Lecture 1
Enumerative Geometry Beyond Numbers

This course is an introduction to modern enumerative algebraic geometry. Classically, enumerative geometry is about counting problems in algebraic geometry, for example we may ask for the number a curves in some space satisfying some set of conditions. Sone classical examples include

- How many lines are there on a smooth cubic surface $S \subset \mathbb{C} \mathbb{R}^{3}$?

A: 27 (Coley: Salmon 1849)

- How many lines are bitangant to a smooth degree $d>1$ curve $C \subset \mathbb{C} \mathbb{P}^{2}$?

A: $\frac{1}{2} d(d-2)(d-3)(d+3) \quad$ (Plucker 1830's)
Recall that the geometric genus of a (possibly singular) curve C is the usual genus of the normalization $\bar{C} \rightarrow C$. A cure is called ratimel if it has geometric genus 0 .

- Lat $N_{d}=\#$ of rational plane curves of degree d passing tarragh 3d-1 general prints. eeg.
$N_{1}=\#$ of lines through 2 prints $=1$
$N_{2}=*$ of conics through 5 points $=1$
$N_{3}=\#$ of rational cobias through 8 points $=12$
easy with clerical AG,
$N_{4}=\#$ of rational quartics through 11 points $=620$ hard with classical AG

1800s
First "non-classical" result. Rontsevich 1994:

$$
N_{d}=\sum_{\substack{d_{1}+d_{2}=d \\ d_{i}>0}}^{1} N_{d_{1}} N_{d_{2}}\left(d_{1}^{2} d_{2}^{2}\binom{3 d-4}{3 d_{1}-2}-d_{1}^{3} d_{2}\binom{3 d-4}{3 d_{1}-1}\right)
$$

The above was very striking not just because it gives a complete solution to a difficult classical problem, but because it is a corollary I the fact that the product in $Q H^{*}\left(\mathbb{R}^{2}\right)$, the Quantum Cohomolongy of \mathbb{R}^{2}, is associative. Quantum cohorology is an idea that comes from the physics of string theory and is a deformation of the usual cohorology ring.

Modern Enumerative Geometry 1990's-preent. Ideas coming from physics (mainly string theory bat also varies quantion field theories) have driven new developments in enumerative algetronic gementry. The focus is not so much on the actual numbers, but on new structures arising fran the numbers ("beyond numbers").

Another extremely influential example from the 1990s:
Let $X_{(s)}^{3} \subset \mathbb{C} \mathbb{P}^{4}$ be a generic quintic threefold (an example of a $C 43$).
Let $n d$ be the nualuer of degree d rational carves on $X_{(s)}^{3}$.

$$
n_{1}=2875, \quad n_{2}=609250 \quad(\text { katz 1986 })
$$

Using mirror symmetry in string theory Candelas, dihassa, Green conjectured (1991) a general formula for these numbers.
Lecture 2 Calabi-yau threefolds play a central role in this stroy. Most of what we will study in this cause are quantum invariants of cabbi-yen threefold.

Def'n: A Calabi-Yan manifold of dimension n is a non-singder complex projective variety $X \subset \mathbb{C} \mathbb{P}^{N}$ with $\operatorname{dim} X=n$ satisfying one of the and $H^{2}\left(x_{m \times x}=0\right.$.
following equivalent conditions:
(1) X admits a Kähler metric whose Riccio curvature is zero (called a Ricci-flat or Calabi-Yen metric).
(2) X admits a non-vanishing holomorphic n-form
(3) The canonical line bundle $K_{x}=\Lambda^{n} T_{x}^{*}$ is trivial: $K_{x} \approx \theta_{x}$.

