Lecture 20
Donaldson-Thomas theory
There are two main peradyms for presenting curves:

- Parameterized curves, ie. image of mops mas GW them
- Curves given by equations, ie. ideal shewes/subschenes mad DV theory DV they began as a they which counts bundles on a CY3 as holomorphic chern-Simons theory. The ide e is that the holomorphic forms on a C43 $H^{0, k}(x)$ lads like $H_{D R}^{k}\left(m^{3}\right)$ Deter converoless of a real 3 -mfd. Chem-simas there is a they of 3 -mid inwerints and some of the constructions in the real 3 -mole case can be imitated.

The outcome is that if $\bar{m}(x, c h)$ is a compact modati spore of vector bundles then there in $[\bar{m}(x, c h)]^{\text {wi }} \in H_{0}(\bar{m}(x, c h))$ a virthel class. to construct $\bar{M}(x, c h)$ we ned to fix $c h \in H^{*}(x)$ the churn chonetor of the bundles and urge subtly, we must fix a stability condition.

In algebraic geometry we identify a holomorphic vector bundle on X with its shat of sections (such sheers are locally free shows of θ_{x} modes).

DT theory not ans works for moduli of bundles, hat in fact for mulali spaces of coherent shews more genially.

For corve conation we consider very special kinds of sheaves, namely ideal shemes $I_{z} \subset \theta_{x}$, i.e. the sheat of functians which vanish on sme subscheme $z \subset X$. On a CX3 , if a sheaf has the chern churacter of亿(arv)
an idel sheaf, it must actually be an ideal sheaf so there i: a bijective corcespandince $I_{z} \subset \theta_{X} \longleftrightarrow Z \subset X$ betroeen ideal stevees and subschemes.

In the early 1200's Erottendieck constreted the Hillert scheme which is a scheme that pracenterizes subschmes (of a fixal Hilbat polywmad). Madali spue of ideal shemes can thess be identifed with the Hillert scheme.

Def'n Lat X be a $C Y 3$ and $\beta \in H_{2}(x, \mathbb{Z})$ a curre chss and $n \in \mathbb{Z}$.
Let $I_{n}(x, \beta)$ be the Hilbent schme paraneterizing subschemes $z<X$ with $[z]=\beta$ and $X\left(\theta_{z}\right)=n$. Equivalutty, $I_{n}(x, \beta)$ megbe regached as the modali space of ideal sheores $I_{z} \subset \theta_{x}$ with $c h\left(I_{z}\right)=\left(c c_{0}, c h_{1}, c_{2}, c_{3}\right)=(1,0, \beta,-n)$

Sine $[z] \in H_{2}(x, \beta) \quad Z$ has $\operatorname{dim} 1$ (althagh it may have O dirill
compments). If $z \subset X$ is a smoth curre f gaves g, then $X\left(\theta_{z}\right)=1-g$.
In geveral, subscomes can be un-redeced and or contrin embedded points.

Schemes vs Varitities
closel algetraic sits $Z<\mathbb{A}^{n} \leadsto \sim>$ radial idens $I_{z} \subset \mathbb{C}\left[x_{1}, k_{0}\right]$
cload subschemes $Z \subset A^{n}<\cdots \rightarrow$ idenls $I_{z} \subset \mathbb{C}\left[x_{1} \cdots k\right]$
So for a subschme $Z \subset A^{n}$, its ring of finctions $\theta_{z}=\mathbb{C}\left[x_{1} \cdots x_{n}\right] / I_{z}$ can have nilootent elemers.

the ideal $\left(z, x^{2}\right)$
describes a subscheme which is supportal on y axis $\sqrt{\left(z, x^{2}\right)}=(z, x)$
bent is infinitesimally thichened into the $x y$ oplane. the "function" x is a nilpotent elowent of the functions of a subschene.

4. away from $x=y=z=0$ the idel

- rulial, hat the dunctim x is scill a nilpotent. Thes corve has an embedhd paist at the origus
hecture 21 Let $X \subset \mathbb{R}^{N}$ be a prjective variety and at $Z \subset X$ be
a subscheme. The Hilhort polynomal of $z: P_{z}(m)=X\left(\theta_{z}(m)\right)$. For $n \gg 0$,

projective
Gorthendieck shaved in the 60^{\prime} ' $\exists a^{V}$ scheme $H_{i l l}{ }^{P}(x)$ whee points corregund Subshemes $Z \subset X$ with $P_{z}=P$. There: a uniweral subschere $Z \subset$ Hilb $^{P}(x) \times X$ Such that if $\pi: H_{i l b^{p}}(x) \times X \longrightarrow H_{i l b^{p}}(x)$ and $p \in \operatorname{Hilb}^{p}(x)$ correspands to $Z_{p} \subset X$ then $\left.Z\right|_{\sigma^{-1}(p)}=Z_{p}$. Heneover, if $V \subset B \times X$ is a family of subsclues
 a unigue mep $B \stackrel{f}{\rightarrow} H_{i l b^{p}(x)}$

$$
\begin{aligned}
& B \times X \xrightarrow{\text { frid }} \operatorname{Hilb}^{\mathrm{P}}(x) \times x \\
& \begin{array}{l}
v \\
v
\end{array} \longrightarrow \begin{array}{l}
v \\
V
\end{array} \\
& \underset{B}{\downarrow} \xrightarrow{\downarrow} \operatorname{Hilb}^{\mathrm{P}}(x)
\end{aligned}
$$

