
mention some prerequisites :Letrein Geometry Beyond Numeris I bundles,sheafcohomog, 1
This course is an introduction to modern enumerative

algebraic geometry. Classically ,
enumeratives geometry is about

counting problems in algebraic geometry ,
for example we may ask

for the number a curves in some space satisfying some set of

conditions. Some classical examples include

· How many lines are there on a smooth cubic surface SCRP" ?

A : 27 (Cayley i Salmon 1849)

· How many lines are bitangent to a smooth degree d curve CCDPF ?

A : Ed(d-2)(d- 3) (d+3) (Plucker 1830's)

Recall that the gemeticgenus of a (possibly singular) corve 2

is the usual genus of the normalization I-DC. A curve is called

rational if it has geometric genus O .

--

· Let Na = # of rational plane curves of degree & passing through

3d-1 general points. e.g.



N, = # of lines through 2 points = I 3 Greeks
N2 = # of Conics through 5 points =I

N3 = # of rational cubics through 8 points = 12 easy with classical AG

Np = # 0 rational quarties through 11 points = 620 hard with classical AG

1800s

First "non-classical" result. Kontserich 1994 :

Na = 2 No
, Noz)dida"(4) -did iisd

,
+de = d

di > O

The above was very striking not just because it gives a complete

solution to a difficult classical problem ,
but because it is a corollary

of the fact that the product in QH(PY)
,
the Cohomology

of 42 is associative
. Quantum cohomology is an idea that comes from the

physics of string theory and is a deformation of the usual cohonology

ring.

MoernEnumerative Geometry 1990's- present. Ideas coming from physics

(mainly string theory but also varius quantum field therries) have driven new

developments in enumerative algebraic gemetry. The focus is not so much on the

actual numbers
,
but on new structures arising from the numbers ("beyond numbers").



Another extremely influential example from the 1990s :

Let Xi
,
<CP" be a generic guintic threefold (an example of a CY3) ·

Let ad be the number of degreea rational curves on X
,

5)

n
,

= 2875
, 12 = 609250 (Katz 1986)

Using mirror symmetry in string theory Candelas
,

dela Ossa
,

Green conjectived (1991) a

general formake for these numbers.

Lecture I Calabi-Yar threefolds play a central role in this story. Most

of what we will study in this course are quantum invariants of Calabi-Yau

threefolds.

Refin : A blan manifold of dimension n is a non-singular

complex projective variety XCCP with dimX = n satisfying one of the
N

and HP(xr =0
.

following equivalent conditions :

Q X admits a Kahler metric whose Ricci curvature is

zero (called a Ricci-flat or Calabi-Yau metric) .

② X admits a non-vanishing holomorphic n-form

③ The canonical line bundle Kx = 1"T* is trivial : KxEOx



Remarks :

· Q = & E & is easy · O2 EQ is you's fields medal theorem

· As algebraic geometers ,
we will often takeas the definition,

even in the case where X is not compact (only quasi-projective) ·
in that case & #Q and O may fail ,

but we still consider

KxEOx to be CY
.

· Same people require HP)X
,Ox) = 44 KO

Examples :

-

Adinc X= 1 CY3s are elliptic curves
,

a.
K

.a. genus 1 Riemann surfaces,

a. K
.
a. Smooth cubic plane curves X()<P.

There is only one topological type

②

impX= 2 CY3s are either Abelian surfaces A E&YE*

or 43 surfaces. An example of a K3 surface is a smooth quartic surface

in P3 X(4)
<P

.
There are two topological types .

Adm, X = 3 Has a vast number of distinct topological types (possibly

infinite
, conjecturally finite , probably > 500

,
000

,000). For example a smooth

quintic hypersurface X(s) < &PY



In general a degree N+) hypersurface in QC" is a CY (N-1) fold

Xin+)
< &PW X(N+)

= & (Xo :.... XN) : F(Xo;; <N) =0 F homogeneous poly in N+ 3variables of degree NH

Generalizing this example :

The zero locus of a section of the dual canonical bundle is CY :

If M is any projective manifold of dim NH then 5 10) is a4in where

Km

s(b (if M= <PN+
then K = 01-N-1) So K = OIN+1) so (

M > 5 () sections are degree N+ polynomials

more generally ,
if E-DM is a rk r vector bundle with

NEE Ki and S :M-E is a section intersecting the zero section

transversely, then 50) <M is a 8Y of dim dimM-WKE.