Remarks:
(1) \Rightarrow (2) \Leftrightarrow (3) is easy. (2) \Rightarrow (1) is Y un's fields model thercm

- As algebraic geometers, we will often take (3) as the definition, even in the case whore X is not conpocect (only quasi-projective). in that case (2) \nrightarrow (1) and (1) may fail, but we still consider $K_{x} \cong O_{x}$ to be $C Y$.
- Sone people require $H^{k}\left(x, \theta_{x}\right)= \begin{cases}C & k=0, n \\ 0 & \text { otherwise }\end{cases}$

Examples:
$\operatorname{dim}_{c} X=1$ CY3s are elliptic corves, a.k.a. gens 1 Riemann surfaces, a.k.a. smith cubic plane curves $X_{(3)} \subset \mathbb{P}^{2}$. There is only one topological type
$\operatorname{dim}_{c} X=2 \quad C Y 3$ s are either Aphelian surfaces $A \cong \mathbb{C}^{2} / Z^{4}$ or $K 3$ sorfues. An example of a $K 3$ surface is a smooth quartic surface in $\mathbb{R}^{3} \quad X_{(4)} \subset \mathbb{P}^{3}$. There are two topological types.
$\operatorname{dim}_{c} X=3$ Has a vast number of distinct topological types (possibly infinite, conjecturally finite, probably $>500,000,000$). For example a smith quintic hypersurface $\quad X_{(5)} \subset \mathbb{C} \mathbb{P}^{4}$

In general a decree $N+1$ hyprsowfree in $\mathbb{C P} \mathbb{P}^{N}$ is a $\mathbb{C H}(N-1)$ fob

$$
X_{(N+1)}<\mathbb{C P}^{N \quad} \quad X_{(N+1)}=\left\{\left(x_{0}: \cdots: x_{N}\right): F\left(x_{0} ;, x_{N}\right)=0 \quad F \text { hanogenens poly in } N+1\right\}
$$

Generalizing this example:
The zero locus of a section of the died canonical bundle is CY :
If M : any ${ }^{c x}$ projective manifold of $\operatorname{dim} N+1$ then $S^{-1}(0)$ is a SYn where

$$
\begin{array}{lc}
K_{M}^{V} & \text { if } M=\mathbb{C} \mathbb{P}^{N+1} \text { then } K=\theta(-N-1) \text { so } K^{N}=\theta(N+1) \text { so } \\
s\left(C_{0}\right. & \text { sections are dire } N+1 \text { polynnemiads }
\end{array}
$$

more generally, if $E \rightarrow M$: a ok r vector bundle with $\Lambda^{r} E \cong K_{M}^{v}$ and $s: M \rightarrow E$ is a section intersecting the zero section transversely, then $s^{-1}(0) \subset M$ is a $C Y$ of $\operatorname{dim} \operatorname{dim} M-r K E$.

Non-compent example Let $E \rightarrow M$ be a $r k r$ vector bundle with $\Lambda^{r} E \cong K_{M}$, then $X=\operatorname{Tot}(E)$ is a ci of $\operatorname{dim} \operatorname{dim} M+r k E$.
example: $\quad M=\mathbb{P}^{\prime} \quad E=\theta(-1) \otimes \theta(-1)$ so $\Lambda^{2} E=\theta(-2)=K_{\mathbb{P}^{\prime}}$

$$
\begin{aligned}
X & =\operatorname{Tot}\left(\theta(-) \oplus \theta(-1) \rightarrow \mathbb{P}^{1}\right) \quad \text { is a } C Y 3 \\
& =\left\{\left(x_{0}, x_{1}, v, w\right):\left(x_{0}, x_{0}\right)=(0,0)\right\} /\left(x_{0}, x_{1}, v, w\right) \sim\left(\lambda x_{0}, \lambda x_{1}, \lambda^{-1} v, \lambda^{-1} w\right)
\end{aligned}
$$

local P" aka.
corifild resolution" $\sigma^{\text {conifild singularity }}$

$$
\begin{aligned}
& X \longrightarrow X_{\text {sing }}=\left\{x y=w z \subset \mathbb{C}^{4}\right\} \\
& U \\
& \mathbb{P}^{\prime} \longmapsto(0,0,0,0)
\end{aligned}
$$