 Hilb $b^{k}(x)=$ Hilbart schme of k points. Hilb ${ }^{k}(x) \longrightarrow$ Sym $^{k}(x)$ (Hilbert-Chow marphias) deminent birational mep
only an iso oblen $\operatorname{din} x=1$
Hilb $b^{k}(x)$ is mon-siggar if $\operatorname{dim} x=1<2$
(for dim $x=2 \quad \operatorname{Hillb}^{k}(x) \rightarrow \operatorname{ggm}^{k}(x)$ io a resplution of singtheritis)
$\operatorname{Hilb}^{2}(x)=B 1_{\Delta}\left(\operatorname{sym}^{2} x\right) \longleftarrow$ subscheme of length 2 rembers the dirating 2 points cane together
Ex. If $c \subset X$ is a curve $[c]=\beta$ then $P_{c}(a)=X\left(O_{c}\right)+m H \cdot \beta$ σ by verging auphe anberios " $x \in \mathbb{R}^{\prime \prime}$ we con recourall β and $n=X\left(a_{c}\right)$ we will call $H_{i l l}{ }^{p}(x)=I_{n}(x, \beta)$ in this case.

Scheme phenomena are forced on us when we consider moduli space of corves:
we may have a family $z_{t} \subset X \quad t \in A^{\prime}$ with $\left[z_{t}\right]=\beta, X\left(\theta_{z_{t}}\right)=n$ where $z_{t * 0}$ are moth, reduced cures bat z_{0} has an emberedd point. (families of curves in a projective threefold with constant β and n are feet).
ex. $\quad Z_{t} \subset \mathbb{P}^{3}$ (not CY but serves do illushate).
family of twisted cubics degenerating to a plane cubic

$\mathbb{P}^{\prime} \hookrightarrow \mathbb{R}^{3}$
$(x: y) \longmapsto\left(x^{3}: x^{2} y: x y^{2}: y^{3}\right)$

if curve didn't have an embedded point at origin, then $n=X\left(\theta_{z_{0}}\right)=0$ sine arithmetic gems of phone cubic is 1 .
local model: $z_{t+0}=\{x=z=0\} \cup\{y=z-t=0\} \subset \mathbb{C}^{3}$

$$
I_{z_{t+0}}=(x, z) \cdot(y, z-t)=\left(x y, z y, x z-t y, z^{2}-t z\right)
$$

$$
\operatorname{limit}_{t \rightarrow 0} I_{z_{t}}=\left(x y, z y, x z, z^{2}\right) \underset{+}{\subset}(z, x y) \quad \text { nilpotiut } \text { elf in } \theta_{z_{0}} \text { i } z
$$

Lectore 22
Hove is an inporturt way to visulize a scheme defind by an idel genented by monomids. Let's start in dim 2 thine aboat the vaion of the x and y axis in \mathbb{C}^{2}.

$$
z=\left\{x_{y}=0\right\} \quad \theta_{z}=\mathbb{C}[x, s] /(y)
$$

$$
Z=\left\{x^{2} y=x y^{2}=0\right\} \quad \theta_{z}=\mathbb{C}[x, y]\left(x y^{2}, x^{2} y\right)
$$

For moromial ideds in $\mathbb{C}[x, y, 7]$ we do something simiber with boves in the pasitive octout

In fact we can get flat families of subschems like this:

smooth gems $0 \quad(x=1)$
curve class 3[L]

planer nodal cubic with print for away

planar model
cubic with embedded point

smooth planer cubic with point for away

$$
\begin{aligned}
X\left(E \cup p^{t}\right) & =X(E)+X(p t) \\
& =0+1=1
\end{aligned}
$$

We see that with sabschemes, we must allow disconnected things and we must allow points as nell as cures.

We vase the motion $I_{n}(x, \beta)$ rather them $H_{i l}{ }^{n+m \beta \cdot n}(x)$ because we mes reed it as a moduli span of sheree: suppose I: a coherent sheaf on a CY3 X with $\operatorname{ch}(I)=(1,0,-\beta,-n) \in H^{0} \oplus H^{2} \oplus H^{4} \oplus H^{6}$ then the canonical map $I \longrightarrow I^{v N} \simeq \theta_{\lambda}$ is injective and thus realizes I as a subsheat of O_{k} and thess an ideal sheaf $I=I_{z}$ then I is antomaticaly stable and $[z]=\beta \quad X\left(\theta_{z}\right)=n$.

Lecture 23 Like stable maps, the Hilbert schemes $I_{n}(x, \beta)$ can be very singular and have components of different dimension. But live stable maps they behove well because of a virtual fundernail class (they are "virtually swath"). This ideal is codified by the nation of a perfect obstruction theory which is a gadget that keeps track of how the moduli spare is cutout of a sooth space by equations, namely if M is some molal spue perameterizing objects E, then locally near $[E] \in M$ M is described as the zero locus of a map

for example if $[f: c \rightarrow x] \in \bar{M}_{g}(x, \beta)$ is an embedding of a smooth cure, Than $\operatorname{Def}(f)=H^{0}\left(c, f^{*} v_{c x}\right)$ and $O b(f)=H^{\prime}\left(c, f^{*} v_{c x}\right)$

For any molal of shaves on a Cy3 we have $\operatorname{Def}(E)=E_{x}+^{\prime}(E, E)$ $O b(E)=E_{X t^{2}}(E, E)$. In the case where E is a bundt then

$$
E x t^{i}(E, E)=H^{i}\left(X, E^{*} Q E\right)=H^{i}(X, E n d E)
$$

Sere duality says that for any smooth X of dim d

$$
E_{x+}+^{i}(F, G) \cong E_{x}{ }^{d-i}\left(G, F \otimes k_{x}\right)
$$

In particular, for X a $C 13$ $E x t^{\prime}(E, E) \geqslant E x t^{2}(E, E)^{\text {V }}$ i.e.

