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Abstract. A finite set of integers A tiles the integers by translations if Z can be covered by
pairwise disjoint translated copies of A. Restricting attention to one tiling period, we have
A ⊕ B = ZM for some M ∈ N and B ⊂ Z. This can also be stated in terms of cyclotomic
divisibility of the mask polynomials A(X) and B(X) associated with A and B.

In this article, we introduce a new approach to a systematic study of such tilings. Our
main new tools are the box product, multiscale cuboids, and saturating sets, developed
through a combination of harmonic-analytic and combinatorial methods. We provide new
criteria for tiling and cyclotomic divisibility in terms of these concepts. As an application, we
can determine whether a set A containing certain configurations can tile a cyclic group ZM ,
or recover a tiling set based on partial information about it. We also develop tiling reductions
where a given tiling can be replaced by one or more tilings with a simpler structure. The
tools introduced here are crucial in our proof in [24] that all tilings of period (pqr)2, where
p, q, r are distinct odd primes, satisfy a tiling condition proposed by Coven and Meyerowitz
[2].
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1. Introduction

A set A ⊂ Z tiles the integers by translations if Z can be covered by pairwise disjoint
translates of A. Equivalently, there exists a set T ⊂ Z (the set of translations) such that
every integer n ∈ Z can be represented uniquely as n = a + t with a ∈ A and t ∈ T .
Throughout this article, we assume that A is finite and nonempty, and call it a finite tile
if it tiles the integers. Newman [34] proved that any tiling of Z by a finite set A must be
periodic, i.e. T = B ⊕MZ for some finite set B ⊂ Z such that |A| |B| = M . Equivalently,
A⊕B is a factorization of the cyclic group ZM , with B as the tiling complement.

We are interested in investigating the properties of finite tiles. While this is a natural and
attractive question, surprisingly little has been known on this subject.

Newman’s proof provides a bound on the tiling period, M ≤ 2max(A)−min(A). Thus, given a
finite set A ⊂ Z, the question of whether A is a tile is at least in principle computationally
decidable. However, Newman’s bound is exponential in diameter, and can therefore be very
large even if A has only a few elements. A more effective bound was proved recently by
Greenfeld and Tao [13].
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Further important reductions and observations were made by Sands [37], Tijdeman [47],
and Coven and Meyerowitz [2]. Sands’s theorem on replacement of factors [37] states that
if A ⊕ B = ZM and M has at most two distinct prime divisors, then at least one of A
and B must be contained in a proper subgroup of ZM . The proof of this is based on a
characterization of tiling pairs, also due to Sands, which we state here as Theorem 2.5.
Tijdeman [47] proved that if a finite set A tiles the integers, and if r ∈ N is relatively prime
to |A|, then rA := {ra : a ∈ A} also tiles Z with the same tiling complement. Coven and
Meyerowitz [2, Lemma 2.3] used this to prove that if a finite set A tiles the integers, then it
also tiles ZM for some M which has the same prime factors as |A|.

For the last two decades, the state-of-the-art work on the subject was due to Coven and
Meyerowitz [2]. In order to describe their main result, we need to introduce some notation,
which we will also use throughout this article. By translational invariance, we may assume
that A,B ⊂ {0, 1, . . . } and that 0 ∈ A ∩ B. The characteristic polynomials (also known as
mask polynomials) of A and B are

A(X) =
∑
a∈A

Xa, B(X) =
∑
b∈B

Xb.

Then A⊕B = ZM is equivalent to

(1.1) A(X)B(X) = 1 +X + · · ·+XM−1 mod (XM − 1).

Let Φs(X) be the s-th cyclotomic polynomial, i.e., the unique monic, irreducible poly-
nomial whose roots are the primitive s-th roots of unity. Alternatively, Φs can be defined
inductively via the identity

(1.2) Xn − 1 =
∏
s|n

Φs(X).

In particular, (1.1) is equivalent to

(1.3) |A||B| = M and Φs(X) |A(X)B(X) for all s|M, s ̸= 1.

Since Φs are irreducible, each Φs(X) with s|M must divide at least one of A(X) and B(X).

Coven and Meyerowitz [2] proved the following theorem.

Theorem 1.1. [2] Let SA be the set of prime powers pα such that Φpα(X) divides A(X).
Consider the following conditions.

