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Donaldson- Thomas theory

There are two main paradigms for presenting curves :

· Parameterized curves
,

i.e. image of maps a GN theory

· carves given by equations ,
i. e. ideal sheaves /subschemes and DT theory

holomphic

DT Theory began as a theory which counts" bundles on a 243 as

holomorphic Chewn-Simons theory · the idea is that the holomorphic

forms on a CY3 H0s"(X) looks like Hin(m3) Dethan cohumlogs of a

real 3-mfd. Charn-Simons theory is a theory of 3-mfd invariants and some of the

constructions in the real 3-mfd case can be imitated.

the outcome is that if M(X, ch) is a compart modali space of

rector bundles then there is [M(4,
Ch)]"E Ho)M(X,Ch) a virtual class.

to construct M(X, ch) we need to fix ChtH
*(X) the chern character of the bundles and

more subtly ,
we must fix a stability condition.

In algebraic geometry we identify a holomorphic vector bundle on X

with its sheat of sections (such sheaves are locally free sheaves of Ox modules).

DT theory not only works for moduli of bundles
,
but in fact for moduli

spaces of coherent sheaves more generally.



For curve counting we consider very special kinds of sheaves
,

namely

ideal sheaves IzCPx ,
i.e.

the sheat of functions which vanish on some

subscheme zCX. On a CY3
,
if a sheaf has the chern character of

(curve)

an ideal sheaf
,

it must actually be an ideal sheaf so there is a bijective

correspondence IzCOx => ZCX between ideal sheaves and subschemes.

In the early 1960's Gothendieck constructed the scheme which is a

scheme that parameterizes subschemes (of a fixed Hilbert polynomial) .

Moduli space of

ideal sheaves can thus be identified with the Hilbert scheme.

Defin het X be a CY3 and BE H2lX, ) a curre class and ne E
.

Let In (X, B) be the Hilbert scheme parameterizing subschemes ECX

with [z] = B and X/Oz) = U. Equivalently ,
En(X,B) may be regarded as the

moduli space of ideal sheaves ECOX with Ch(Iz) = (cho
,
ch

, cha,chs) = (1 ,
0 ; B ,
n)

Since [z]tH2(X,B) I has dim 1 (although it
may have O dim'

components). If ECX is a smooth curve of genus g ,
then XIO) = 1 -g.

In general ,
subschemes can be non-reduced and or contain embedded points.



Schemes-Varieties

closed algebraic sets zCA" Em> radical ideals E2CD[X: xn]

closed subschemes ECA" crus ideals ICK[X,.. . xn]

so for a subscheme zCA"
,

its ring of functions Oz =

DIXXul)It can

have nilpotent elements.

the ideal (z,
X 2)

describes a subscheme·.odigi,ai which is supported on

y axis NT = (z, x)

but is infinitesimally thickened
into the xy lame

.
The "function"

X is a milpotent element of the

functions of a subscheme.

st /D[X4173
-

, xy)
> Y

(t, X

-
away from xiyiz=0 the ideal

is radical
,

but the function
*

T
X is still a milpotent. They carve

has an endpoint at the origin.

tructure21 Let XCC be a projective variety and let zcX be

a subscheme
.

The Hilbert polynomial of Es Pzlm) = * Uz(m)). For nico
,

&z(m) = (°)z,0(m) = dim of space of degree N polynomials on z . Pzlm) is a polynomial of degree dimt



projective
V

Grothendieck showed in the 60's I a scheme HillP(X) whose points carrespond

subschemes ECX with Pz=P
.

There is a universal subscheme ECHilbP(x) x X

such that if i : HilbP(X)xX -xHilbP(x) and ptHilb"(X) corresponds to EpCX

then Elit) = Ep
.

Moreover
,

if UCBxX is a family of subschemes

over B with constant Hilbert poly P
,

then 8 CBXX is induced from the universal family via

[p3xX
a unique map B Es HilbP(x)

z
C Hilbxxz

Bx X #, HildP(x) x X >
V U

s -D I

↓ d
&

B
= HilbP(X) P

Hill

constant

Example if zCX is 0 dimil and consists of K (reduced) points then Pz(m) = K
- polynomia .