Keg fut Deformations are dual to obstructions

So the Hilbert scheme/madeli of ideal shames $I_{n}(x, \beta)$ is locally near I_{z} given hM $K^{-1}(0) \subset \operatorname{Def}\left(I_{z}\right) \quad$ where $\quad \operatorname{Def}\left(I_{z}\right) \xrightarrow{K} O B\left(I_{z}\right)$

$$
\operatorname{Ext}^{\prime}\left(I_{z}, I_{z}\right) \quad \operatorname{Ext}^{\prime \prime}\left(I_{z}, I_{z}\right) \cong E_{x t^{\prime}}\left(I_{z}, T_{z}^{\prime \prime}\right)^{\prime}
$$

so K ia section of $T^{*} \operatorname{Def}(I)$, names a differential 1 -form on Def.
Sire Def is just a rector space, every $1-$ from is event so $B=d f$ where $f: \operatorname{Ex}_{x} t^{\prime}\left(I_{z}, I_{z}\right) \longrightarrow \mathbb{C} \quad$ (Jargon f : the local superpetantial)

Locally at a sabschere $z<x \quad[z] \in I_{n}(x, \beta) \quad I_{n}(x, \beta)$ io given by
$\{d f=0\}$, i.e. it is the critical locus of a function $f: E_{x} t^{\prime}\left(I_{z}, I_{z}\right) \rightarrow \mathbb{C}$

- Sine dim Oof $=\operatorname{dim}$ Ob vain $=0$ and we get $\left[I_{n}(x, \beta)\right]^{\text {vire }} \in H_{0}\left(I_{n}(x, \beta) ; \mathbb{Z}\right)$
D.fin $N_{n, \beta}^{0 T}(x)=\int_{\left[I_{n}(x, \beta)\right]^{\text {ir }}} \in \in \mathbb{Z}$

Recall surat one property of the virtual class is the following: if M is a moduli space with a virtual class $[M]^{\text {vii }}$ and M is math but not of the expected dimension, then $[M]^{\text {vir }}=[M] \cap C_{\text {Top }}(O b)$. In particular, if vim $=0$ then $\int_{[m]^{\text {vir }}} 1=\int_{[\mathrm{m}]} c_{\mathrm{mp}}(O b) \quad$ where $\quad O b \rightarrow M$ is the obstruction bundle

For DT theory $O b=D f^{v}=T^{*} M$ so

$$
\int_{[m]^{\text {vii }}} 1=\int_{[m]} c_{\text {Top }}\left(T^{*} M\right)=(-1)^{\text {diaM }} e(M)
$$

topological euler char.

Amazingly, a formale like the above holds even if M is singuler Therrem (Behrad) Let $M=I_{n}(x, \beta)$ or moregnoody any madali spue of sheves on a C43, then

$$
\int_{[m]^{\text {vir }}} 1=e_{\text {vir }}(m):=\sum_{k \in \mathbb{Z}}^{1} k \cdot e\left(\nu_{m}^{-1}(k)\right)
$$

defined for ang sheme / c
where $\nu_{M}: M \longrightarrow \mathbb{Z}$ is the Betrend function a constructiblefunction
definad by $\nu_{m}([I])=(-1)^{\operatorname{dim} E_{x t^{\prime}}(I, I)}\left(1-e\left(M F_{f_{I}}\right)\right)$ where
$M F_{f_{I}}$ is the Milar filer of $f_{I}: E_{x t^{\prime}}(I, I) \longrightarrow \mathbb{C}$ the loal suparpatatiol at $[I] \in M$

The Milmorfiber is a classial inveriont in singularity thary.

$$
M F_{f_{I}}=\left\{f_{I^{-1}}^{-1}(\delta) \cap B_{\varepsilon}(0): 0<\delta \ll \varepsilon \ll 1\right\}
$$

Exaple If M is smooth then $f=0$ and $M F_{f}=\phi$ so

$$
\nu_{M}([I])=(-1)^{\operatorname{dim} E x x^{\prime}(I, I)}=(-1)^{\operatorname{din} M}
$$

In ghanal, ν_{M} weights singalaritios and non-redecd struetre.
example $6: \quad M=\operatorname{ssec}\left(\mathbb{C}[x] / x^{n}\right)$, ie it i a "fat" point of length n.
The reagent spues $T_{p+} M=\mathbb{C}$ and $f: \mathbb{C} \rightarrow \mathbb{C}$
sine $\{d f=0\} \Leftrightarrow x^{n}=0$

$$
\nu_{m}(p t)=(-1)(1-e(\underbrace{\left\{x^{n+1}=\delta\right\} \cap B_{2}(0)}_{\text {scales to }\left\{x^{n+1}=1\right\}=n+1 \text { pts }}))
$$

so $\quad D_{\mu}(p t)=(-1)(1-(n+1))=n$
so while $\quad e(n)=1 \quad e_{\text {vii }}(m)=n$
Lecture 24
Compere Paradyms:

$$
N_{n, \beta}^{D T}(x)=\underbrace{\int_{\text {weighted Ell }} 1}_{\substack{\left.I_{n}(x, \beta)\right]^{\text {lir }}}}=\underbrace{\sum_{k \in Z}^{\prime} k e\left(\nu^{-1}(x)\right)}_{k \text { cher cher }}
$$

