Homework 3a

Math 615
March 13, 2024

The geometry of $I_{n}\left(X, d\left[\mathbb{P}^{1}\right]\right)$ for small n and d.
Let $X=\operatorname{Total}\left(\mathcal{O}(-1) \oplus \mathcal{O}(-1) \rightarrow \mathbb{P}^{1}\right)$ be the resolved conifold and let $\mathbb{P}^{1} \subset X$ be the zero section.

1. Show that $I_{2}\left(X,\left[\mathbb{P}^{1}\right]\right) \cong \operatorname{Bl}_{\mathbb{P}^{1}}(X)$, the blowup of X along \mathbb{P}^{1}.
2. Show that $I_{3}\left(X, 2\left[\mathbb{P}^{1}\right]\right) \cong \mathbb{P}^{1}$.
3. Show that $I_{4}\left(X, 2\left[\mathbb{P}^{1}\right]\right)$ has a component birational to \mathbb{P}^{3} and a component birational to $X \times \mathbb{P}^{1}$.

An adequate solution to the above problems will consist of constructing a natural bijection between the points of the moduli space and the points of the given space. A better solution will be to construct an actual morphism between the spaces by constructing a flat family of subschemes over the given space (thus inducing a map to the moduli space).

Hints:

1. Remember that X has a dominant map to an affine variety $-i t$ is a resolution of singularities of the conifold singularity $\{x y=z w\} \subset \mathbb{C}^{4}$.
2. For problems 2 and 3, you will want to show that a pure subscheme (no embedded points) in the class $2\left[\mathbb{P}^{1}\right]$ is contained in a smooth surface $L \subset X$ where L is the total space of a subline bundle $L \subset \mathcal{O}(-1) \oplus \mathcal{O}(-1)$.
3. A pure dimension 1 subscheme of a smooth surface is given by a principle ideal (so it is determined by its divisor) and the holomorphic Euler characteristic can be determined by the adjunction formula on that surface.