The only projective curve in X is the zero section (why?)
example $M=\mathbb{P}^{2}, \quad E=K_{\mathbb{R}^{2}}=\theta(-3), \quad X=\operatorname{Tot}\left(\theta(-3) \rightarrow \mathbb{P}^{2}\right)$ is a CY3 ("local $\mathbb{P}^{2 "}$)

$$
X=\left\{\left(x_{0}, x_{1}, x_{2}, v\right): \quad\left(x_{0} x_{1}, y_{2}\right) \neq(0,0,0)\right\} /\left(x_{0}, x_{1}, x_{2}, v\right) \sim\left(\lambda x_{0}, \lambda x_{1}, \lambda x_{2}, \lambda^{-3} v\right)
$$

Curves in X most lie in $\mathbb{P}^{2} \subset X$.

$$
X \rightarrow X_{\text {sing }} \cong \mathbb{C}^{3} / z_{3} \quad(x, y, z) \sim(\omega x, \omega y, \omega z) \quad \omega=e^{2 \pi i / 3}
$$

Lecture 31
Quantum Invariants of CABs is a catch all phrase which refers to deformation invariants having close ties to or analogs in string there or quantum field theory.

A deformation inerrant is a quantity (typically a number) association to a projective manifold which is invariant under deformations of the complex structure. (Simple ereandle is any tyadlogical inverint).

The invariants we study in this class arise from (virtual) counts of curves $C \subset X$. A curve defines a homology class $[c] \in H_{2}(X, Z)$ and we typically count corves in X having a fixed homology class $\beta \in H_{2}(x, \mathbb{Z})$ and fixed genro g.

To perform such a count wed like to define a spue (I'm being vague here) $M_{g}(X, \beta)_{\text {sm }}$ which parameterizes (say) smith curves $C \subset X$ with $[c]=\beta$ and gems g. This is called a moduli spue (each point in $M_{g}(x, \beta)_{s m}$ corresponds to a smote curve $\left.C \subset X\right)$. In the ideal case, $M_{g}(x, \beta)_{\text {sm }}$ is a finite set of points and then the number of points in the moduli space is the number of genus g curves in the class β. In that case $M_{g}(x, \beta)_{3 m}$ is a O-dim'l projective manifold.

If X is a $C 93$ then the expected dimension of $M_{g}(x, \beta)_{\text {sem }}$ is 0 for any β and g. This is one reason why $C Y 3 s$ are very special.

Expected dinensim: If a variety M is given by the zero lows of a sat of equation on an ambient manifold W, then the expected dimension of M is dim W-\# of gentians. If the solution sets of the equations intersect trouswursely, them M is sooth ad of the expected dinemsim, otherwise M may be singular anchor have dimension larger then the oxpectad dimension. (Jrryn: M arises from excess intersection).

For X a C93, often $M_{g}(X, \beta)_{s m}$ has dimension >0 adar is singular. We would still like to use My $(x, \beta)_{\text {sm }}$ to obtain a numerical invariant, a "virtual"" count of cures in X of genus g and class β. To do this we must surmount two fundaneatel problems:

- $M_{g}(x, \beta)_{\text {sm }}$ is (typically) ma-coppat. We must corpucify the spare of smooth curves.
- $M_{g}(x, \beta)_{\text {sm }}$ - (typically) singular and has excess dimension due to un-trousworselity of defining equations of $m(x, \beta)_{\text {sm }}$.

Different approaches to resolving these issues leads to different kinds of invariants．The basic blueprint is：
$X \leadsto M(X, \beta, g) \sim$ Numerical deformation invariant

some compact
moduli spore of curves
in the class β and gens g

She two basic strategies：
usually 念
Usually the degree of a＂virtual class＂ sometimes something more exotic like a rank of a chorology gap．This process should account for M having access dimension and for being singular．
－curves are parameterized，they are given by maps $f: c \rightarrow X$ ． u moduli spence of stable maps mo GW inerients（world sheets in string theory）．
－curves are cut out by equations，sue are giver by shaves．
nub varies moduli spues of sheaves，
Ideal sheves／Hilbert scheme NUs DT invariants
Torsion sheaves with section（stable pairs）$\sim \sim D P T$ invariants
torsion shaves $\leadsto M T / G V$ invariants
（these are various D－braves in string theory）