Advantages of right had side:

- Can be confuted strata by strata. Euler char is motivic:

$$
e(x)=e(x-z)+e(z) \text { for } z \text { closed } \quad e(x+y)=e(x) \cdot e(y) \text {. }
$$

- Doesn't require congratinss. If moduli space is nem-capent (for example if X is non-coppent) we can define $N_{n, \beta}^{D T}(x)$ by RHS find point lavs
- If M has a \mathbb{C}^{x} action, then $e(M)=e\left(M^{\mathbb{C}^{x}}\right)$
- Suggents the existance of Categarified DT Invarints:
ordinery Euler cher $\quad e(M)=\sum_{1}^{\prime}(-1)^{k} \operatorname{dim} H^{k}(M)$
is there some cohomolngy $\tilde{H}^{*}(M)$ so that $\quad e_{\text {vir }}(m)=\sum^{\prime}(-1)^{k} \operatorname{dim} \tilde{H}^{4}(m)$?
(yes!). Such a thing $\tilde{H}^{*}(m)$ is the categrified $D T$ inveriant associbed to M Eenter chor
Numbers ~~~ Grade Vedor spues
(st) (catesory)

Compatations $\quad X=\operatorname{total}\left(\theta(-3) \rightarrow \mathbb{R}^{2}\right)="$ load $\mathbb{R}^{2 \prime}$

$$
I_{1}\left(x,\left[\mathbb{R}^{\prime}\right]\right)=\{\sqrt{ }\}=\left\{\text { line in } \mathbb{P}^{2}\right\}=\mathbb{P}^{2}
$$

so $N_{1,[r]]}^{D T}=e_{\text {vir }}\left(\mathbb{R}^{2}\right)=(-1)^{\text {dia } R^{2}} e\left(\mathbb{R}^{2}\right)=3$

$$
N_{2,\left[\mathbb{R}^{\prime}\right]}^{D T}(x)=e_{\operatorname{vir}}\left(I_{2}\left(x,\left[\mathbb{R}^{\prime}\right]\right)\right)=(-1)^{5} e\left(I_{2}\left(x,\left[\mathbb{R}^{\prime}\right]\right)\right)=-e\left(I_{2}\left(x,\left[\mathbb{P}^{\prime}\right]\right)^{C^{x}}\right)
$$

subschemes fixed by $\mathbb{C}^{x} \subset\left(\mathbb{C}^{x}\right)^{3} \leftarrow$ on toric X acting

so $e\left(I_{2}\left(x,\left[R^{\prime}\right]\right)^{c^{x}}\right)=$
$3+6 \cdot \#\left\{\begin{array}{l}z \subset \mathbb{C}^{3}, \mathbb{C}^{x} \text { invarime, supported on } z \text {-axis, }, \\ \text { embedded point at origin }\end{array}\right\}$
$=3+6 \cdot \#\{I \subset \mathbb{C}[x, y, z], I$ ghented by monomials, $\sqrt{I}=(x, y)$ and $\operatorname{dim} \sqrt{I} / I=1\}$

So $N_{2}\left(X,\left[P^{\prime}\right]\right)=-15$. Can compute by Box counting! We will return to this when we discuss the tgrologial vertex.

Lective 25)
example tocal elliptic corve $X=\operatorname{Tot}\left(L \oplus L^{-1} \rightarrow E\right) \quad L$ iogeneric degree O line bundle. In GW therry we chase L to be gatric so $E C X$ is sopor rigid:
E doesn't deform and no multi)le of E deforus. In DT theny we are less concerned abnat non-coppathess. We first compate for $\tilde{X}=\operatorname{Tot}\left(\theta_{E} \otimes \theta_{E} \rightarrow E\right)$

$$
\begin{aligned}
& \tilde{X}=\mathbb{C}^{2} \times E \\
& \quad N_{n, d[E]}^{D T}=e_{\text {vir }}\left(I_{n}(\tilde{X}, d[E])\right) \quad \text { the gropp }\left(\mathbb{C}^{x^{2}}\right)^{2} \times E \text { acts on } \\
& I_{n}(X, d[E]) \text { and } \quad e_{\text {vir }}\left(I_{n}(\tilde{X}, d[E])\right)=e_{\text {vir }}\left(I_{n}(\tilde{X}, d[E])^{\left(C^{x}\right)^{2} \times E}\right)
\end{aligned}
$$

What subschencs $Z \subset \mathbb{C}^{2} \times E$ are preserned by $\left(\mathbb{C}^{x}\right)^{2} \times E$?
First just cossider $I_{n}(\tilde{X}, d)^{E} \leftarrow$ no curverbd pionts and such subschons $Z \subset \mathbb{C}^{2} \times E$ are determind by their restriction to $\left.z\right|_{\mathbb{C}^{2} \times p}$ st lugith $\&$ zero dimin' sobschere

$$
\begin{aligned}
& N_{n, d[E]}^{D T}(\tilde{x})= \begin{cases}e_{\text {vir }}\left(H_{i} 1 b^{d}\left(\mathbb{C}^{2}\right)\right) & n=0 \\
0 & n \neq 0\end{cases} \\
& \begin{array}{c}
=\text { \# patiang of } \\
\text { " } \\
p(1) .
\end{array} \\
& e_{\text {vir }}\left(\text { Hilb } b^{4}\left(\mathbb{C}^{2}\right)\right)=(-1)^{24} e\left(\text { Hill }^{4}\left(c^{2}\right)\right)=e\left(\text { Hill }^{4}\left(c^{2}\right)^{\left(c^{n}\right)^{2}}\right)=\#\{I \subset \mathbb{C}[x, y], I \text { guratad by } \\
& \operatorname{dim} C[x, 4] / I=d
\end{aligned}
$$

