
Homework 2b

Math 615

February 22, 2024

Problem 1, Connected vs disconnected invariants

Let X be a Calabi-Yau threefold and letMg(X,β) be the moduli space of (connected)
stable maps of genus g and degree β, and letM•χ(X,β) be the moduli space of possibly
disconnected stable maps of degree β and where the domain curve C has χ(OC) = χ.
Let Ng,β and N•χ,β be the corresponding connected and disconnected Gromov-Witten
invariants. Let F and Z be the potential function and the partition function:

F =
∑
g,β

Ng,βλ
2g−2vβ

Z = exp (F ) .

Show that Z is the generating function for the disconnected invariants, namely:

Z =
∑
χ,β

N•χ,βλ
−2χvβ .

You may assume the following reasonable facts about the behaviour of the degree
of the virtual class under disjoint union, products, and quotients by a finite group.

1. If M =M1 tM2 then deg[M ]vir = deg[M1]
vir + deg[M2]

vir.

2. If M =M1 ×M2 then deg[M ]vir = deg[M1]
vir · deg[M2]

vir.

3. If M1 = M2/G where G is a finite group of order n, then deg[M1]
vir =

deg[M2]
vir/n.
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Problem 2, Unramified covers of the torus.

Let E be a smooth genus 1 projective curve. We wish to compute the Gromov-Witten
invariants N1,d[E](E). As we showed in class, all stable maps inM1(E, d[E]) consist
of unramified covers f : F → E by a connected genus 1 curve F .

Part 1. Prove that
N1,d[E](E) =

1

d
σ(d) =

1

d

∑
k|d

k

by showing that the number of (connected) covering spaces is given by σ(d) and that
each such space is a normal covering space with a group of deck transformations of
order d.

The disconnected Gromov-Witten invariant are given by

N•χ=0,d[E](E) = p(d)

where p(d) is the number of partitions of the integer d. This formula follows from the
formula for the connected invariants by using problem 1, or can be computed directly
by counting disconnected unramified covers.

A (possibily disconnected), degree d, unramified cover f : F → E is determined
by its monodromy: fixing a set isomorphism f−1(x0) ∼= {1, . . . , d}, we get a permu-
tation for every loop in E beginning and ending at x0 ∈ E by lifting paths to the cover.
In this way we get a homomorphism

π1(E, x0)→ Sd

which uniquely determines the cover, upto the choice of the isomorphism f−1(x0) ∼=
{1, . . . , d}.

Part 2. Show that

1

d!
· |Hom(π1(E, x0), Sd)| = p(d).

By the previous discussion, the left hand side counts the number of degree d unram-
ified covers of E. The factor 1

d! undoes the extraneous choice of the isomorphism
f−1(x0) ∼= {1, . . . , d} and correctly counts each cover by the reciprocal of the number
of its automorphism.
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Problem 3, Inverting the Gopakumar-Vafa formula.

Recall that the Gopakumar-Vafa formula gives the following relationship between {Ng,β(X)},
the Gromov-Witten invariants of a CY3 X , and {ng,β(X)}, the Gopakumar-Vafa in-
variants of X:∑

β 6=0

∑
g≥0

Ng,β(X)λ2g−2vβ =
∑
β 6=0

∑
g≥0

ng,β(X)
∑
k>0

1

k

(
2 sin

(
kλ

2

))2g−2

vkβ .

Suppose that β ∈ H2(X,Z) is a primitive curve class.

1. Write the GW invariant N1,4β(X) as a linear combination of the GV invariants
n0,β(X), n0,2β(X), n0,4β(X), n1,β(X), n1,2β(X), and n1,4β(X).

2. Write the GV invariant n1,4β(X) as a linear combination of the GW invariants
N0,β(X), N0,2β(X), N0,4β(X), N1,β(X), N1,2β(X), and N1,4β(X).
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