Sine $\bar{M}_{g}\left(c_{0}, d\left[c_{0}\right]\right) \subset \bar{M}_{g}\left(x, d\left[c_{0}\right]\right)$ is a union of connected coronets it males sense to restrict the virthel class

$$
\begin{aligned}
& N_{g+h, d}^{G i v}\left(c_{g} c x\right)=\int_{\left[\bar{m}_{g+n}(x, d[g])\right]^{\text {lir }}} 1 \\
&\left.\right|_{\left[\bar{m}_{g+h}\left(c_{g}, d[c,]\right)\right.} \\
&=\int_{\left[\bar{m}_{g+h}\left(c_{g}, d[g]\right)\right]^{\text {vire }}} c_{0}(\theta b) \\
& \text { virdin }=0=(2-2 g) d+2(g+h)-2 \\
&=2 h+(2-2 g)(d-1)
\end{aligned}
$$

$C_{D}(O b)$ is D th churn class of
Obstruction sheaf. Fibers of obstruction shat are $H^{\prime}\left(C_{g+h}, f^{*} N_{c^{\prime} \mid x}\right)$
Lecture 15
Example: if $C_{0} \subset X$ has $C_{0} \cong \mathbb{P}^{\prime}$ and $N_{c / X} \cong \theta_{\mathbb{R}^{\prime}}(-1) \oplus \mathcal{Q p}_{p}(-1)$ then C_{0} is super rigid.
bul \mathbb{T}^{\prime}, ak. a. resold cmiroul

$$
\left.N_{h, d}\left(c_{0} c x\right)=\int_{\left[\bar{m}_{h}\left(\mathbb{R}^{\prime}, d\left[\mathbb{R}^{\prime}\right)\right]^{\text {vir }}\right.} \quad 4-\theta_{b}\right)=N_{h, d}\left(\operatorname{Tot}\left(\theta_{p}(-1) \oplus \theta_{p^{1}(-1)}\right)\right)
$$

This can be computed using the \mathbb{C}^{x} action: the \mathbb{C}^{x} action on tret \mathbb{P}^{\prime} induces an action of \mathbb{C}^{x} on the moduli space by composition. $\lambda \in \mathbb{C}^{x}$ then

$$
\lambda \cdot\left[f: c \rightarrow \mathbb{R}^{\prime}\right]=\left[c \xrightarrow{f} \mathbb{R}^{\prime} \xrightarrow{\lambda} \mathbb{P}^{\prime}\right]
$$

Integration on a smash prog manifold with a \mathbb{C}^{x} can be due by Atiyah-Bott
 by contributions from the \mathbb{C}^{x} fixed locus.
 which remus the above integral tom integral our the find lows. $\bar{M}_{n}\left(\mathbb{P}^{\prime}, d\left[\mathbb{P}^{\prime}\right]\right)^{C^{X}}$

What kind of mops are C^{x} find ?

Omen has \mathbb{T}^{\prime} cupmusts mopping to \mathbb{P}^{1} with degree d_{i}, folly minified our $0, \infty$ $\sum d_{i}=d$

All other capet collapse

$$
\cong \bar{m}_{h_{1}, 1} \times \bar{m}_{m_{2}, 1}
$$

this contributes $\frac{1}{d} \cdot\left(d^{2_{n}-1} b_{n_{1}}\right)\left(d^{k_{k_{2}-1}} b_{n_{2}}\right)$
where bo are the Brirwilli mowers

$$
\sum_{n \geqslant 0} b_{n} t^{2 n}=\left(\frac{\sin (t / 2)}{t / 2}\right)^{-1}
$$

The corresorating localization computation is easier in Domblsm-Thenes there.