Hilb" (X) = Hilbert scheme of K points .
Hilb"(X)-> SymP (X) (Hilbert-Chow morphism)
/

dominant birational map

only an iso when dimx =

Hill R (X) is non-singular if dimx = / or I

(for dimX = 2 Hill"(x) -> Sym
*(X) is a resolution of singularities)

Hilb2(X) = By (Sym2x) = subscheme of length 2 rembers the direction

I points come together
-) by varying ample

line bundle , equiv

Ex. If CCX is a curre [c] = B then Pc(u) = 410c) + m HoB embedding XCRM

we can recover
all

B and n= <(02) we will call Hilb" (X) = In (X, B) in this case.

8 B.



Scheme phenomena are forced on us when we consider moduli spaces of curves :

we may have a family EzCX +A) with [z+] = B ,
X/Oz

+

= h

where Etto are smooth
,

reduced curves but to has an embedded point. (families of

curves in a projective threefold with constant & and n are fat).

ex.
EtCP" (not 24 but serves to illustrate)

·

family of twisted cubics degenerating to a plane cubic

n= 1

fe
↳
M -

N' <D+ if curve didn't have an

(X:g) +-D (x: x2y : x92 : y3) embedded point at origin ,
then

n = X(0zo) = 0 since arithmetic gas

% plane cubia is 1 .

amodel : Ex10 = <x= z= 0 ]u & y = z-+=0 ] <k
3t

FE+- = (X,z) · (y , z -t) = (Xg , zy ,
xz -ty

,
E- tz)

limit Fzt = (xy , zy ,
xz

, z2) [ (2 , x9) nipotent elf in 0z0s z



Lecture 22-
Here is an important way to visualize a scheme defined by an ideal generated

by monomials, Let's start in dim2 think about the union of the X and y

axis in 42.

/I I
4 4

Y Yt t
⑳

' '
, ,
y xy2 xy242

x
- - f7y xy x 4 y xy/

/
- ////1/x/* * + // I/x/* x

z = 3 x=03 Of = KEXoy<xy)
== 3 xy = x=03 O = livingx, xy)

For moromial ideals in ([X,4,7] we do something similar with boxes in the positive octant

Z E
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-zi

↳9/zyi
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T 4[x, 4,
z] LT

xy

4(44 /z)
.. / ..

(z , xy) [xy , zy ,
xz

, z2)
*



In fact we can get flat families of subschemes like this :

3

6
unD P

p3

-I >

Smooth gems O (*=1)
planar nudal

curve class 3[L] cubic with embedded

point

43

- p
+

43
* pt

und unD I3↳ 1E

planar nudal smooth planar cubic

cubic with point
with point far away

far away 4 ) Eu pt) = (E) +X(pt)
= 0 + 1 = 1



We see that with subschemes
,

we must allow disconnected things and we

must allow points as well as curves.

We use the motation In (XP) rather than Hilln
+ mp' (X) because we may regard

it as a moduli space of sheaves : suppose I is a coherent sheaf on a CY3 X with

ch(l) = ( 1
,

0
,

-P, -h) - HOOOHOH then the canonical map I<DIVEOx

is injective and thus realizes I as a subsheaf of Ox and thus an ideal sheaf I = Iz

then I is automatically stable and [z] = B X /0z) = n
.

Lecture23d Like stable maps, the Hilbert schemes In (B) can be very singular and

have components of different dimension. But like stable maps they behave well because

of a virtual fundamental class (they are "virtually smooth")
.

This ideal is codified

by the motion of a perfect obstruction theory which is a gadget that keeps
locally

track of how the modali
space is"cutout of a smooth space by equations,

namely if M is some modali space parameterizing objects E
,

then locally near (E) EM
M is described as the zero locus of a map

/Kurinishi map analytic

Def(E) ** Ob(E)
Of formal function

A *
Infinitesimal deformations Space of obstructions

of E
,

i .e. T
,

M to lifting infitesimal

deformation to an

actual an



for example if [fic-x] E Mg(X,B) is an enhedding of a smooth curve,

then Def(f) = HP(C
, FNcx) and Ob(f)= H'/

, ENcx)

