
Since Mg(C, d(c]) < Mg(X, d [co]) is a union of connected components it makes

sense to restrict the virtual class

N, a ( ,<x)=S casvir(ength (g,sis

= Sc,
(0b)

[mgth (2g, d[cg3)]
vi

- - virdim = D = (2-2g) d + 2(gth) - 2

= 2h + (2-2g)(d-1)

CD/0b) is 7th chern class of
Obstruction sheaf

.
Fibers of obstruction sheaf are HlEgin ,

f
* Ncglx)

Lecture 15
-
I

-

: if CCX has CEP' and Nox Opit)&piHExample
O

then Co's super rigid . local I' a.
K

.a. resolved conifold

Nn
,
a) (cx) = <(ab) e- = Nu

,

a) Tot(a&W
,p()

[Mn(4)'
, d[N])Jvir

This can be computed using the K action : the K* action on target I induces

an action of 4 on the moduli space by composition. JEK
*
them

x [f : <-P'] = [cED4'14']
proj

Integration on a smoothmanifold with a KY can be done by Atiyah-Bott
*

(pairing coh classes localization. Integral can be computed purely
against the fundamentalis

by contributions from the K* fixed locus
.



There is a virtual version of Atiyah-Bott Localization (Graber-Pandharipade

which reduces the above integral to an integral over the fixed locrs. Mn)4', d[n])
K
*

What kind of maps areK" fixed ?

--

E ②
Romain has 4'coupments
mapping to 4' with degree di,
->· fully ramified over 6

,
0

②

Es ⑤ Edi = d
.

*

-> All other components collapseC ⑳

↳
↑ d Pl
O

Combinatorially complicated ,
but each fixed corgument is smooth and expressible in terms of

fixed

Mgi ,ni's. One can show the only components that contribute are the simplest

U h
,thz= h E Mn

, ,
Mun

, I

ha ↳ E
4

,& ⑤A

E

Ie.

this contributesdo (d
2

"bu) )dihil buz

↓ where by are the Bernoulli numbers

↑ ! & but = (ctlO

The corresponding localization computation is easier in Donaldson-thomas theory.



Potential and Partition function of local P : X = total (OH) PH1)

Ng,d
= NEW(Ip(X)
I

pinF ENg Si o bgibge a29+2gn-3 J2git2gd e
↑ ④

swith from

O term q to v

= Si -j 2vdEbg ,
(d6) 28,So ke e

= Sid 35 pd) int-
EY =51 (2sin(-))" undF

Note that (2sin())" = 4 sin2d = 2(1-cosdb) = 2 /1 - -(eis+ eida)

= 2-eidd_ e-isd Letq = eid

= 2 - gd- g
d

= - gd(1 - 2gd + g2d)

= - g
-d(1-gd)2

so FY=-doas and since 2
= x+ 2x+ 3x +....

log(1-x) = [ -x
D·
-1 i= Er

d= / Kil

=@K log(1 -giv) = log t
,
(l-vg

so Zy = exp(FX) = t
,

(1- vgk)



Example Super rigid elliptic curve if ECX is an elliptic curve in a CY3 and

NEXELOL L generic degree O line bundle so H°E, L") = 0 for all KEE
.

then ECX is supervigid and the contribution of ECX to the GW inus makes sense

Compute Ng, a /local E).

Ng,
/local E) = 0 if g+18- Fact proven with degeneration (easier in DT theory)

↳l

AN : Using covering space theory show there are 6 (d) = &K covering spues of Eo

=> M
,
(E

, d[E]) consists of 6(d) points each with automorphism group Ed.

=> N
1 a (local E) = * 6(d)

F
=s Ng,a

(local E) 99 e

- va #G(d) =E St e d= K. m

= +ukm
K
,

m > O

=E - log(1-v =

= log , Tuk
-> Zocale= Trl = pluiv" p(n) = # of partitions o e

=> p(n) = # of possibly disconnected (unvanified) covers of degreen .
Fun to prove with

gp theory.



Proceeding along these lines one can imagine computing the multiple cover/degnerate

may contributions for all local curves in order to obtain a "universal multiple cover

formula" - something where there are integer counts of curves on X
, say Ugp(X)

and a universal formula (i.e. independent of X) relading [Ug, p(x> ] to [Ng
.p[x>3

A potential solution to this came early in the subject from physics.

In 1998 Gopakumari Vata defined integer curve counting

invariants g,
B(X) (via counting BPS states in physics) and conjectured

a formula relating them to GN invariants :

FY =SSt NEW(X) xig
B

=So E Ug,p(x)Sot(2sin (b)(2)e

moreover, for fixed B , Ug,p
=0 for g(10.

example Ug,
<17 (local 4) = 4' g = 0

,
d=1

I Gopakumar-Vata invariants
otherwise

count each supervigid I once.
.