GW/DT Correspondence
Recall the GW potentials and partition function
$F_{g}^{G N}(x)=\sum_{\beta}^{1} N_{g, \beta}^{G N} V^{\beta} \quad$ genes g potential
$F^{G W}(x)=\sum_{g}^{\prime} F_{g} \lambda^{2 g-2} \quad$ all games potential
$F_{G N}^{\prime}=F^{G N}-\left.F^{G N}\right|_{V=0} \longleftarrow F_{G W}^{\prime}$ dresn't include $\beta=0$ invariants
$Z_{G W}=\exp \left(F_{G W}\right) \longleftarrow G N$ partition function, generating function for possibly
$Z_{G N}^{\prime}=\exp \left(F_{G W}^{\prime}\right)=\frac{Z_{G W}}{\left.Z_{\text {EN }}\right|_{v=0}} \longleftarrow$ greeting $f_{n c}$ disconnected invariants
for possibly disconnected inverimets with no collapsing connected carpments

O\&fn $Z_{D T}(x)=\sum_{n, \beta}^{1} N_{n, \beta}^{D T}(x) V^{\beta}(-q)^{n} \longleftarrow D T$ partition function generation function of $D T$ inns (with a sign (-1) for convenience).

Dr there is inherently disconnectal and includes paint cuntribrtios so it is most closely andogas to $Z_{G W}$, hoverer we prefer $Z_{G W}^{\prime}$ to $Z_{G N}$ (mo ill diffed tres egg.).

For DT sherry we remove degree zero contribatias formally:
 for geometrically (trons ont to be PT there)

Lective 30
GW/DT correspmbare conjectroal in 2003 MNOP, proven by Parden in 2023 :
$Z_{D T}^{\prime}(x)=Z_{\text {CND }}^{\prime}(x)$ after the change of varibbles $q=e^{i \lambda}$

Same function, GW inveriants are tyylor coef's, DT invs are Fowier coefs.
The varicible chenge $g=e^{i \lambda}$ ib stange. For this cherge of vericibles to even make seanse reguires the following property (Conj by muOP 2003, promen Broilgetad ~2010):

Thm The creefficinat of v^{β} in $Z_{D T}^{\prime}$ is the Levent orpmosion of a ration fenction ing invarient under $8 \leftrightarrows 8^{-1}$.
i.e. a palandranic lavent probnomial $\quad 3 q^{-2}+7 q^{-1}+2+7 q+3 q^{2}$ Smething like $\quad q^{2}+28^{2}+3 q^{3}+\cdots=\frac{8}{(1-8)^{2}} \longleftrightarrow \frac{g^{-1}}{\left(1-\delta^{-1}\right)^{2}} \cdot \frac{8^{2}}{8^{2}}=\frac{8}{(1-\delta)^{2}}$

Corcespondence makes sense for fixad β (can compere V^{β} terms of $Z_{D T}^{\prime}$ and $Z_{\text {ow }}^{\prime}$ seperatily $)$, hat for firal β rue must know all g do get a sigle n and vise-versa. Physicists call this a nem-pertorbative duality
$Z_{\text {GiN }}^{\prime}$ is an expension for small string capling constant λ
$Z_{D T}^{\prime} " " \quad " \quad " \quad q \Leftrightarrow \lambda \rightarrow i \infty 0 \quad$ (lage string capling coustat)
S-duality betroen A-molel and B-malel.

Exapple locul elliptic curve $X=$ total $\left(L \otimes L^{-1} \rightarrow E\right) \quad N_{n, d \in \epsilon]}^{D T}=\left\{\begin{array}{cl}p^{(L)} & n=0 \\ 0 & \text { oftronsle }\end{array}\right.$

$$
\begin{aligned}
& Z_{o T}=\sum_{d, n} N_{n, d}^{D T}(-g)^{n} v^{d}=\sum_{d} p(d) v^{d}=\left.\prod_{k=1}^{\infty}\left(1-v^{k}\right)^{-1} \quad z\right|_{v=0}=1 \text { so } \\
& Z_{D T}=Z_{\Delta T}^{\prime} \text {. Recall } N_{\substack{g, d[E] \\
d * 0}}^{G i v}= \begin{cases}0 & g \neq 1 \\
\frac{1}{d} \sigma(\lambda) & g=1\end{cases} \\
& F_{G N}^{\prime}=\sum_{j=0}^{\infty} \sum_{d=1}^{\infty} N_{g d[E]}^{6 N} \lambda^{2 g-2} v^{d} \\
& =\sum_{d=1}^{\infty} v^{d} \frac{1}{d} \sigma(d)=\sum_{d>0}^{1} \sum_{k \mid d} \frac{k v^{d}}{d} \quad d=k \cdot m \\
& =\sum_{k, \infty>0}^{1} \frac{1}{m} v^{k m}=\sum_{k>0}-\log \left(1-v^{*}\right)=\log \prod_{k=1}^{\infty} \frac{1}{1-v^{k}} \Rightarrow z_{G w}^{\prime}=\prod_{k=1}^{\infty}\left(1-v^{*}\right)^{-1}
\end{aligned}
$$

not so intaresting sive there is no dyendence on λ / q.
Example $X=\operatorname{dital}\left(\theta(-1) \oplus \theta(-1) \rightarrow \mathbb{P}^{\prime}\right)$
recall $F_{G V}^{\prime}=\sum_{d>0}^{\prime} \frac{v^{d}}{d}\left(2 \sin \left(\frac{d \lambda}{2}\right)\right)^{-2} \quad$ (recall oor discossion of GV inveriants!)