Non-compartexample Let E-DM be a rk r rector bundle with
-

NVEEKm
,

then X = Tot(E) is
a CY of dim dimM + WKE

.



example : M = P' E= OH)0OH) so ME = Of2) = Kal

X= Tot/OHOOH)-4) is a(Y3

= & (40 ,
4

,
v

, W) : (No/
X) = 10,0)3/(Xo

, X ,
V
, W) w (6X ,

6x,
5'r

,
J'w)

local 4'"a .
Ka .LL I

t

1

1
conifold singularity"Conifold resolution

X- > Using = [xg = wz < KY3
U

↑P'I (0,0
,
0
,01

the only projective curve in X is the zero section (why ?)

example M = 42
,
E = Kp2 = 01-3)

,
X= Tot (013) -> P2) is a CY3

("local 42"I
X = < IX0

,
41 , X2

,
v) : (Xox, <2) + 10,

0
,07<Xo

,
N,x2 ,v) ~ (6Xo,

>X
, >x2

,
53v)

curves in X mustIll lie in PPCX
.

pe

X - Using = Yel (X
,y,7) /Wx, Wy, wz) W = eRTY



↳
&cutum Invariants of Cs is a catch all phrase which refers to

dermation invariants having close ties to or analogs in string theory or

guantum field theory.

A deformation inariant is a quantity (typically a number) associated to

a projective manifold which is invariant under deformations of the complex structure.

(Simple example is any topological invariant).

the invariants we study in this class arise from (virtual) counts of

curves CCX . A curre defines a homology class [c] EH2/X,) and we typically

count curves in X having a fixed homology class PEH(4,) and fixed genusg.

To perform such a count we'd like to define a space (I'm being

vague here) Mg(X , B)sm which parameterizes (say) smooth curves CCX

with [c] = B and genus g .
This is called a moduli space (each point

in Mg(X, Bism corresponds to a smooth curre (CX) .

In the ideal case,

Mg(X, &)sm is a finite set of points and than the number of points in the

moduli space is the number of genus g curves in the class .

In that case

Mg(X , Bism is a dial projective manifol.



If X is a(Y3 then the exeddimension of Mg(X,B)sm is O for

any B and g . This is one reason why CY3s are very special.

Expecteddimension : If a variety M is given by the zero

locus of a set of equations on an ambient manifold W
,

then the expected

dimension of M is dimW-#gegrations. If the solution sets of the equations--

intersect transversely ,
then M is smooth and of the expected dimension

,
otherwise

M may be singular andlor have dimension larger than the expected dimension.

(Jargon: M arises fromeintersection).

For X aCi3
,
often M(X, B)sm has dimension > O and lar

is singular.
We world still like to use Mg(xBism to obtain a numerical

invariant
,

a "virtual" count of curves in X of genus g and class B . To do this

we must surmount two fundamental problems ·

· Mg(X, BIsm is (typically) non-compart . We must patify the spans of

smooth curves.

· Mg(Y, B) sm is (typically) singular and has excess dimension due to

non-transversality of defining equations of M(4, B) sm.



Different approaches to resolving these issues leads to different kinds of

invariants. The basic blueprint is :

X wa M(X , B.9) ma Numerical deformation invariant

CY3 3 -
some compart usually the degree of a "virtual class"

modeli space of cures sometimes something more exotic like

in the class & and genusg a rank of a chonology group. This

process should account for M

having access dimension and /or being

singular.
the two basic strategies :

· curves are parameterized , they are given by maps f : C-*X.

wis moduli space of stable maps us GN invariants (world sheets in string theory).

· curves are out out by equations , they are given by sheaves.

was various moduli spaces of sheaves,

Ideal sheaves/Hilbert scheme Whis DT invariants

Torsion sheaves with section (stable pairs) mis PT invariants

tursion sheaves us MT/GV invariants

(these are various D-branes in string theory



In a family of carves in a projective manifold X
,

a smooth curve can

degenerate to a singular curve :

mples Coniz corres in P22/ words (Niyiz)
z

Ipe Pl P

· P

D MD
S-DO

t + Do

(X + ty)x + sz = 0 (x+ty)x =0 * = O

Smooth coniz is pair of lines 'u # "doubled" line
a 4 in the class having a de as a same lows as

2[L]t H2(πY,) singularity X=0, but we want

something that reflects
⑰ ⑳ the fact that it came

from a coniz.

he4



ple : cubic curves in
2

E MD S MD E
Smooth cubic curve nodal cubic

,
it

gens 1 in 3[L]EH(4) has arithmetic genus cuspidal cubic

1 and geometric genus O affine equation
② ( x

=
=y

3 normalization
/

4- & is 4' and is bijective

Mrs Oo
↑

(o- 1
mode is locally xy = 0

1

(analyticalis

Different moduli spaces handle these degenerations differently which leads do

different curve counting theories.