In a family of corves in a projective manifold X, a smash curve can degenerate to a singular carve:
examples Comic corves in $\mathbb{R}^{2} \leftharpoondown$ cords $(x: y: z)$

$$
\left(x+t_{y}\right) x+s z=0
$$

smooth conic is
a \mathbb{P}^{\prime} in the class
$2[L] \in H_{2}\left(\mathbb{R}^{2}, \mathbb{Z}\right)$

$$
(x+t y) x=0
$$

pair of lines $\mathbb{P}^{\prime} u_{p} \mathbb{T}^{\prime}$ having a node as a singularity

$$
x^{2}=0
$$

"doubled" line
same lows as $x=0$ but we want something that reflects the fact that it cave from a conic.

Lecture 4
example: cubic curves in \mathbb{P}^{2}

Smooth cubic curve
genus 1 in $3[L] \in H_{2}\left(P^{2}\right)$
nodal cubic, it has arithmetic genus
1 and geometric genus 0

cuspider cubic affine equation $x^{2}=y^{3}$, normalization is \mathbb{P}^{\prime} and is bijectire

$$
\sum 4
$$

male is locally $x y=0$

Different mulanli spaces handle these degenerations difforcuitly which leads to different curve counting theories.

Grown-Witten Theory We consider corves in X as given by
their embedding map $\quad f: C \rightarrow X$. We allow C to have singularities, but only nodes, but we no longer require f to be an embedding.
Def'n A stable map to X of genus g and class $\beta \in H_{2}(x, z)$ is a map $f: C \rightarrow X$ where C is ar curve of (arithmetic) genes g with at wort nodal singularities, $f_{*}[c]=\beta$, and such that $\operatorname{Ant}(f: c \rightarrow x)=\{\phi \in \operatorname{Ant}(c): f \circ \phi=f\} \quad$ is finite.

Def'n Two stable maps $f: C \rightarrow X, f^{\prime}: C^{\prime} \rightarrow X$ are equivalent if there exists $\phi: C \rightarrow c^{\prime}$ isomorphism such that

Theorems If X is projective, then the moduli spue of stable maps $\overline{M_{g}}(X, \beta)$ is compact [it is a projective Delige-Momsod stack]. There is a projective variety whose points correspond bijectively with equivalence chases of stable maps. (Every flat family of stable maps induces a morphism).

Special case of theorem is $X=p t . \bar{m}_{g}\left(p^{t}, 0\right)=\overline{m_{g}} \quad(g>1)$ why?
Deligne-Munford moduli space of stable curves. Smash arbifild of dimension $3 g-3$. It is a compantification of M_{g}, the moduli spae of smooth curves.

The arithmetic gems of a connoted curve C is by definition $r k H^{\prime}(c, \theta)$,
for a nodal curve $C=\bigcup_{i} C_{i} \quad g=\sum_{i} g\left(c_{i}\right)+\underbrace{1-e(r)}_{\neq j \text { ides in deal graph }}$

dual graph has a mole for each c_{i} and an edge for each mole
$\{$ soothes to

$$
g=6
$$

A nodal curve has finite automaphism group iff ovary rational compmat has 3 or mare nodes, every elliptic comment has at least 1 node $\left(\bar{m}_{1}=\phi\right)$.

Lecture 5
For stroll maps $f: C=\bigcup_{i} c_{i} \longrightarrow X$ each $f_{i}=\left.f\right|_{c_{i}}$ hes same "dare" $f_{i *}\left[c_{i}\right]=\beta_{i} \in H_{2}(X, Z)$ if $\beta_{i} \neq 0$ sure are only a finite $\#$ of automorphisms of f that can eat non-trivially on C_{i} : they can only permute points $\left\{f^{-1}(p+1\}\right.$
\mid Ant $(f: c \rightarrow x) \mid=\infty \Rightarrow \exists$ same component c_{i} of degree 0 such that $\mid \operatorname{Ant}\left(C_{i}\right.$, nodes $) \mid=\infty$ i.e. $C_{i}=\mathbb{P}^{\prime}$ with 2 or fewer nodes or $g\left(C_{i}\right)=1$ with no nodes.