$$
\text { so } \begin{aligned}
F_{G w}^{\prime} & =\sum_{d>0} \frac{v^{d}}{d}\left(\frac{1}{i}\left(e^{i d d / 2}-e^{-i d / 2}\right)\right)^{-2} \\
& =\sum_{d>0}^{1}-\frac{v^{d}}{d}\left(e^{-i d d / 2}\left(e^{i d /}-1\right)\right)^{-2} \\
& =\sum_{d>0}-\frac{v^{d}}{d} \frac{8^{d}}{\left(1-g^{d}\right)^{2}}=\sum_{d, m>0}-\frac{v^{d}}{d} m g^{d_{m}} \\
& =\sum_{m>0} \sum_{d>0}^{1}-\frac{\left(v g^{n}\right)^{d}}{d}=\sum_{m>0}^{1} m \log \left(1-v g^{m}\right)=\log \left(\prod_{n=1}^{\infty}\left(1-v g^{m}\right)^{n}\right)
\end{aligned}
$$

so $\quad Z_{G W}^{\prime}=Z_{D T}^{\prime}=\prod_{m=1}^{\infty}\left(1-v g^{n}\right)^{m}$
alreedy surpeising that this is an integors scries

Suppose that X is a trice $C 43$: it has a $T=\left(\mathbb{C}^{x}\right)^{3}$ action with an obit as a dense gen set. Egg. Total $\left(\theta(-1) \otimes \theta(-1) \rightarrow \mathbb{P}^{\prime}\right)$ ar dot $\left(\theta(-2,-2) \rightarrow \mathbb{P}^{\prime} \times \mathbb{P}^{\prime}\right)$
T acts on X wish issoted fired points and each fined point is the origin of an affine cord chat $\mathbb{C}^{3} \subset X$. The induced action of T on $I_{n}(x, \beta)$ has fixed points given by idea shaves general by monomials in each coordinate patch. So τ-fined subshemes \longleftrightarrow configurations of boxes in each word patch.

How cen we handle the Behrual function? There is a $2-$ dire$^{\prime} 1$ arrows $T_{C Y} \subset T$ which acts trivially on the filters of $K_{X} \cong \mathbb{C} \times X$. In a \mathbb{C}^{3} continuate patch of X, with $\left(t_{1}, t_{2}, t_{y}\right) \in T$ acting by $\left(t, x, t_{2} y, t_{3} z\right) \quad T_{c y}=\left\{\left(t, t_{2}, t\right): t_{1} t_{2} t_{3}=1\right\}$
you can check that $T_{C y}$ find ideals $I \subset \llbracket[x, z]$ are still these guental by mmes.

$$
\text { If }[I] \in I_{a}(x, \beta)^{T_{c \varphi}} \text { then } T_{c \varphi} \text { ants on } E_{x t^{i}}(I, I) \text { and the }
$$

Kurinishi map $E_{x t^{\prime}}(I, I) \rightarrow \operatorname{Ext}^{2}(I, I)$ is $T_{G y}$ equinerint. Moreover Serve duality
$E_{x t}(I, I) \stackrel{\cong}{\rightrightarrows} E_{x t^{\prime}}(I, I)^{+} \quad$ b $T_{\text {ar }}$ equierinat (bat not T equiv!)
and so the superpotentiel $f: E_{x} f^{\prime}(I, I) \longrightarrow \mathbb{C}$ is $T_{C y}$ inverint $\tau_{T_{C Y} \text { ats tribally here. }}$
$T_{C y}$ outs, O is only fixed point (if there was

* fired linear subspace, then $[I] \in I_{n}(x, \beta)$ would not be an isolated fixed print).
$\Rightarrow e\left(M F_{f}\right)=0$ sine $M F_{f}=\left\{f^{-1}(\delta) \cap B_{\varepsilon}(0)\right\}$ has a free S^{\prime} actin We've sham that $\nu([I])=(-1)^{\text {din } E t^{\prime}([, I)}\left(1-e\left(M F_{I}\right)\right)=(-1)^{\text {din } E+t^{\prime}(I, I)}$

Lectrice 311
Belirend function is ± 1 and all we have to compute is $\operatorname{dim} E x t^{\prime}(I, I)$. and 2
Prop (mNoP) Let $[I] \in I_{n}(x, \beta)^{T_{c y}}$ and lat $\sigma(\beta, n)=\operatorname{din} E_{x t}(I, I)$ mad 2 .
Then $\sigma(\beta, n+k)=k+\sigma(\beta, n)$ mad 2 .
So sis mems for X a doric $C Y 3$, we get

$$
\begin{aligned}
z^{D T}(x) & =\sum_{n, \beta}^{1} N_{n, \beta}^{\nabla T}(x) v^{\beta}(-\gamma)^{n}=\sum_{n, \beta} e_{\text {vir }}\left(I_{n}(x, \beta)\right) v^{\beta}(-g)^{n} \\
& =\sum_{n, \beta}(-1)^{\sigma(\beta, n)} e\left(I_{n}(x, \beta)^{T(\varphi}\right) v^{\beta}(-\gamma)^{n}
\end{aligned}
$$

$$
=\sum_{\beta} v^{\beta}(-1)^{\sigma(\beta)} \underbrace{\sum_{n} \#\left\{I_{n}(x, \beta)^{\top}\right\} q^{n}}_{\text {gnerating fucdin }}
$$

for box costing.
Let $z_{\beta}^{D T}(x)$ be the v^{β} conf of $z^{D T}(x)$ then

$$
z_{\beta}^{D T}(x)= \pm \underbrace{\left.\sum_{n}^{1} \#\left\{I_{1}(x, \beta)^{\top}\right\} g^{n}\right)}
$$

completely combinatorial problem solved by topological vertex.