-Witten theory We consider curves in X as given by

their embedding map f : <-> X . We allow C to have singularities,

but only nodes
,
but we no longer requiref to be an embedding.

Det A stablemap to X of genus g and class BE H2(X, #)
connected

is a map f : C-> X where C is a "curve of Carithmetic) genus g

with at worst nodal singularities ,
fx[c] = B

,
and such that

Ant (f : C - X) = 34-Ant(c) : foo = f3 is finite.

defin Two stable maps f : C ->X
,
f' : C'-> X are rivalent

if there exists & : C-C isomorphism such that

f
c -> X

·- commutes.

d
fl

Theorem If X is projective ,
then the moduli space of stable maps Mg(X,B)

is compact[it is a projective Deligne- Mumford stack) .
There is a projective

variety whose points correspond bijectively with equivalence classes of

stable maps. (Every flat family of stable maps induces a morphism).



Special Case of therem is Xipt
. Mg(pt, 0) = Mg (g) 1) -- why ?

Deligne- Mumford moduli space of stable curves. Smooth orbifold of dimension

3g - 3
.

It is a compartification of My ,
the moduli space of smooth curves.

the arithmetic genus of a connected corre C is by definition -K H /C,0),

for a nodal curve C = UC: g = [ g(ci) + 1 -eff)
no

# of cycles in dual graph

·⑳
M
② ②

/
92

=0

so ↑-

1 23 . Do ⑳

② ⑳

C4

-t
t
D= ·
-

dual graph has anode
4 gi = 1 ② Cr for each Ci and an

Cz
. Cz

edge for each mode

& smoothes to

ED E

·-genus 6

·Ei
but unstable



A nodal curve has finite automorphism group iff every rational compment has

3 or more modes
, every elliptic congment has at least I mode (M,

= 6).

Lecture 5

For stable maps f : C = U. Ci
-> X each fi = flc

,

has some "degree"

fix[Ci]=Bit H2(X
,
) If Pi +0 there are only a finite of automorphisms

of f that can out non-trivially on Ci : they can only permute points If"(p+1)

1 Ant (f : C -+x)) = 0 => I same component Ci of degree O such that

/Ant(Ci , nodes)/ = 0 i .e. Ci = P with I or fewer modes or g((i) = 1 with

no hodes.

Stability (= Every gems O collapsing component must have 3 or

more nodes (and m
,
(X,0) = 6) .



Let's see what happens in the examples

Mo(P2
,
2923) -> P5

0 >
linear system

of conics

P
P

= (a : bi c :dieif)
·y B

sor

ax+ by
2

+cz+dxy + 247+fxz =0

stable maps

42

f
->

↑
eubedding may is the stable may

i Ip2

f
-B

C

f
-

Image is a line but

-map must be 2: 1 cover

since fx[c] = 2[2] ·



Double covers f : P'-D P have two branch points and the map is determined

by those points : If p andq come together, we still get
a stable map :

>OCM &
'ul

↓ f E ↓ f
# I stable

- Plp8
may has a Ele !
automorphism.

so set of stable maps which double cover a given line LCP" i

given by Sym2L = Sym24' = 12.

So the map Moli"
,
2(3) =I&45 : li

away from the locus of double lines which is 42<P embedded by the

Veronese embedding and it(p) =P for any pE4"<p5

In fact, Mo(P, 2(23) = B1pz) 45) [with a Korbifold structure]
along the exeptimal divisor

Notice moduli space is smooth here
. It is also of the expected dimension.

Note that if X = Tot (U(-3) - /2) "local4""
.
Then Mo(X ,

2[ 2]) = Mo (4)
,
2((3)

is smooth but not of the expected dimension.

What can happen in the modali space M,
(Cl"

,
3 (23) ?

pr

Now we have genus 1 curves
, generically

sendaddinge



Can degenerate to a nodal curve (still an embedding)

--E f

E
C p2
rational curre of
arithmetic genus I

When image is a cospidal cubic
, map can no longer be an embedding.