Ug, d[E) (local E) = 36 St , day
=> GU invariants count each

I

superrigid Elliptic curre one

in each class d[E].

One can take the GV formula as the definition of Ug,p(X)

& Ug, p is a linear combination of Nglp' for g'eg B/B). For years ,
this

was how Ug,p
were defined - making the physics definition in to a mathematical gemetric

definition took 20 years (Maulik-Toda).



If we use the GV formula to define the GVinvariants Ug,B ,
then there is no a priori

reason to think they are integers. This was proved fairly recently :

Theorem Let the numbers [Ng,p(x)] be defined in terms of the GN invariants [Ngp(x)
via the GV formula · Then

① Ug, p(x) t# and & Ug,B(x) = 0 Car g > C(p) .

(Parker-Lonel, Doan-Ionel-Walpuski 2021)
VThe proof of this uses symplectic /almost <x geometry to reduce the problem

to local curves : X= tot(LOLOKc->C) which can be comparted in the algebraic category.

(B .

- Pandharipands 2008)

Take aways :· even the integer invariants Ug,B(X) are not just naive counts far g>0,

a completely naine cont (say in the symplectic category would not be deformation invariant).

· the geometric definition (Manlik and Toda) has the integers Ug,p as dimensions

of certain cohomology gps on a modali spike of sheaves , the GV formula then relates

GW theory (stable maps/virtual classes) to a kind of DT theory (sheaves / cohomology).

Lecture 17
-

the next step in understanding curves on CY3s is to use modali spaces

parameterizing sheaves (Donaldso -Thomas theory). Before we do that
,

Lets

do another spectacular application of Gl thery torenumerative geometryto



K3 surfaces and the Yan-Eashow formula.

Recall a R3 surface is a CY surface that is simply connected (so not Abelian surface)

e.g. X(p) C43 ,
X (2,3)

< +"X12
,
2
,2)

< P5

Although all projective K3 surfaces are deformation equivalent and hence differmaphic,

they come in families indexed by a number MEN (a "gas").

De A projective 13 surface X isof gam n if there exists a primitive

curve class & with B = 2n - 2. Equivalently ,
there exists a map X-DP"

(embedding for <, 3) which does not factor through a smaller projective space.

Note that B is the hyperplane section and a generic hyperplane section will be

a smooth curre of gloves n .

There are a finite number of ratimal curves in the class & (i. e. Hyperplane
sertions) . For generic X , these rational curves will have n nodes. (XiChem)

Un = # of rational hyperplane sections of a games n K3 surface X.

In 1995
, you-Eazlow conjectured the following amazing formula :

right = git
,
(1-gnj

24
= All t

= g + 24 + 324g + 32009"+ ...



A(g) = g
,

(1-gn Crit
It H = [lE & Imi <03q = e

unique modular cusp form of weight 12
. AlY) = [ A(i)

HYsLzE Mi 1 My = P/4,
6) = ProjQ[Ey,Es]

,
A is the

unique

section of O(1) ->T
, , vanishing at [A]=M,

We will prove this with GW theory taking advantage of deformation invariance.

examples : XpC4" a hyperplane section tinky is a guartic curre in HEP

and so is gams 3
. If His targent to Xy then HAXy has a modal singularity

So Us = # of tritangent planes to XyCP" (3200)

Special Cases of n= 2
,

n= 1 : A games 2 K3 surface is a double

branched cover XIDP branched over a smooth sextic curre B
.

A "hyperplane section"

is them (line) = C

↑
2

If the line is

C IP' branched

M tangent to B
,

then

at 6 pts cover will have a mode

here C is genus 2 So

U2= # Of bitangent lines

to a smooth sextic

(324 by Plucker).



n = 1 XIBP' is an elliptically fibored 13 surface. The "hyperplane
section is 5(pt) = filer (generically genus 1).

N24
U

,
= # of rational filers = 24

155 ...4
-

bii
Lecture

blem : The ordinary GW invariants of a K3 surface are zero . Why ?

Given a K3 surface X and a class BEHP(X;#) which is algebraic (i. e. FCCX with

B = [c])
,

there exists a deformation of X which makes & mon-algebraic.

To be precise : a deformation is a 3-fold Ct** whose fibers

It = (t) are K3 surfaces and <to = X
. H2(t; # ) = H (Ct+;) for all +

so given BE H (Ct) it makes sense do talk about the same BE H(Stel

The statement is that B is an algebraic class in H( <to) but not in H2(tto)

& algebraic classes are H(X;) H'"(;2) H(X; D) = H40 04"8 4:2)

So Mg(X, B) + 0 but Mg(Ytto ,8) = 4 this implies any GN

invariant of X in the class of B is 0 since by deformation invariance they are

equal to the invariants of <t
+10.