Potential and Partition function of local $\mathbb{P}^{\prime}: \quad X=\quad X+a(\theta(-1) \theta \theta(-1))$

$$
\begin{aligned}
& N_{g, d}=N_{g, d\left[C^{\prime}\right]}^{G W}(x)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{d>0}^{1} d^{-3} \lambda^{-2} v^{d} \sum_{g_{1} \geqslant 0} b_{g_{1}}(d \lambda)^{2 g_{1}} \sum_{g_{2} \geqslant 0}(d \lambda)^{2 g_{2}} \\
& =\sum_{d>0}^{1} d^{-3} \lambda^{-2} v^{d}\left(\frac{\sin \left(\frac{d \lambda}{2}\right)}{d \lambda / 2}\right)^{-2} \\
& F_{X}^{\prime}=\sum_{d>0} \frac{v^{d}}{d}\left(2 \sin \left(\frac{d \lambda}{2}\right)\right)^{-2} \text { mus } F_{0}^{\prime}=\sum_{d=1}^{\infty} \frac{v^{d}}{d^{3}}
\end{aligned}
$$

Note that $\left(2 \sin \left(\frac{d \lambda}{2}\right)\right)^{2}=4 \sin ^{2} \frac{d \lambda}{2}=2(1-\cos \alpha)=2\left(1-\frac{1}{2}\left(e^{i d \lambda}+e^{-i \alpha}\right)\right)$

$$
\begin{aligned}
& =2-e^{i d d}-e^{-i d} \quad \text { Lat } \quad 8=e^{i d} \\
& =2-g^{d}-8^{-d}=-8^{d}\left(1-2 g^{d}+8^{2 d}\right) \\
& =-8^{-d}\left(1-8^{d}\right)^{2}
\end{aligned}
$$

So $F_{x}^{\prime}=\sum_{d=1}^{\infty} \frac{-v^{d}}{d} \frac{g^{d}}{\left(1-y^{d}\right)^{2}} \quad$ and sine $\frac{x}{(1-x)^{2}}=x+2 x^{2}+3 x^{3}+\cdots$.

$$
\log (1-x)=\sum_{k=1}^{\infty}-\frac{x^{k}}{k}
$$

$$
\begin{aligned}
& =\sum_{d=1}^{\infty} \sum_{k=1}^{\infty}-k \frac{\left(\delta^{k} v\right)^{d}}{d} \\
& =\sum_{k=1}^{\infty} k \log \left(1-g^{k} v\right)=\log \prod_{k=1}^{\infty}\left(1-v g^{k}\right)^{k}
\end{aligned}
$$

so $\quad Z_{x}^{\prime}=\exp \left(F_{x}^{\prime}\right)=\prod_{k=1}^{\infty}\left(1-v g^{k}\right)^{k}$

Example Supar rigid elliplic curve if ECX is an elliatic cume in a CY3 and $N_{E / X} \cong L \oplus L^{-1} \quad L$ generic degres 0 line budle so $H^{0}\left(E, L^{k}\right)=0$ for all $k \in \mathbb{Z}$.

Then ECX is suporrigid and the contrimation of ECX to the GW ints meles sonse
Congute $N_{g, d}($ loal $E)$.
$N_{g, d}($ local $E)=0$ if $g \neq 1$ Fact proven with dignenation (easier in DT theny)
Lectrice 161
HW: Using covering space thery show there are $\sigma(d)=\sum_{k \mid d}^{1} k$ covering spous of E.
$\Rightarrow \bar{M}_{1}(E, d[E])$ consists of $\sigma(d)$ points each with antomasphism $g r o p ~ \mathbb{Z}_{d}$.