I=Thi
Pl

f : C-P
*

C = Ev union of flp,
is the normalization

elliptic curve

and P fle i a constant map
whose image is the cusp.

this mays can deform in an interesting way
:

=

- -
·

fls

·I ET

Pl

This map does not smooth :

there is no infinitesimal deformation of f => M
,
(42

,
3(3) has multiple

with a smooth domain irreducible components.



So M
,
(45

,
3( 7) is already very complicated. The possibility of collapsing components

makes things complicated. e . g.

IP

i

-x/
collapses E do a point.

Si ->

⑳

E

-pl b
P embedding

Pl

Homework problems involve seeing what can happen in the moduli spaces

M2 (i), [m]) sm , (π' , 2[4 )

Lecture 6

Expected dimension (also called virtual dimension)

A central formula in Gromov Witten theory is the following

virdim
,(Mg(X,B) = - Kx B + (dim

,
X- 3)(1-g)

We will sketch a derivation of this and see how to think about the virtual expected

aspect of the formula
,

but first some examples :



vdimMg(P2, d(23) = (3(23) . (d(23) + (2-3)(1 g)

= 3d + g - 1

degreea curves forms a linear system C(H°P2
, O(d)) = ↑ ) -1

= IpEdId
+3)

q
degree d · .. a de

polys in 3 variables d sheep ,
I fences.

a smorth
, degree& plane curve has genus [(d-1)(d-2) and indeed

if g = E(d-1(d-2) then 31 + E(d-1)(d-2) - 1 = Ed -Ed + 1 - 1 + 3d = jd2+ Ed .

the geometric gener of a curve drops by 1 in codiml
,

2 in codim 2
,

etc.

Emoti
codiml

vdim Mg(Cn ,
d[n]) = -

Kcp : d((n] + ( - 3)(1 -g) = d(2-2h) + 2g - 2

maps f : Cg
A Cn

= 2g - 2 - d(2n -2)

- q
curve of gener of fixed curve of gues h

-

-
-

4-

-Cg
=>.LE

a sim

↓f
On -x+ &

mo

r branch points

the relationship between g,
h
,
r is given by the Riemann-Hurwitz formula :



Cg-(d-Ilrpts -> Cn-rpts is unramified (covering space)
-

fl/branch locrs) Pled los

so de(2n-rnts) = e (<g - (d -1)rpts)

d(2 - 2n - r) = 2 - 2q - (d- 1)r

d(2- 2h) -dr =

2-2g- dr +r

u = 2g - 2 - d(zh -2)

makes sunse : only was to deform map is to more location of branched points.

If dimx = 3 virdim Mg(X,B) = - Kx B (genus independent)

If Xi a CY3 virdimMg(X,B) = 0 for all B and g.

Let's understand the dimension formula in the case where f : C - X

is an embedding of a smooth curve. We claim the infinitesimal deformations

of f : < -> X are given by H°/C, fNc(x) where Nax is the normal

bundle of C in X .
o - Tc -> Tyk-DNck -> 0

defines Nax. .

We get a long exact sequence in cohomology :

0 -> H°(Tc) -> H
° (Wx(c) -> HO)Nc() -> H(c) - H(tx(c) ->H(N)-

A↑ 4 ↑ I

Ant() DefIffixing<) Def(f :C-X) Def(c) Ob(f) ob(f : C - X)



0 - Tc -TXk - N -0

might not split globally but locally

! we may choose a lift N -B TxkE X and deform . Local lifts will differ on

overlaps by vector fields on 2 and this data

(Cech 1-cycle valued in rector fields gives rise to an

infinitesimal deformation of C).

1)
we "expect" obstructions to

vanish.

vdimMg(X, B) = dimHO(C
,
N) -dimH')C,

N) actual dimension = virtual dim

↑ when H'/C
, N) = 0

actual dimension

by Riemann-Roch vdim Mg(X,B) = X(C
,
N)

= degN + rKN(1-g)

= degN + (dimx-1)( - g)

and since o - Tc -Tyl -> N -0

deg N = deg (Tx(c) - degTo = -deg(F(c) -(2-2g) = - Kx : C - (2-29)

vdim Mg(X , B) = - Kx B - 2(1-g) + /dimx- 1)(1-g)

=
- Kx-B + (dimx-3)(1-g) .


