(1-g^{k}\right)^{2}}\right)^{1-g}\right\} \\
& Z_{D T}^{\prime}(x)=\exp \left(c_{1} v+c_{2} v^{2}+\cdots\right)=1+c, v+\left(c_{2}+\frac{1}{2} c_{1}^{2}\right) v^{2}+\cdots \\
& c_{1}=\sum_{g \geqslant 0} n_{g, L l]}(-1)^{g-1}\left(\frac{g}{(1-g)^{2}}\right)^{1-g} \\
& C_{2}=\sum_{g \geqslant 0} n_{g,[l]}(-1)^{g-1} \frac{1}{2}\left[\frac{\delta^{2}}{\left(1-\delta^{2}\right)^{2}}\right]^{1-g}+\sum_{g \geqslant 0} n_{g, 2[1]}(-1)^{g-1}\left(\frac{\delta}{(1-\delta)^{2}}\right)^{1-\delta}
\end{aligned}
$$

$$
\begin{gathered}
v^{\prime} \text { term: } \frac{-3 g}{(1-g)^{2}}=\sum_{g=0}^{\infty} n_{g, L[]}(-1)^{g}\left(\frac{8}{(1-g)^{2}}\right)^{1-g} \\
\Rightarrow n_{g,[L]}= \begin{cases}3 & g=0 \\
0 & g>0\end{cases}
\end{gathered}
$$

v^{2} term:

$$
\begin{aligned}
& \frac{3 \delta}{(1-q)^{2}}\left(1+\frac{q}{(1-\delta)^{2}}+\frac{1+q^{4}}{\left(1-\delta^{2}\right)^{2}}\right)=\frac{1}{2} c_{1}^{2}+c_{2}=\frac{9}{2} \frac{\delta^{2}}{(1-\delta)^{4}}+-\frac{3}{2} \frac{\frac{q}{}^{2}}{\left(1-\sigma^{2}\right)^{2}}+\sum_{\gamma} n_{g, 2 c i s}(-1)^{g-1}\left(\frac{1}{(1-\delta)^{2}}\right)^{1-8} \\
& \sum_{8} n_{g, 2 L 1-1}(-1)^{p-1}\left(\frac{8}{(1-8)^{2}}\right)^{1-g}=\frac{38}{(1-8)^{2}} \cdot\{\underbrace{1+\frac{8}{(1-g)^{2}}+\frac{1+8^{4}}{\left.(1-)^{2}\right)^{2}}-\frac{3}{2} \frac{8}{(1-8)^{2}}+\frac{1}{2} \frac{8}{(1+8)^{2}}}\}
\end{aligned}
$$

$$
\begin{aligned}
& 1+\frac{8}{(1-g)^{2}}+\frac{1+8^{4}}{\left(1-\gamma^{2}\right)^{2}}-\frac{3}{2} \frac{8}{(1-8)^{2}}+\frac{1}{2} \frac{8}{(1+8)^{2}}=1+\frac{1}{\left(1-\delta^{2}\right)^{2}}\left[8(1+8)^{2}+1+8^{4}-\frac{3}{2} 8(1-q)^{2}+\frac{1}{2} 8(1-8)^{2}\right] \\
& =1+\frac{1}{\left(1-\gamma^{2}\right)^{2}}\left[\frac{1}{2} q(1-\xi)^{2}-\frac{1}{2} g(1+\xi)^{2}+1+\gamma^{4}\right]=1+\frac{1}{\left(1-q^{2}\right)^{2}}\left[-2 \xi^{2}+1+\gamma^{4}\right]=1+1=2 \\
& \Rightarrow \sum_{g \geqslant 0} n_{g, 2[L]}\left(\frac{-q}{(1-g)^{2}}\right)^{1-g}=\frac{6 q}{(1-g)^{2}} \\
& \Rightarrow \quad n_{g, 2[L]}(x)=\left\{\begin{array}{rll}
-6 & \text { if } g=0 \\
0 & \text { if } g>0
\end{array}\right.
\end{aligned}
$$

In our topological vertex companditios, we exploited the fact that if M is a variety with the action of a torus, then $e(m)=e\left(M^{\top}\right)$. We also want to use the fact that Euler cheracteric is mativic: it behaves well under products and stratifications. There is a very nice way of formalizing this use the Grouthendiect group:
Def'n The Grothendieck group of varieties over C is
$K_{0}(V a r c)=$ free Abelion group generated by isomorphism classes of varieties with the relation

$$
[v]=[v-z]+[z] \text { if } z \subset v \text { closed }
$$

it is a ring under $[v] \cdot[w]=[v \times w]$. It las unit $1=[p t]$.