For any
moduli of sheaves on a 2Y3 we have Def(E) = Ext'(E,E)

Ob(E) = Ext/E
,
E)

. In the case where E is a bundle then

Ext" (E, E) = H' (X,
E
*QE) = H'(X

,
EndE)

Serve duality says that for any smooth X of dimd

Ext" (F,
G) E Extd-i (G

, FQKx)

In particular ,
for Xa CY3 Ext'(E,E) E ExtYSE,E) i . e.

fact Deformations are dual to obstructions
--

So the Hilbert scheme/moduli of ideal sheaves In (X, B) is locally near Iz

given by K (0) < Def (Iz) where Def(Iz)* Ob/Iz)
I 1

Ext'(Iz
,Iz) Ext(1z

,Iz) Ext'(Iz
,
E)

so 17 is a section of T
*
Def(I)

,
namely a differential I form on Def

.

Since Def is just a rector space , every +form is exact so Bidf where

f : Ext'(Izitz) -> & (Jargon f is the local superpotential)



Locally at a subscheme zCX [zJEInCYP) In(XP) is given by

Edf =03 ,
i.e. it's the critical locus of a function f : Ext'(Iz , Iz)-> K

· Since dimDef = dimOb vdim =0 and we get [En(X, B) ]" E Ho(In(YB);)

Det N, (x) = 1 -E

[In(X,B)J vir

Recall that one property of the virtual class is the following : if M is

a modali space with a virtual class [MJV and M is smooth but not of the

expected dimension
,

then [Mjvi = [M] 1 Crop (Ob)
·

In particular, if vdim =0

then 61 =SCo e. where Ob--M is the obstruction bundle

For DT theory Ob = Def = T
*
M so

<m E =Scoop (T
*M) = F 1 diuM e(M sopological enter chari



Amazingly, a formula like the above holds even if M is singular

Themem (Behrend) Let M = In (X, B) or moregnerally any
moduli space of sheaves

on a CY3
,

then

S1 = evie(M) := i k . e(8m
[mJvir

->
defined for any scheme /4

where Um : M-> # is the Befunction a constructible function

defined by Um((=3) = (1) dimExt'(I,F) ) 1 - e(MFt=) where

MFFI is the Milnor fiber of f1 : Ext (I
,
I) -> & the local superpotential

at [I]EM .

The Mofiber is a classical invariant in singularity theory.

MFF = #(5) nBg0) : 0 < 69(1)
fild

Example If M is smooth

Ext'(I,I) [dfj
= 03

then f = 0 and MFf = / so

Um /[13) = (-1)dimExt'(I,I) = 1)
dimM

teal
e

In generals Um weights singularitiesS and non-reduced structure.

fi
M

& C



example : M = Spea(DCiYxn) ,
i . e .

it is a "fat" point of length n
.

The tangent space Tp+ M = K and f : Q -K

x 1 -Dx"+1

since [df =03 E) x=0

Om(p t) = 2 -1) - 2)(x+ =03nB,(b)
-

scales to EX"+ = 13 = n+ 1 pts

so Um(pt) = ( 1) (1 - (n+1) = n

so while e(M) = / evir/m) = n

Lecture 24->
Compare Paradyms :

NP (x) = ) 1 I * e(r (4)

[In(X, B)Jvir
-

Integral weighted Ealer char

Advantages of right hand side :

· Can be computed strata by strata. Enter char is vic :

e(X) = e(X-z) + e(z) for E closed e(X + 1) = e(X) . eli)
.

· Doesn't require compactness. If modali space is non-compact (for example if

X is non-compact) we can define NPs(X) by RHS

↓)
fixed point locus

· If M has a K* action
,

then e(m) = e(MK
Y

)



· Suggests the existence of EgorifiedDTInvariants :

ordinary Euler char e(M) = El 71)"dimH"(M)

is there some cohomology #*(M) so that evir(m) = EE11"dim F /M) ?

Syes ! ) .