$$
\begin{aligned}
& \mathcal{Z}_{0}^{p}(x)=\sum_{n}^{1} \sum_{n_{1}+\cdots+n_{k}=n} \prod_{i=1}^{F} \#\left\{H_{i l} b_{p_{i}}\left(\mathbb{C}_{p_{i}^{3}}^{3}\right)^{\top}\right\} \mathcal{B}^{n_{i}} \\
& \text { five chart } \\
& \text { around } p_{i}
\end{aligned}
$$

1909 Macmabon shoved $\sum_{n=0}^{\infty} P_{3 D}(n)=\prod_{k=1}^{\infty}\left(1-q^{k}\right)^{-k}=M(q)=1+q+3 q^{2}+6 q^{3}+3 q^{4}+\cdots$
So $Z_{0}(x)=\mu(g)^{e(x)} \quad x$ doric. \ln fact,
The $\left.Z_{0}(x)=m / g\right)^{e(x)}$ hods for all X (even if X in not daric).
Recall that for $X=\operatorname{tot}\left(\theta(-) \otimes \theta(-1) \rightarrow \mathbb{R}^{\prime}\right)$, the GW/DT correspmbune predicts

$$
\begin{aligned}
& Z_{D T}^{\prime}(x)=\prod_{m=1}^{\infty}\left(1-v g^{m}\right)^{m} \text { time } z_{0}(x)=m(g)^{2} \text { and } z^{\prime}=\frac{z}{z_{0}} \text { we see that } \\
& Z_{D T}(x)=M(q)^{2} \prod_{m=1}^{\infty}\left(1-v q^{n}\right)^{m}=m(q)^{2} \prod_{m=1}^{\infty}\left(1-m v q^{n}+\theta\left(r^{2}\right)\right)=m(q)^{2}\left(1-\left(\sum m q^{n}\right) v+\theta\left(r^{2}\right)\right) \\
& \text { so } \left.Z_{\left[\pi^{\prime}\right]}^{D \pi}=\operatorname{coeft}_{v^{1}} Z=-m / g\right)^{2} \frac{g}{(1-g)^{2}}
\end{aligned}
$$

on the othor hand

$$
\begin{aligned}
Z_{\left[\mathbb{R}^{\prime}\right]}= & \sum_{n}^{1} e_{\text {vir }}\left(I_{n}\left(x,\left[p^{[}\right]\right)\right)(-q)^{n} \\
& \pm \sum_{n}^{\prime} \#\left\{I_{n}\left(x,\left[\mathbb{r}^{\prime}\right]\right)^{\top}\right\} q^{n}
\end{aligned}
$$

If subsobeme has no embeldad proints, it io just the zeero section $\mathbb{R}^{\prime}<X$ and $n=X\left(\theta_{\mathbb{R}^{\prime}}\right)=1$. So sum starts at $n=1$ and oreall sign is megative.

$$
\begin{aligned}
& Z_{R^{\prime}}=-\sum_{n=1}^{\infty} \delta^{n} \sum_{n_{1}+t_{2}=n-1}^{1}\{\# g \text { ways of alling } n \text {, hoxes to } \\
& =-\delta\left(\sum_{n=0}^{\infty} b(a) g^{0}\right)^{2} \\
& \int_{\text {call } \operatorname{tin}}^{a} b\left(n_{2}\right)
\end{aligned}
$$

6W/OT is the prodicing that

Lecture 32 The fall computation for $X=\operatorname{Tot}(\theta(-1) \theta(-1))$. First application of

Def'n Let (μ, ν, λ) be triple of $2 D$ partitions viewed as Yang diegsens:

example $V_{D \phi \in S}(g)$ counts things live this:
 the two mares in rath leas cont negative

Such π corcosped to monomial ideas IC $\mathbb{C}[x, 1, z]$ so that

$$
\text { in } \mathbb{C}\left[x, y, z, x^{-1}\right] \quad I=(y, z) \text {, in } \mathbb{C}\left[x, y, z, y^{\prime}\right] \quad I=(1) \text {, and in } \mathbb{C}\left[x, y, z, z^{-1}\right] \quad I=\left(x^{2}, x y, y^{2}\right)
$$

OKonkew-Reshitikin-Vaba gave a formula for $V_{\text {pin }}(g)$ in tomas of Schur function for example:
Ohm $V_{\phi \phi \lambda}(g)=m(g) q^{-\binom{\lambda}{2}} S_{\lambda^{t}}\left(1, q, \delta^{2}, \cdots\right)$ where $m(g)=\prod_{m=1}^{\infty}\left(1-\delta^{n}\right)^{m} \quad\left(=V_{\phi \phi \phi}\right)$
$\binom{\lambda}{2}=\sum_{i}\binom{\lambda_{i}}{2} \quad S_{\lambda} t\left(x_{1}, x_{2}, \cdots\right)$ scour symmetric function levelled by λ^{t} enjigate partition.
example $s_{D}\left(x_{1}, x_{2}, \cdots\right)=x_{1}+x_{2}+\cdots$ so $s_{D}\left(1,8,8^{2}, \cdots\right)=1+q+g^{2}+\cdots=\frac{1}{1-g}$
In fat, $g^{-\left(\frac{\lambda}{2}\right)} S_{\lambda t}\left(1,8, \delta^{2}, \cdots\right)=\prod_{0 \in \lambda} \frac{1}{1-\delta^{\text {va) }}} \quad n(0)=$ hack length.