Stability \Leftrightarrow Every gens 0 collapsing component must have 3 or mare nodes (and $\bar{m}_{1}(x, 0)=\phi$).

Let's see what happens in the examples

erriedding map is the stable map

Image is a line bat map must be 2:1 cover since $f_{*}[c]=2[L]$

Double covers $f: \mathbb{P}^{\prime} \rightarrow \mathbb{P}^{\prime}$ have two branch points and the map is determine by those pints:

If p and 8 cone together, we still get a stable map:

So set of stable maps which double cover a given live $L C \mathbb{P}^{2}$ i given by $S_{y m}{ }^{2} L=S_{y m}{ }^{2} \mathbb{P}^{1}=\mathbb{P}^{2}$.

So the map $\bar{m}_{0}\left(\mathbb{R}^{2}, 2[l]\right) \xrightarrow{\pi} \mathbb{P}^{5}$ is $1: 1$ away from the lows of double lives which is $\mathbb{P}^{2} \subset \mathbb{P}^{5}$ emunedhd by the

Veronese embedding and $\pi^{-1}(p)=\mathbb{P}^{2}$ for any $p \in \mathbb{P}^{2} \subset \mathbb{P}^{5}$
In fact, $\bar{m}_{0}\left(\mathbb{R}^{2}, z[L]\right)=\left.B\right|_{\mathbb{P}^{2}}\left(\mathbb{P}^{5}\right) \quad\left[\begin{array}{l}\text { with a } \mathbb{Z} / 2 \text { orbifill structure }] \\ \text { along the exeptimal divisor }\end{array}\right.$
Notice moduli spare is smooth here. It is also of the expected dimension.
Note that if $X=T_{0}+\left(\theta(-3) \rightarrow \mathbb{R}^{2}\right)$ "local $\mathbb{P}^{2 "}$. Then $\bar{M}_{0}(X, 2[L])=\bar{M}_{0}\left(\mathbb{R}^{2}, 2[L]\right)$ is smooth but not 8 the expected dimension.

What can happen in the moduli space $\overline{M_{1}}\left(\mathbb{R}^{2}, 3[6]\right)$?
Now we have games 1 curves, glacially

Can degnenate to a madal curre (still on embulling)

C
ration curre of arithmatic ganue 1

When inge is a cospilel cubic, mag can no lagar be an embelig.

$f: C \longrightarrow \mathbb{P}^{2}$
$C=E \mathbb{P}^{\prime}$

Shis mop can deform in an interestion way:

mop does not suosth:
thre: ino infinitasimal defonation of $f \Rightarrow \bar{m}_{1}\left(\mathbb{P}^{2}, 3[1]\right)$ hes muliple with a smoth dommin irredecible con panuts.

So $\bar{m}_{1}\left(R^{2}, 3(1)\right)$ io alruels very complicated. The possibility of collapsing cuppouts mokes things compliated. eng.

Hone work problems involve seeing what an happen in the moduli spores

$$
\bar{m}_{2}\left(\mathbb{R}^{\prime},\left[\mathbb{R}^{\prime}\right]\right) ; \quad \bar{m}_{1}\left(\mathbb{R}^{\prime}, 2\left[\mathbb{R}^{\prime}\right]\right)
$$

Lecture 6
Expected dimension (also called virtual dimension)
A central formula in Gromov Witter thong is the following

$$
\operatorname{virdim}_{c}\left(\bar{m}_{g}(x, \beta)\right)=-k_{x} \cdot \beta+\left(\operatorname{dim}_{c} x-3\right)(1-g)
$$

We will sketch a deristrian of this and see haw to think abort the virtual / expected aspect of the frrmele, but first sane ereapfos:

$$
\begin{aligned}
\operatorname{vdim} \bar{m}_{g}\left(R^{2}, d[L]\right) & =(3[l]) \cdot(d[l])+(2-3)(1-g) \\
& =3 d+g-1
\end{aligned}
$$

degree d carves frons a liver system $\mathbb{P}\left(H^{0}\left(\mathbb{P}_{2}^{2}, \theta(\alpha)\right)\right)=\mathbb{P}^{\binom{d+2}{2}-1}=\mathbb{P}^{\frac{1}{2} \alpha(4+3)}$
a smooth, degree d plane curve has guns $\frac{1}{2}(d-1)(d-2)$ and indeed if $g=\frac{1}{2}(d-1)(d-2)$ then $3 l+\frac{1}{2}(d-1)(d-2)-1=\frac{1}{2} d^{2}-\frac{3}{2} d+1-1+3 d=\frac{1}{2} d^{2}+\frac{3}{2} d$.