Such a thing Ftm) is the grified DT invariant associated to M

euler char
20

Numbersruns Graded Vector spaces

(set) (category)

Compos X = total (0(-3) -DP) = "local P2 "

- , (x , [N13) = & 3 = [line in p3 =P

so NThs = evir (42) = (-1)dimMe(P2) = 3

- 5 dim'
* line in P with a point and Smooth

I2(X, (n)) =) 3 = S in X (when point is on 3
re tolocalline

,
it has the structure

of an embedded point (
Str.

at embedded
points.

NPT<his (X)
= evir (I2(X, (B) = (-1) e (In (X,

[17 ) = - e (F2(X,(47)
4

Y

)
B

subschemes fixed by

4* c(1* )38 turnsactingo



F2(X, [41))
K

*

= E 3 v..

5 Jud 30 ... 05 3
so e (Iz(X,

[ k1)KY) =

3 + 6 : #zCD e invariant , supported on z-axis)/

embedded point at origin

= 3 + 6 :# I C4[x, 1,z]
,
I generated by monomials

,
VI = (x, >) and dim FY = 13

zi Z
!

(X, y2, yz) (x2
,

xz
, y)

Y Y

X X

So Nz(X ,
[N1) = - 15.

.
Can compute by Box counting ! We will

return to this when we discuss the topological vertex.



e25

example Local elliptic curve X= tot/LOL ->E) L is generic degree O line

bundle. In GW theory we chose I to be guaric so ECX is supervigid :

E doesn't deform and no multiple of E deforms . In DT theory we are less

concerned about non-compactness. We first compute for X : Tot (Oz0E -PE)

* = xE

Nonces
= Evir (In(E, d(E3) the group (D** E acts on

In (X,d[t]) and evir(En(Yd[E3)) = evir) In (#,d(E3)(kY)" xE)
What subschemes EC &xE are preserved by [KYxE ?

First just consider En(F,
d) E -> no embedded points and such subschemes zc+E

are determined by their restriction to 21, 5 Length & zero dim'l subscheme

& ⑧

·

In (F ,
des)E = &0Non

=

·

·

E

NPTACE) (x) =

vir) Hilbd(4) n

=# partions ofdE O WFO I

n p(d).

evir (HildP(42) = 71)" e (HilbP(kY) = (Hilb9(k2(xYY) = # & EC4(, 4)
,
I generated by monomics)dim Q[x,4 Y = d



WDTCorrespondene

Recall the GU potentials and partition function

FGW (X) = El New VP genus o potentiall

FGW (X) = 51 Fg 129-2 all genes potential

Fr = FGN- FGW/v
=0

= Faw doesn't include & =0 invariants

Exw = exp (Faw) - GN partition function, generating function for possibly
disconnected invariants

z'w = exp /Fyn) = Earulvio *

grevating for
for possibly disconnected invariants

with no collapsing connected components

De EbrX) = i N(X) VP q =DT partition function
generating function for DT invs

(with a sign 1-13" for convenience) ·

DT theory is inherently disconnected and includes point contributions so it is most closely

analogos to EGw
,

however we prefer En to Zaw (no ill defined terms e.g. ).

For DT theory we remove degree zero contributions formally :

Det Ex+= Eat E a primi ,
it's not clear what this is the generatingo

for geometrically (turns out to be PT theory)



Lecture 30->
GNIDT correspondence conjectured in 2003 MNOP

, proven by Pardon in 2023 :

Z'b+
(x) = Exw(X) after the change of variables q = eid

same function ,
GW invariants are taylor coef's

,
DT invs are Farier crefs.

The variable change q : eis is strange. For this change of variables to even make

sense requires the following property (conj by MNOP 2003
, proven by Bridgeland-2010) :

them The coefficient of uP in Epi is the Carrent expansion of a rational function inq-

invariant under q
> q

i

.e. a palendromic Laurent polynomial 3q
2
+ 7q + 2 + 78 + 392 o

-
something like q + 28+ 39%... = gp 2 > · =

H-8
Z

Correspondence makes sense for fixed B (can compare UP terms of E'p- and

Zaw separately) ,
but far fixed p one must know all o to get a single n

and rise-versa. Physicists call this a non-perturbative duality.

Elaw is an expansion for small string coupling constant

ED+
" " I 1

"8 E ->: x (large string coupling constant)

S-duality between A-model and B-model.