$$
\begin{aligned}
& \Rightarrow N_{1, d}\left(\operatorname{locl}(E)=\frac{1}{d} \sigma(d)\right. \\
& F^{\prime}=\sum_{j=0}^{\infty} \sum_{d=1}^{\infty} N_{g, d}(\text { load } E) \lambda^{2 g-2} v^{d} \\
&=\sum_{d=1}^{\infty} v^{d} \frac{1}{d} \sigma(d)=\sum_{d>0}^{1} \sum_{k \mid d} \frac{k v^{d}}{d} \quad d=k \cdot m \\
&=\sum_{k, n>0}^{1} \frac{1}{m} v^{k m} \\
&=\sum_{k>0}-\log \left(1-v^{k}\right)= \\
&=\log _{k=1}^{\infty} \frac{1}{1-v^{k}} \\
& \Rightarrow Z_{\text {loadE }}^{\prime}=\prod_{k=1}^{\infty} \frac{1}{1-v^{k}}=\sum_{n=0}^{\infty} p(n) v^{n} \quad p(n)=\# \text { of partitions of } n
\end{aligned}
$$

$\Rightarrow p(n)=\#$ of passilty discometal (in ruisifol) conors of dyreen. F/n to prove with gp theng

Proceeding along these lines me can inegine congenting the meltipl cuor /degnente map contritations for all local curres in arder to obblin a "uniwersal multide cover formulk" - sane thing where thase are intiger cants of curvos on X, syd $n_{g, p}(x)$ and a univeral formule (i.e. indpemat of x) relating $\left\{n_{g, p}(x)\right\}$ to $\left\{N_{g, p}(x)\right\}$. A putential soluation to this came early in the subjject from plysics.

In 1998 Gropakuere ; Vata defined integar curve cononding invariants $n_{g, \beta}(x)$ (via connting BPS sathes in plysics) and enjectired
a formula relating them to GW inverimels:

$$
F_{x}^{\prime}=\sum_{g \geqslant 0} \sum_{\beta \neq 0}^{1} N_{g, \beta}^{6 w}(x) \lambda^{2 g-2} v^{\beta}=\sum_{g \geqslant 0}^{1} \sum_{\beta \neq 0}^{1} n_{g, \beta}(x) \sum_{k>0}^{1} \frac{1}{k}\left(2 \sin \left(\frac{k \lambda}{2}\right)\right)^{2 g-2} v^{k \beta}
$$

moreoner, for fived $\beta, n_{g, \beta}=0$ for $g>0$

$$
\begin{aligned}
& \text { count ach syperrigid } \mathbb{P}^{\prime} \text { ace. } \\
& n_{j, d[E]}(\text { local } E)=\left\{\begin{array}{ll}
1 & g=1, \text { dang } \\
0 & g \neq 1
\end{array} \quad \Rightarrow\right. \text { GV inverints count ach } \\
& \text { syperrigid Elliatic curre mee } \\
& \text { in each class } d[E] \text {. }
\end{aligned}
$$

One cen take the GV forming as the definition of $n_{g l e}(x)$
($n_{g, \beta}$ is a liver conbintion of $N_{g^{\prime}, \beta^{\prime}}$ for $g^{\prime} \leq g \beta^{\prime} \mid \beta$). For gears, this was how $n_{g, \beta}$ were defind - makiong the plygics definition in to a mathemetical geenutric definition took 20 years (mambik-Tak).

If we use the GV frumble to define the GVimariests $n_{y, \beta}$, them thare is no a priri reason to think they are ittegers. This was proved fairly recently:
Theorenn hat the numbers $\left\{n_{g p}(x)\right\}$ be defiod in tercms of the GW inveriants $\left\{N_{g p}(x)\right\}$ via the GV fromica. Then
(1) $n_{g, \beta}(x) \in \mathbb{Z}$ and (2) $n_{g, \beta}(x)=0$ for $g>C(\beta)$.
(Parter-Loud, Doon-loat-walposki 2on)
The proof of this uses symplectic/almost $c x$ geomentry to redice the protem to local curoes: $X=\operatorname{tot}\left(L \in L^{-b} k_{e} \rightarrow C\right)$ which can be conpeted in the agechaic catagm. (B-Pmalhimand 2008)

Tale avergs: even the integor invericants $n_{g, p}(x)$ are nat jost naive conots for $g>0$, a corpletely naive conit (sug in the symplectic categroy wowld not be deformation inmerint).