$$
\begin{aligned}
& Z^{D T}(x)=\sum_{d=0}^{\infty} \sum_{n}^{1} N_{n, d[r]}^{D T}(x) v^{d}(-q)^{n} \\
& =\sum_{d=0}^{\infty} v^{d}(-1)^{\sigma(1)} \sum_{n}^{1} \#\left\{I_{n}(x, d[\pi])^{\top}\right\} q^{n} \\
& =\sum_{d=0}^{\infty} v^{d}(-1)^{-d)} \sum_{\lambda+d} v_{\phi \phi \lambda}(\delta) v_{\phi \lambda^{\prime}}(\delta) q^{x\left(\theta_{c_{A}}\right)} \\
& =\sum_{d=0}^{\infty} v^{d}(-1)^{\sigma(\lambda)} \sum_{\lambda+d} g^{-\binom{\lambda}{2}-\left(\lambda_{2}^{\prime}\right)} M(\delta)^{2} S_{\lambda}\left(1, \delta_{1}, \cdots S_{\lambda^{\prime}}\left(1,8, g_{1}^{2}\right) q^{x\left(\theta_{G}\right)}\right.
\end{aligned}
$$

The only two things we hent know in
the above is $X\left(\theta_{G_{a}}\right)$ and $\sigma(d)=\operatorname{dim} E_{x t^{\prime}}\left(I_{c_{1}}, I_{c_{1}}\right)$ add 2
MNOP gives general formulas for this but we can also compute directly using $\pi: X \rightarrow \mathbb{P}^{\prime}$. For example $X\left(\theta_{c_{\lambda}}\right)=X\left(\pi_{*} \theta_{c_{n}}\right)$

$$
\pi_{*} \theta_{C_{\lambda}}=\bigoplus_{i=1}^{e(\lambda)} \bigoplus_{j=1}^{\lambda_{i}} \theta(i+j-2) \quad \text { so }
$$

$$
\begin{aligned}
& X\left(\pi_{*} \theta_{c_{1}}\right)=\sum_{i=1}^{e(n)} \sum_{j=1}^{\lambda_{i}} j+i-1=\sum_{i=1}^{e(a)} \sum_{j=1}^{\lambda_{i}} j+\sum_{j=1}^{e\left(\lambda_{1}^{\prime}\right)} \sum_{i=1}^{\lambda_{j}^{\prime}} i \quad-|\lambda| \\
& \sum_{i=1}^{e(\lambda)} \sum_{j=1}^{\lambda_{i}} j=\sum_{i=1}^{e(1)}\binom{\lambda_{i}+1}{2}=\sum_{i=1}^{l(\lambda)}\binom{\lambda_{i}}{2}+\lambda_{i}=\binom{\lambda}{2}+|\lambda| \quad \text { so } \\
& X\left(\theta_{C_{\lambda}}\right)=X\left(\pi+\theta_{C_{\lambda}}\right)=\binom{\lambda}{2}+\binom{\lambda^{\prime}}{2}+|\lambda| \quad \text { turns ont } \sigma(d)=d \text { mad } 2 \\
& Z^{\sigma T}(x)=\sum_{d=0}^{\infty} v^{d}(-1)^{\sigma(\lambda)} \sum_{\lambda+d} q^{-\left(\frac{\lambda}{2}\right)-\left(\lambda_{2}^{\prime}\right)} M(\delta)^{2} S_{\lambda}\left(1, \delta_{1},-\right) S_{\lambda^{\prime}}\left(1, \delta, \delta_{1}^{2}, \cdots\right) q^{X\left(\theta_{G}\right)} \\
& =\sum_{d=0}^{\infty}(-v)^{d} \sum_{\lambda+d}^{1} m(\varepsilon)^{2} s_{\lambda}(1, \delta, \cdots) s_{\lambda^{\prime}}\left(1,8, \delta^{2} \cdots\right) g^{(\lambda \mid} \\
& =M / \delta)^{2} \sum_{\lambda} S_{\lambda}(1,8, \cdots) S_{\lambda}\left(1,8, \delta^{2} \cdots\right)\left(-g^{v}\right)^{41} \\
& =M(g)^{2} \sum_{\lambda} S_{\lambda}\left(1, \delta, q^{2}, \cdots\right) S_{\lambda^{\prime}}\left(-g v,-g^{2 v},-q^{3 v}, \cdots\right)
\end{aligned}
$$

finally: orthogonality of Scour functions

$$
\begin{aligned}
& \sum_{\lambda} S_{\lambda}\left(x_{1}, x_{2}, \cdots\right) S_{\lambda^{\prime}}\left(y_{1}, y_{2} \cdots\right)=\prod_{i, j}\left(1+x_{i} y_{j}\right) \quad s_{0} \\
& Z^{D T}(x)=M(g)^{2} \prod_{i, j>1}\left(1-v g^{i+j-1}\right) \quad m=i+j-1 \\
& =M(q)^{2} \prod_{m=1}^{\infty}\left(1-v g^{m}\right)^{m}
\end{aligned}
$$