Example local elliptic curve X = total (10)- E) Nice = <(d)Nowise-

Edi=El Nate guvd = E pla> rd=(- ( Elv= o

= / so

g+ /
Edi = Est

.
Recall NEWACE = Sosid s =

-'
=r
Gs NorE g d

- va #G(d) =E St e d= K. m

=Strkm =& -log (1- V") = log * u
=> Ear = (1-v

not so interesting since there is no dependence on 6/g.

Emple X= total (OH)00() -D)

recall Faw =&" (2sin(b)) 2 (recall our discussion of GV invariants.

so Far =Ed) + Seidb/ -eid

= & - d (e-idb/2 /eidb-1)
d >O

=E-adop =Si o mgdn

=EE - Egnd =Si mlog(1-vgm) = log)
,
(l-rgune

So z I z
=T,

(1 - rgm)
m

GW DT

&
already surprising that this is

an integer series.



Suppose that X is a taric CY3 : it has a += (C")" action

with an orbit as a dense gren set
.

E. g. Total (OFOOH) +4) or tot) Of-2,
-2) - &<4)

T acts on X with isolated fixed points and each fixed point is the origin of an

affine coord chart KCX. The induced action of T on In(X,B)

has fixed points given by ideal sheaves generated by monomials in each coordinate

patch . So T-fixed subschemes -> configurations of boxes in each word. patch.

How can we handle the Behrend function ? There is a 2-dim'l daris TciCT

which acts trivially on the filers of Ky = KXX . In aK3 coordinate patch of X
,

with (tistasts) - Tarting by (t, x, tan
,+st) Tcp = 9 (ti ,tu

, ts) : titets =1)

you can check that Tcy fixed ideals [C4[X, 3,E] are still those guerated by monomials
.

If [I] = In (X, B)
Tai

then Tco arts on ExtlI,I) and the

Kurinishi map Ext (F, I) -> Ext(I,I) is Tco equivariant .
Moreover Serve duality

EXP(E
,
I) ED Ext(I,I)

*

is Tw equivariant (but not T equir !)

and so the superpotential f : Ext(I,I) -DK is Too invariant

&

↳ & Tay outs trivially here
.

Tay arts
,

O's only

fixed point (if there was

a fixed linear subspace,
then [I] + In(NB)

would not be an isolated fixed point)·



-> e(MFf) =0 since MF+ = < +/5) 1 Bcl0)] has a free S'action

We've shown that 8 ((13) = <- pdimExtE,)
(1-e(mFt)) = 2- 1)

dimExt(Ex)

↳

Behrend function is #) and all we have to compute is dimExt'(F,I).

mod 2

Pop (MNOP) Let (IJE In(X, B)
"c"

and het 6/P, n) = dim Ext'(I,I) mod 2 .

then 6(p,
n +K) = k + 6/B,n) mod2 .

So this means for X a taric CY3
,

we get

zP+ (X) =51 N4- (x) vP ( g)
"

=Si evir (Fn(X,p) vP

= E (-1)
5 (/ 4) e (In(x,p) i) vP (-g)

n, B

= VP ( 1)
8/10) & # [In(xB)3 qu

n

m
generating function

for box counting.

Let z"5 (X) be the UP coef of EPT(X) then

z(x) = = # &In(x,B) 392

q

completely combinatorial

problem solved by topological vertex.



example : B = 0 20X) = F & #5 Hild"(x)+3 &

sign must be

+ since Hilb"(x) = pt

*/+ invariant O-dimil

subschemes are all supportedX · at XT = [ P1 :.., PF3

F = # of fixedpoints = e(X)

z8x) = 5 & #GHilb") C3)
T

&ni

n n, +.. +
f = h

affine chart
around pi

= #SHilb"" (13) 5 3gni = (#5Hilb2((3)5) que
e

A
number of 3D partitions

of h = number of ways

of stackinga boxes into a corner = P3p/n)

1909 MacMahon should P3D(n) =t, (1 -gk) = M(g) = 1 + q + 382 + 6g3 + Bgt..
n= 0

So Zo(X) = M/gje(x) X tric.
.

In fact,

the Zo(X) = M1ggelx holds for all X (even if X is not did.