- The geomutric definition (mmelikand Tale) has the intgoos $n_{g, \beta}$ as dinemsions of contain cobroology gps on a malali spme of shewws. The GV formula then relates GW sturry (stable maps / virtiol desses) to a kiod of DT thery (shewes / cohurolgy).

Lecture 17,
The next step in understanding curves on CY3s is to use modali speas parcmeterizing sheaves (Dmallson-Thomas theng). Beabre we do inot, lats do amother spectaceler application of GW thery to enumenative geometry "clessicel"
$K 3$ surfaces and the Yan-Zsslow formale.

Recall a K3 surfoe's a CY surfere that is singly connuted (so not Alelim sonfoe)
e.g. $X_{(4)} \subset \mathbb{R}^{3}, X_{(2,3)} \subset \mathbb{P}^{4}, X_{(2,2,2)} \subset \mathbb{P}^{5}$

Althogh all projectine $K 3$ surfoces are deformation equiventent and hence diffemasphic, They cune in fanilies iadued by a noubor $n \in \mathbb{N}$ (a "gmuso").
Def'n A projetive $k 3$ sorfue X i 8 game n if there exits a primitive curve class β with $\beta^{2}=2 n-2$. Egoimetatly, there exists a map $X \rightarrow \mathbb{P}^{n}$ (embelling for $n \geqslant 3$) which dos not futor through a smeller projective spme. Note that β is the hypurplave section and a geanric Mypurplene section will be a smosth cave of gaves n.

Thare are a finite number of rational curres in the class β (ie. Myporve sectims). For ganric X, these rationd cavos will here n nodes. $\left(X_{i} c m\right)$
$r_{n}=\#$ of rational hyperplase sectias of a gaves $n k 3$ surfae X.
In 1995, you-zazlow conjecturd the dollasing amezing formenla:

$$
\begin{aligned}
\sum_{n=0}^{\infty} r_{n} q^{n-1} & =g^{-1} \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{-24}=\Delta(q)^{-1} \\
& =q^{-1}+24+324 g+3200 q^{2}+\cdots
\end{aligned}
$$

$$
\Delta(q)=8 \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24} \quad q=e^{2 \pi i \tau} \quad \tau \in H=\{\tau \in \mathbb{C} \quad \ln \tau>0\}
$$

unigne madeler cusp from of weight $12 . \quad \Delta(-1 / \tau)=\tau^{12} \Delta(\tau)$
$\mathbb{H} / \operatorname{SL}_{2} z \cong M_{1,1} \quad \bar{M}_{1,1}=\mathbb{P}(4,6)=P_{n j} \mathbb{C}\left[E_{4}, E_{6}\right], \Delta$ is the unigue section of $\quad O(1) \rightarrow \bar{M}_{1,1}$ venisting at $[f] \in \bar{m}_{b, 1}$

We will pave this with GW thery taking advantye of deformotion innurimce. exaples: $\quad X_{4}<\mathbb{P}^{3}$ a hyparplare section $H A X_{4}$ is a gurric ave in $H \approx \mathbb{P}^{2}$ and so is gamb 3. If H i tangent to X_{4} then $H \cap X_{4}$ hesa a nolal singalerity so $\quad r_{3}=\#$ of tittoget phus to $X_{4} \subset \mathbb{R}^{3} \quad(3200)$

Speral coses of $n=2, n=1$: A gimes 2 k s surfere is a danble branchat cover $X \stackrel{\pi}{\rightarrow} \mathbb{P}^{2}$ brouched oor a smoth sextic care B. A "Ipperplane section" is then $\pi^{-1}($ liex $)=c$ have C is gure 2
 If the line is tangut to B, then coror will hoor a male so
$r_{2}=\# \%$ bitemut lies to a smoth sextic (324 by Plucter).
$n=1 \quad X \xrightarrow{\pi} \mathbb{P}^{\prime}$ is an elliptically fibred $k 3$ surface. The "hypropluene section is $\pi^{-1}(p t)=$ filer (genially game 1).

$$
r_{1}=\# \text { of ration fictions }=24
$$

Lecture 18/

Problem: The ordinerg GW invariants of a $K 3$ surface are zero. Why?
Given a $k 3$ surfue X and a class $\beta \in H^{2}(x ; \mathbb{Z})$ which is algebraic (ie. $\exists c \subset X$ with $\beta=[c]$), there exists a deformation of X which mates β nom-algebsaic.