The geometric games of a curve drops by 1 in colin 1,2 in usia 2 , etc.

$$
\begin{aligned}
v \operatorname{dim} \bar{m}_{g}\left(C_{n}, d\left[c_{n}\right]\right)=-k_{C_{n}} \cdot d\left[C_{n}\right]+(1-3)(1-g) & =d(2-2 n)+2 g-2 \\
\text { maps } f: C_{g} \xrightarrow{d: 1} C_{n} & =2 g-2-d(2 n-2)
\end{aligned}
$$

fixed cone of guns

The relationship between g, h, r is given by the Riemem-Hurvitz formula:

$$
\begin{aligned}
& d(2-2 h-r)=2-2 g-(d-1) r \\
& d(2-2 h)-d r=2-2 g-d r+r \\
& r=2 g-2-d(2 h-2)
\end{aligned}
$$

makes suse: only way to deform map is to move location of branched prints.
If $\operatorname{dim} X=3 \quad$ virdim $\bar{m}_{g}(x, \beta)=-K_{x} \beta \quad$ (genes indenes)
If X : a $C Y_{3}$ virdim $m_{g}(x, \beta)=0$ for all β and g.

Let's understand the dimension formula in the case where $f: c \rightarrow x$ is an embedding of a smooth curve. We cham the infinitesimal deformations of $f: c \rightarrow x$ are given by $H^{0}\left(c, f^{*} N_{c \mid x}\right)$ where $N_{d x}$ is the nonmoral bundle of C in $X .\left.\quad 0 \rightarrow T_{c} \rightarrow T_{x}\right|_{c} \rightarrow N_{c / x} \rightarrow 0$ defines $N_{d x}$. We get a long exeunt sememe in cohomology:

$$
\left.0 \rightarrow T_{c} \rightarrow \sigma_{x}\right|_{c} \rightarrow N \rightarrow 0
$$

might not split globally but locally we may choose a lift $N \rightarrow T_{x} l_{c}$ and deform. Local lifts will differ on overlaps by vector fields on C and this data (cech 1-cyde valued in vector fields gives rise to an infinitesimal deformation of C).

$$
v \operatorname{dim} \bar{m}_{g}(x, \beta)=\operatorname{dinH} H^{0}(c, N)-\operatorname{dim} H^{\prime}(c, N)
$$

active dimension actual dimension $=$ virtual dim when $H^{\prime}(C, N)=0$
by Riemann-Roch $\quad \operatorname{dom} \bar{m}_{g}(x, \beta)=X(c, N)$

$$
\begin{aligned}
& =\operatorname{dg} N+\operatorname{rkN}(1-g) \\
& =\operatorname{deg} N+\left(\operatorname{dim}_{x}-1\right)(1-g)
\end{aligned}
$$

and sine $\left.\quad 0 \rightarrow T_{c} \rightarrow T_{x}\right|_{c} \rightarrow N \rightarrow 0$

$$
\begin{aligned}
\operatorname{dg} N=\operatorname{deg}\left(\left.T_{x}\right|_{c}\right)-\operatorname{dy} T_{c} & =-\operatorname{dg}\left(\left.T_{x}^{*}\right|_{c}\right)-(2-2 g)=-K_{x} \cdot C-(2-2 g) \\
V \operatorname{dim} \bar{m}_{g}(x, \beta) & =-K_{x} \cdot \beta-2(1-g)+(\operatorname{dim} x-1)(1-g) \\
& =-K_{x} \cdot \beta+\left(\operatorname{dim}_{x}-3\right)(1-g) .
\end{aligned}
$$