Remark: If $F \rightarrow P$ is a Zariski locally trivial fibuation, then

$$
[P]=[F][B] \text { in } k_{0}(\text { Vorc })
$$

Pf Lat $U=B-Z$ be a Zuriski genset where P; trivial, then
$[P]=[P / u]+[P / z]=[F \times U]+[P / z]$ by indection on the diansimen of the base, we may assome $\left[\left.P\right|_{z}\right]=[z] \cdot[F]$ and so

$$
[P]=[F] \cdot[u]+[F] \cdot[z]=[F] \cdot([u]+[z])=[F] \cdot[B]
$$

Example $\mathbb{C}^{x} \rightarrow \mathbb{C}^{n+1}-\{0\} \rightarrow \mathbb{P}^{n}$ is Zor. locelly trivial so

$$
\begin{aligned}
& {\left[\mathbb{C}^{n+1}-\left\{_{0}\right\}\right]=\left[\mathbb{C}^{k}\right] \cdot\left[\mathbb{P}^{n}\right] \text { Let } \mathbb{L}=\left[\mathbb{R}_{\mathbb{C}}^{\prime}\right] \quad 1=\left[p^{\prime}\right]} \\
& \mathbb{U}^{n+1}-1=(\mathbb{L}-1) \cdot\left[\mathbb{P}^{n}\right] \Rightarrow\left[\mathbb{R}^{n}\right]=\frac{\mathbb{L}^{n+1}-1}{\mathbb{L}-1}=1+\cdots+\mathbb{L}^{n}
\end{aligned}
$$

Prop: Euler chractoristic is a ring hamomarphism $e: K_{0}\left(V{ }_{0} r_{c}\right) \rightarrow \mathbb{Z}$ $[v] \longmapsto e(v)$

$$
\text { e.g. } e\left(\mathbb{P}^{n}\right)=n+1
$$

Theoremn Thore evists a ring hemomphism $W_{t}: K_{0}\left(\right.$ Urrcc $\left._{c}\right) \rightarrow \mathbb{Z}[t]$ (the weight polynmial) such shat if V is a smath projedive variety then $W_{t}([v])=\sum_{i} \operatorname{din} H^{i}(v) t^{i} \quad$ (the Poincere Pbly). Morener $W_{t}(t)=t^{2}$. e.g. $W_{t}\left(\mathbb{R}^{\prime}\right)=1+t^{2}+\cdots+t^{2 n}$
e.g. $X=B 1_{C}\left(P^{3}\right) \quad C \subset \mathbb{P}^{3}$ a smath curve of geno g

$$
\begin{aligned}
E & =\mathbb{P}\left(N_{c \mid \mathbb{R}^{3}}\right) \rightarrow C \text { with fiturs } \mathbb{P}^{\prime} \text { so }[E]=\left[\mathbb{R}^{\prime}\right] \cdot[C] \\
{[X] } & =\left[\mathbb{P}^{3}-C\right]+[E] \\
& =1+4+\mathbb{1}^{2}+\mathbb{L}^{3}-[C]+(1+4)[C]=1+\mathbb{4}^{2}+4^{2}+4^{3}+\mathbb{4} \cdot[C]
\end{aligned}
$$

So $\quad w_{t}(x)=1+t^{2}+t^{4}+t^{6}+t^{2}\left(1+2 g t+t^{2}\right)=1+2 t^{2}+2 y t^{3}+2 t^{4}+t^{6}$

$$
H^{0} H^{2} \quad H^{3} \quad H^{4} \quad H^{6}
$$

Lecture 34

$$
\operatorname{examp} 6:\left[G l_{n}(C)\right]=\left(\mathbb{L}^{n}-1\right) \cdot\left(\mathbb{L}^{n}-\mathbb{L}\right) \cdot\left(\mathbb{L}^{n}-\mathbb{L}^{2}\right) \cdots\left(\psi^{n}-\mathbb{L}^{n-1}\right)
$$