To be precise: a deformation is a 3 -fold $\quad X \xrightarrow{\pi} \mathbb{A}^{\prime}$ whose files $X_{t}=\pi^{-1}(t)$ are $k 3$ surfues and $X_{0}=X$. $H^{2}\left(X_{;} ; z\right) \approx H^{2}\left(X_{*} ; z\right)$ for all t so given $\beta \in H^{2}\left(X_{0}\right)$ it makes sense to talk about the same $\beta \in H^{2}\left(X_{t}\right)$
The statement is that β is an algebraic class in $H^{2}\left(x_{0}\right)$ but not in $H^{2}\left(x_{t+0}\right)$ (algebraic classes are $H^{2}(x ; z) \cap H^{111}(x ; c) \quad H^{2}(x ; c)=H^{2,0} \otimes H^{1,1} \oplus H^{0,2}$)
so $\bar{m}_{g}(x, \beta) \neq \phi$ but $\bar{m}_{g}\left(x_{t+0, \beta}\right)=\phi \quad$ this implies any 6 W invariant of X in the class of β is 0 sine by deformation invariance they are equal to the invariants of x_{t+0}.

Solution: Use the threeflel X as or target! X i- a $C Y 3$ and $\bar{m}_{g}(X, \beta)=\bar{m}_{g}(X, \beta)$ sine any map to \boldsymbol{X} in the class β must live in the central fiber. We may define:

$$
r_{\beta}(x)=\int_{\left[\bar{m}_{0}(x, \beta)\right]^{\text {vire }}} 1=\int_{\left[\bar{m}_{0}(x, \beta)\right]^{r \text { redvir }} 1} 1
$$

If X is a generic genus $n k 3$ surfer and β is the nymplowe class,
then the above is an honest enuwration of the rational curves in the chess β :
sine β is primitive there are no multiple cones. Sine all rational curve are model (by x_{i} chen for X generic) there are no collapsing components: every map is the normalization 8 its image.

Further analysis shans that $r_{\beta}(x)$ is inverrent under deformations of X which leave β algebraic.

How do we colgate? We nov weaponize deformation invariance: we deform (X, β) from a generic gens n K3 surface to a very special one where we have a god handle on all the curves in the class β.

We know enough ahmont the moduli space of $k 3$ surfaces to know that a pair (X, β) consisting of a $k 3$ surface and an effective curve class is deformation equivalent to any other $\left(x^{\prime}, \beta^{\prime}\right)$ as long as β^{\prime} has the same square and divisibility.

This means that (1) $r_{\beta}(x)$ only dents on n where $\beta^{2}=2 n-2$
(sine β is primitive) and (2) To compute r_{n}, we are free to clave any (X, β) with β primitive and $\beta^{2}=2 n-2$.

Lat X be an elliptically fibred $k 3$ surfer with a section and 24 mold fibers. X can be constructed by wing $S_{(3,1)} \subset \mathbb{R}^{2} \times \mathbb{R}^{\prime}$ generic rational elliptic surface and then pulling back by a generic 2:1 cover of the bose

Let $\beta_{n}=S+n F \quad S^{2}=-2 \quad F^{2}=0 \quad S \cdot F=1 \quad$ so

$$
\beta_{n}^{2}=(s+n F)^{2}=s^{2}+2 n s \cdot F+F^{2}=-2+2 n \quad \beta_{n} \cdot \text { primitive }
$$

Lecture 19 s
This class is grant beculue we can see all the curves in the associated liner system: As welve said before, the linear system associated to an checkers of square $2 n-2$ has dim n (follows form Hirsemche-Riencen-Rae). This can be identified with $S_{y m}{ }^{-} \mathbb{P}^{\prime}=\mathbb{P}^{4}$ where the divisor associate to $\left\{x_{1}, \cdots, x_{n}\right\} \in S_{y^{\prime}} \cdot \mathbb{R}^{\prime}$ in $S+\sum_{i=1}^{n} F_{x_{i}}$ where $F_{x_{i}}=\pi^{-1}\left(x_{i}\right)$.

