(1) Consider the surface described by the equation
\[e^{3-x^2-y^2-z^2} + 1 = 2xyz \]

(a) Find a function \(F(x, y, z) \) such that \((a, b, c)\) is on the surface if and only if we have \(F(a, b, c) = 0 \). Compute the gradient of \(F \).

(b) Give the equation for the tangent plane to the surface at the point \(p = (1, 1, 1) \).

Solution.

(a) \(F(x, y, z) = e^{3-x^2-y^2-z^2} + 1 - 2xyz \),
\[\nabla F(x, y, z) = \langle -2xe^{3-x^2-y^2-z^2} - 2yz, -2ye^{3-x^2-y^2-z^2} - 2xz, -2ze^{3-x^2-y^2-z^2} - 2xy \rangle \]

(b) \(\nabla F(1, 1, 1) = \langle -4, -4, -4 \rangle \) hence the tangent plane to the surface at point \(p = (1, 1, 1) \) is
\[-4(x - 1) - 4(y - 1) - 4(z - 1) = 0 \text{ or } x + y + z = 3 \]

(2) The temperature in space is given by the function
\[T(x, y, z) = x^2e^y - xy^2 + z \sqrt{x} \]

(a) What is the rate of change of temperature at point \(P = (1, 1, 1) \) in the direction of the vector \(\vec{u} = (2, 1, 1) \).

(b) You are feeling a little cold when standing at point \(P \). In which direction should you be going in order to increase the temperature in the fastest possible way?

(c) Suppose you are warm enough at point \(P \), and you want to walk keeping the temperature constant. In which direction should you be going?

Solution. \(\nabla T(x, y, z) = \langle 2xe^y - y^2 + \frac{z}{2 \sqrt{x}}, x^2e^y - 2xy, \sqrt{x} \rangle \).

(a) We're looking for \(D_\vec{u}T(P) \) where \(\vec{u} = \frac{1}{\sqrt{6}} \vec{v} \) is a direction vector in the direction of \(\vec{v} \), hence
\[D_\vec{u}T(P) = \nabla TP \cdot \vec{u} = \left\langle 2e - \frac{1}{2}, e - 2, 1 \right\rangle \cdot \frac{1}{\sqrt{6}} (2, 1, 1) = \frac{5e - 2}{\sqrt{6}} \]

(b) You need to walk in the direction of the gradient, that is in the direction of the vector \(\vec{u} = \frac{1}{\|\vec{v}\|} \vec{v} \), where
\[\vec{v} = \left\langle 2e - \frac{1}{2}, e - 2, 1 \right\rangle \]

(c) You can walk in the direction of any vector contained in the tangent plane to the level surface of \(T(x, y, z) = T(P) \) at point \(P \). Recall that vectors in the tangent plane are perpendicular to \(\nabla T(P) \). Suppose \(Q = (x, y, z) \) is on the tangent plane hence we would like \(\overrightarrow{PQ} \cdot \nabla T(P) = 0 \) or
\[(x - 1, y - 1, z - 1) \cdot (2e - 1/2, e - 2, 1) = 0 \]
We get
\[(x - 1) (2e - \frac{1}{2}) + (y - 1) (e - 2) + z - 1 = 0\]
For convenience we can pick, for instance, \(x = 0, y = 3\) and this gives \(z = \frac{9}{2}\).
Now we need to go in the direction of \(\vec{u} = \frac{\vec{v}}{\|\vec{v}\|}\), where
\[\vec{v} = \langle -1, 2, \frac{7}{2} \rangle.\]

Remark. There are many other possible directions.

(3) Find and classify all critical points of \(f(x, y) = x^3 + 2y^3 - 3x^2 - 24y + 6\).

Solution. A critical point is for which \(\nabla f(x, y) = 0\)

\[
\begin{align*}
 f_x(x, y) &= 3x^2 - 6x = 0 \\
 f_y(x, y) &= 6y^2 - 24 = 0
\end{align*}
\]

\[
\Rightarrow \begin{cases}
3x(x - 2) = 0 \\
y^2 = 4
\end{cases} \Rightarrow x = 0, 2 \text{ and } y = \pm 2
\]

we get 4 different points \(p_1 = (0, 2), p_2 = (0, -2), p_3 = (2, 2), p_4 = (2, -2)\). The discriminant is given by

\[D(x, y) = (6x - 6) \cdot 12y\]

then

<table>
<thead>
<tr>
<th>point</th>
<th>(D(p))</th>
<th>(f_{xx}(p))</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_1)</td>
<td>negative</td>
<td>negative</td>
<td>saddle</td>
</tr>
<tr>
<td>(p_2)</td>
<td>positive</td>
<td>negative</td>
<td>maximum</td>
</tr>
<tr>
<td>(p_3)</td>
<td>negative</td>
<td>negative</td>
<td>saddle</td>
</tr>
<tr>
<td>(p_4)</td>
<td>negative</td>
<td>negative</td>
<td>saddle</td>
</tr>
</tbody>
</table>