Recall that for X= tot(OH)00() -> ')
,

the GWIDT correspondence predicts

Zi+ (X)=*, 11-vgmy" since Eo(x) = M18) and Z
o

we see that

Exr(X) = M1g7(1-vgm)" = M1g)2t
,

(1 - mrg" + O(vY) = m(g) (1 - (5mgn) v + O(r )

so zg = Coetrit = - m1g)" , gi



on the other hand

E(i = Sievir(En(X, [NB) (-g)

= #*In (N/'3
+3

If subscheme has no embedded points ,
it is just the zero section I'< X and

n = 4)Opi) = 1
.

So som starts at n= 1 and overall sign is negative .

Ep = -guSin ,

& # of ways of adding n
,

boxes to

.

3 .#addwase
/

=

- g) blnig call this b(nz)

GUIDT is thus predicting that

(b(n)gn) = M(g)
+

= (1 + q + 32+ bg2 + 13g" + ... ) . ( +g + g2+ g" + g"+ ... )1 - q
A

↑ I ↑
number number of ways = 1 + 28 + 592+ 1293+ 24 g4+...

number of of ways of stacking

ways of stacking of stacking inside the column,

boxes outside boxes in

a column D .

an empty
room



Lecture32The full computation for X = At(OH)*OH) · First application of

the topological vertex .
The topological vertex is a box counting generating function :

Den Let (M,
2

,
6) be triple of 2D partitions viewed as Young diagrams :

Let Vary(g) = < I+ 1 where It = number of boxes in it with eachq
it 3D partitions

asymptoticto
lux counted by 1-#0 legs box

u8d is contained in.

emple Vis& -(8) counts things like this :

I

I
X-axis

cross.
z-axises sectioncross-section --axis

section

: ii

·
Z

This configuration it

a) has It= 4 - 2 = 2

- *
the4 added two

black leaves
boxes in

but has
count negative

y

:
Such it correspond to monomial ideals ICK[4DIE) so that

in Q[X, 4,E ,
x'] I = (y,z)

,
in D[X,71z, y] I = 1)

,
and in $[X4, E,z'] I = (x2, xy , y2)



Okonkov-Reshitikin-Vata gave a formula for Vars(g) in terms of Schur functions

for example :

- VQ06(8) = M(g) g
(2)
Sy (1

, 8 , g: ... ) where M(g)=* 11-gmym (=Vol

(i) = E(bi) Syt(X, X2s : -) Schur symmetric function labelled by ↓" conjugate partition.

example SylX, X2... ) = x t2+.. So Syll , 9, 8), ... ) = Htgtg.... Eg

In fact, gl) Syll , 8, 93. .) = T IghlD) U(D) = hook length.

zDT(X)= & NOTd<x(X) v & en FE/Vo
= vd +- 1,

d #[En(x,d/n)

='vd( pold)& Vppg(g)V045(8) q
41Oc) *- CycX : Tinvariat subse

with cross section a and n

embedded points-

=0 vd(pola)Sig
- (2) - (2) M1g)" Syl, 8:"Syll , 8, 85 : ) gNCse

the only two things we don't know in

the above is X/Ocy) and 6/d) = dim Ext (Ecs ,
Ec) mod I

MNOP gives general formulas for this but we can also compute directly using

1)
rk a bundl on O(2) 013) 0(4)

T : X -**. For example 4(Uc) = X(TOcs) MrOg =O allo OS
↑ B&_ Olitisa di d



4)++Og) =e)i 1

-= dieiieEr ↓ + i -Id

els) i
=essity= (bi) + di = (2) eEr So

i=1j= 1

X(0g) = x(x+0g) = (i) + (! ) + 13) turns out o(d) = d mod 2

- ()

+SoEngiMissis/
, 8,6. golde

= M18) Si 5
,

11
, 8,

... ) 55 (1, 8, 82 .. ) (-gu

= M(g)" Si S
,
/1

, 8 , 85 ) 5y(- gv , -giv, -giv, ...)

finally : orthogonality of schor functions

& SylX , t- ) Sy1(y , syn
: ) = I (1+ xig) o

zdT(x)=mig Drgite
m = i+j - 1