The price we pay for classing this $k 3$ and core class is that we nov moot deal with multiple covers, What does $\bar{M}_{0}\left(x, \beta_{n}\right)$ look like?

Sire the image of the mop $f: c \rightarrow X$ is $S+\sum_{i=1}^{n} F_{x_{i}}$, we dedrue that
(1) there in a component $c_{0}<C$ sod that $\left.f\right|_{c_{0}}: c_{0} \stackrel{\cong}{\rightrightarrows} S$
(2) Sine C: gumbo 0 , the dual graph io a tree and each subtree obtained by deletions the vertex carcapuling to C_{0} is a mp of some tree of rational curves auto sone filer.
(3) Sine there are no maps fran a rational carve to an elliptic carve, the inge must be $S+\sum_{i=1}^{24} n_{i} N_{i}$ where $\sum_{i=1}^{24} n_{i}=n$.

\Rightarrow moduli spue is a product $\bar{m}_{0}\left(x, \beta_{n}\right)=\sum_{n_{1}+\cdots+m_{2}=n} \prod_{i=1}^{24} \bar{m}_{0}\left(f, s+n_{i} N_{i}\right)$
virtual class is also a product. Let $p(n)=\int 1$ $\left[\bar{m}_{0}(\tilde{f}, s+n N)\right]^{+i n}$
Then $\quad r_{n}=\sum_{n_{1}+\cdots n_{n}=n}^{1} \prod_{i=1}^{2 i} p\left(n_{i}\right)$

$$
\begin{aligned}
\Rightarrow \sum_{n=0}^{\infty} r_{n} q^{n}=\sum_{n_{1}, \cdots, n_{24}} \prod_{i=1}^{24} q^{n_{i}} p\left(n_{i}\right) & =\prod_{i=1}^{24}\left(\sum_{n_{i}=0}^{\infty} p\left(n_{i}\right) q^{n_{i}}\right) \\
& =\left(\sum_{n=0}^{\infty} p(n) g^{n}\right)^{24}
\end{aligned}
$$

To pare Yan-Zasloo, we need to show $\sum p(a) \delta^{n}=\prod_{k=0}^{\infty}\left(1-\delta^{k}\right)^{-1}$ i.e.

$$
p(n)=\int_{\left[\bar{m}_{0}(\dot{\xi}, s++N)\right]^{\text {ir }}}=\# q \text { partitions of } n \text {. }
$$

f

each sabble mop uniguely factirs thrugh the miversal coor so
tree of rational curves in a sorfue, curmal bundles are $\mathrm{Ol}(-2)$

Still hard to compute directly, but we can find the same configuration of curves in a very special blow ep of \mathbb{R}^{2} :

Prop

$$
\int_{\left[\bar{m}_{0}\left(B 1 \mathbb{R}^{2}, \beta_{a}\right)\right.} 1=\left\{\begin{array}{l}
1 \text { if } \cdots d_{-2} \leqslant d_{1} \leq d_{0} \geqslant d_{1} \geqslant d_{2} \text { and }\left|d_{i}-d_{i-1}\right|=0 \propto 1 \\
0 \text { otherwise }
\end{array}\right.
$$

$$
p(n)=\int 1=\quad \# \& \text { admissible squnemes } \vec{d} \text { with } \sum_{i} d_{i}=n
$$

Bijection between admissible segues of size n and partitions of size n :