why? GIn has a filvation $F_{v_{1}}^{\prime} \rightarrow G I_{n} \quad\left[G I_{n}\right]=\left[L^{n}-1\right]\left[F^{\prime}\right]$ 6 mep motrix + disct chlumen

$$
v_{1} \in \mathbb{C}^{n}-\{0\}
$$

Then $F_{v_{1}}^{\prime}$ has a firration $F_{v_{2}}^{2} \rightarrow F_{v_{1}}^{\prime}$

$$
\begin{aligned}
& v_{2} \\
& v_{2} \in \mathbb{C}^{n}-\left\{\operatorname{sen} v_{1}\right\} \cong \mathbb{C}^{4}-\mathbb{C}
\end{aligned} \quad F^{\prime}=\left[4^{4}-\mathbb{L}^{2}\right] \cdot\left[F^{2}\right]
$$

and so on: $\quad F_{v_{3}}^{3} \rightarrow F_{v_{2}}^{2}$

$$
\mathbb{C}^{n}-\left\{\operatorname{sen} v_{1}, v_{2}\right\} \cong \mathbb{C}^{\prime \prime}-\mathbb{C}^{2}
$$

$$
\begin{aligned}
& {\left[G I_{n}(\mathbb{C})\right]=\left(\psi^{n}-1\right) \cdot\left(\mathbb{L}^{n}-\mathbb{L}\right) \cdot\left(\mathbb{L}^{n}-\psi^{2}\right) \cdots\left(\psi^{n}-\psi^{n-1}\right)} \\
& =\mathbb{U}^{\binom{n}{i}} \underbrace{\left(\mathbb{L}^{n}-1\right)\left(\mathbb{L}^{n-1}-1\right) \cdots(\mathbb{L}-1)}_{[n!]_{L}}=\mathbb{L}^{\binom{n}{i}}[n!]_{\mathbb{L}}
\end{aligned}
$$

$$
\begin{aligned}
& {[G r(k, n)]=\frac{\mathbb{L}^{\left(\frac{n}{2}\right)}[n!]_{L}}{\mathbb{L}^{\left(\frac{2}{2}\right)}[k!]_{L} \mathbb{L}^{\left(\frac{1-k}{2}\right)}[(n-k)!]_{L}} \cdot \mathbb{L}^{k(n-k)} \quad\binom{n}{2}=\binom{k}{2}+\binom{n-k}{2}+k(n-k) \leq 0} \\
& {[\operatorname{Gr}(k, n)]=\frac{\left[n^{\prime}\right]_{\mathbb{L}}}{[k!]_{\mathbb{L}}[(n-k)!]_{\mathbb{L}}}=\binom{n}{k}_{\mathbb{L}}=\frac{\left(\mathbb{L}^{n}-1\right) \cdots\left(\mathbb{L}^{k+1}-1\right)}{\left(\mathbb{L}^{n-k}-1\right) \cdots(k-1)}} \\
& W_{t}(\operatorname{Gr}(k, n))=\frac{\left(t^{2 n}-1\right) \cdots\left(t^{2 k+2}-1\right)}{\left(t^{2 n-2 k}-1\right) \cdots\left(t^{2}-1\right)} \quad e(\operatorname{Gr}(k, n))=W_{-1}(\operatorname{Gr}(k, n))=\binom{n}{k} \\
& \operatorname{Gr}(2,5)=\frac{\left(u^{5}-1\right)\left(4^{4}-1\right)\left(u^{2}-1\right)}{\left(w^{3}-1\right)\left(u^{2}-1\right)(u-1)}=\left(\mathbb{k}^{2}+1\right)\left(u^{4}+\mathbb{L}^{3}+\mathbb{L}^{2}+\mathbb{L}+1\right) s_{0} \\
& W_{t}(G r(2,5))=W_{t}\left(1+L^{2}+2{L^{2}}^{2}+2 \psi^{3}+24^{4}+4^{5}+\psi^{6}\right) \\
& =1+t^{2}+2 t^{4}+2 t^{6}+2 t^{8}+t^{10}+t^{12} \\
& H^{0} \quad H^{2} \quad H^{4} \quad H^{6} \quad H^{8} \quad H^{10} \quad H^{12}
\end{aligned}
$$

