Homework 1

Math 615
February 22, 2024

Problem 1, simple manifolds with trivial canonical class.

Let M be a projective manifold and let $E \rightarrow M$ be a (holomorphic) vector bundle.

1. Suppose that $\Lambda^{r k E} E \cong K_{M}$. Prove that $X=\operatorname{Tot}(E)$, the total space of the vector bundle, is Calabi-Yau (in the sense that $K_{X} \cong \mathcal{O}_{X}$).
2. Suppose that $s: M \rightarrow E$ is a section which is transverse to the zero section so that $X=s^{-1}(0) \subset M$ is a submanifold. Find a condition on E so that X is Calabi-Yau (in the sense that $K_{X} \cong \mathcal{O}_{X}$).

Problem 2, the geometry of $\overline{\mathcal{M}}_{2}\left(\mathbb{P}^{1},\left[\mathbb{P}^{1}\right]\right)$.
Show that the moduli space $\overline{\mathcal{M}}_{2}\left(\mathbb{P}^{1},\left[\mathbb{P}^{1}\right]\right)$ has two components of dimension 4 and 5 respectively which meet each other in a space of dimension 3. Descibe each component and their intersection explicitly.

Problem 3, the geometry of $\overline{\mathcal{M}}_{1}\left(\mathbb{P}^{1}, 2\left[\mathbb{P}^{1}\right]\right)$.
The moduli space $\overline{\mathcal{M}}_{1}\left(\mathbb{P}^{1}, 2\left[\mathbb{P}^{1}\right]\right)$ has a stratification by the topological type of the domain curves of the stable maps. Describe all possible topological types of stable maps: make a table where each row in the table corresponds to a stratum with a fixed topological type and the columns of the table give

1. the dual graph of the map with vertex v_{i} labelled by $\left(g_{i}, d_{i}\right)$, the genus and degree of the component corresponding to v_{i},
2. the dimension of the stratum, and
3. a picture of the corresponding map.