Solution : Use the threefold It as our target ! It is a CY3

and Mg(DE , B) = Mg(X ,B) since any map
to It in the class & must live

in the central fiber . We may define :

rp(x) = S1 = St
-/ reducedVirtue

[Mo(DE, B) ]
vir

[mo(X, B)]reduir under deformations
of X leaving B algebraic.

If X is a generic genus n K3 surface and B is the hyperplane class,

then the above is an honest enumeration of the rational curves in the class B :

since B is primitive there are no multiple covers. Since all ratimal curve are nodal

[by XiChen for X generic) there are no collapsing components : every map is

the normalization of its image.

Further analysis shows that Up(X) is invariant under deformations of X

which leave B algebraic.

How do we compute ? We now weaponize deformation invariance : we

deform (X,P) from a generic gene n R3 surface to a very special one where

we have a good handle on all the curves in the class B .

We know enough about the modali space of K3 surfaces to know that a pair

(X , B) consisting of a K3 surface and an effective curve class is deformation equivalent

to any other (X
,
p') as long as B has the same square and divisibility.



this means that $UB(X) only depends on n where B2= 2n-2

"Un

(since B is primitive) and O2 To compute In ,
we are free to choose

any (X,P) withB primiti and B= In- 2.

Let X be an elliptically filered K3 surface with a section and 24 modal

fibers .X can be constructed by taking Sca
,)

< PxM' generic rational elliptic

surface and then pulling back by a guaric 2: 1 cover of the base

X #S Ni N24 F

P -> P B
↓

2: /

↓ =>
↳

p
Let Bu = Staf S= 2 F = 0 S.FF S

Bi = (Stnf)
=

= S2+ InS · F + F
2

= - 2+In Be is primitive

re19

This class is great because we can see all the curves in the associated linear system:

effectiveAs we've said before
,

the linear system associated to an class of square In-2 has dim n

(follows from Hirzebruck-Riemann-Roc)
.

This can be identified with Sym"4 = I" where the divisor

associateddo Ex:3 - Symit' is St Fx:
where Exi = =(i)

.



The price we pay for choosing this K3 and curve class is that we now must

deal with multiple covers. What does Mo(X , Bu) look like ?

Since the image of the map f : 2 ->X is St.EFxi ,
we deduce that

① there is a conpent Co < C such that flc"Co EDS

② Since C is
gums O

,
the dual graph is a tree and each subtree obtained by deleting

the vertex corresponding toCo is a map of some tree of rational curves onto some filer.

non-constant maps
V③ Since there are no maps from a rational curve to an elliptic curve

,
the image

must be StniNi where Sni = n

...total degree degree
up Ni N24

W

ver

..... # 3 Y-
Co

=> moduli space is a product M(X , Rn) =im Mo)1 , StmiNi

virtual class is also a product .
Let p(n) = ) 1

[mo)E
,
Stnn)]

then in =Spliti= 1



=> Ungu =

in
gui plni) = (E o plni) I i

= (p(nign
To prove Yan-Easlow,

we need to show [plnig=* (1-gk)ee

p(n) = S2 = # of partitions of 1
.

Smo)E
,

s+ nN)Juir

S

(-iX--
/- X --

~ ..-- . To-
f

(
- ↳

& E( ..
- -

.. --- ----
.

S

each stable may uniquely factors through the universal cover so

Mo)E2) = W i ..-Xa(
d d dd d

-z
"-2) - , 0, 1s'

d ~Ei = n

tree of rational curves in a surface ,
normal bundles

are O-2)



Still hard to compute directly ,
but we can find the same configuration of curves

in a very special blowup of P2 :

2 B13pts2
P

H-E,

H-Er
H

H

E-

H

-

& HEo-E,E
.&

& ( Eo

Bly ,

2

H- Er -
En

↑
2uel

pt

H-E-E-...
Eon

Ern En

By = Es + do(H -E -E
,
-E1)

↑G :

Ez-Es

+Edi)Ei -Ein) + di)EiEi

GENEETE,E,~Ez

lo
all maps lie

in configuration
↓Sa = St -can be computed by

[Mo)- :
: )

vir

[Mo(Bl." Bal
Cremona

,
answer

is alway O or1.



P

Sa = E
1 if ... d

..

= d+2 do3d, 3d and (di-diy) = 0 ord

O otherwise

[mo(BI." Bal
same or drops by 1

-2 -us

... de ,
d.
,

do
,

di
, da ... ) call such a sequence "admissible"

A
I

biggest

p(n) = S2 I #of admissible sequencesa with Edi = n

Smo)E
,

s+ nN)Juir

Bijection between admissible
sequences of size n and partitions of size n :

:
d

3.
d
. d.
-s

dO

-a
I d

-
...

p44
n, he My

...

M
,
3
, 23 ... Eni = n


