Homework 2

Math 615

WDVV for $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Let $S=\mathbb{P}^{1} \times \mathbb{P}^{1}$ and consider the basis for $H^{*}(S)$ given by

$$
T_{0}=1, \quad T_{1}=\left(\mathbb{P}^{1} \times\{p t\}\right)^{\vee}, \quad T_{2}=\left(\{p t\} \times \mathbb{P}^{1}\right)^{\vee}, \quad T_{3}=p t^{\vee}
$$

and let $t_{0}, t_{1}, t_{2}, t_{3}, q_{1}, q_{2}$ be the corresponding variables for the genus 0 GromovWitten potential. Let $N_{d_{1}, d_{2}}$ be the number of rational curves of bidegree (d_{1}, d_{2}) on S passing through the appropriate number of fixed points (you should compute that number). Let $\gamma=\sum_{i=0}^{3} t_{i} T_{i}$ and recall that the genus zero Gromov-Witten potential is defined by

$$
F=\sum_{\beta}\langle\exp (\gamma)\rangle_{0, \beta} q^{\beta} .
$$

1. Explicitly write out the potential function F in terms of the $N_{d_{1}, d_{2}}$'s.
2. Use the WDVV equation $F_{\alpha \beta \epsilon} 9^{\epsilon \epsilon^{\prime}} F_{\epsilon^{\prime} \gamma \delta}=F_{\alpha \gamma \epsilon} \epsilon^{\epsilon \epsilon^{\prime}} F_{\epsilon^{\prime} \beta \delta}$ with $(\alpha \beta \gamma \delta)=(1233)$ to derive a recursive formula for $N_{d_{1}, d_{2}}$.
3. How many rational curves of bidegree $(2,2)$ pass through 7 generic points? For what degree d does $N_{2,2}$ equal N_{d}, the number of rational plane curves of degree d passing through $3 d-1$ points? Can you give a geometric explanation for this equality?