(T1) A(1) =
∏

s∈SA
Φs(1),

(T2) if s1, . . . , sk ∈ SA are powers of different primes, then Φs1...sk(X) divides A(X).

Then:

• if A satisfies (T1), (T2), then A tiles Z;
• if A tiles Z then (T1) holds;
• if A tiles Z and |A| has at most two distinct prime factors, then (T2) holds.

The condition (T1) is, essentially, a counting condition, and is relatively easy to prove.
For sets A ⊂ Z such that |A| is a prime power, (T1) is a necessary and sufficient condition
for A to be a tile [34]. (In this case, (T2) is vacuous.)
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The second condition (T2) is much deeper. Coven and Meyerowitz [2] proved that if (T2)
holds, then A⊕B♭ = ZM is a tiling, where M = lcm(SA) and B♭ is an explicitly constructed
and highly structured “standard” tiling complement depending only on the prime power
cyclotomic divisors of A(X). We prove in Section 3 that having a tiling complement of this
type is in fact equivalent to (T2). While this equivalence was not stated explicitly in [2], it
follows readily from the methods developed there.

The Coven-Meyerowitz proof of (T2) for all finite tiles with 2 distinct prime factors relies
on the aforementioned structure and replacement theorems of Sands [37] and Tijdeman [47].
In [2, Lemma 2.3], the authors deduce from Tijdeman’s theorem that if A tiles the integers
and |A| has at most two distinct prime factors, then A admits a tiling A⊕ B = ZM , where
M has at most two distinct prime factors. By Sands’s theorem, one of A and B must then
be contained in a proper subgroup of ZM . Coven and Meyerowitz use this to set up an
inductive argument.

A closer analysis of the Coven-Meyerowitz argument yields the same result in the case
when M = pn1

1 . . . pnK
K , where p1, . . . , pK are distinct primes, n1, . . . , nK ∈ N are arbitrary,

and at most two of p1, . . . , pK divide both |A| and |B|. Essentially, any such case can be
reduced to the two-prime case via Tijdeman’s theorem and Lemma 2.3 of [2], whereupon
Theorem 1.1 may be applied. We provide the details in Corollary 6.2. (See also [46], [4],
[39].)

The goal of the present article is to develop methods that can be used in the study of tilings
A ⊕ B = ZM , where M is permitted to have three or more prime factors dividing both |A|
and |B|. Sands’s factorization theorem does not hold in this case, with counterexamples in
[43], [25]. For the same reason, the Coven-Meyerowitz proof does not extend to such tilings.
We emphasize that this is not just a technical issue. Tilings with three or more distinct prime
factors dividing both |A| and |B| are genuinely different, and any comprehensive analysis
of them must account for new phenomena that have no counterparts for two prime factors,
such as Szabó’s examples [43].

The simplest tilings that cannot be reduced to the 2-prime case using the methods of [2]
are of the form A ⊕ B = ZM , where |A| = |B| = p1p2p3 and p1, p2, p3 are distinct primes.
In the follow-up paper [24], we use the methods developed here to resolve this case when
p1, p2, p3 are odd.

Theorem 1.2. [24] Let M = p2i p
2
jp

2
k, where pi, pj, pk are distinct odd primes. Assume that

A⊕B = ZM , with |A| = |B| = pipjpk. Then both A and B satisfy (T2).

While our complete proof of Theorem 1.2 works only under the assumptions indicated,
many of our tools, methods, and intermediate results apply to general tilings A⊕ B = ZM ,
raising the possibility of further extensions and improvements. We therefore chose to present
them here in more generality, deferring the actual proof of Theorem 1.2 to the paper [24],
which is restricted to the 3-prime setting.

We begin with the notation and preliminaries in Section 2. We identify ZM = Zp
n1
1 ...p

nK
K

with Zp
n1
1
⊕· · ·⊕Zp

nK
K

, and use the induced coordinate system to identify the given tiling with

a tiling of a multidimensional lattice. This allows a geometric viewpoint whereby we can
describe the tiling in terms of objects such as lines, planes, or fibers (arithmetic progressions
of maximal length on certain scales). We emphasize, however, that the problem under
consideration is much more specific that the study of tilings of multidimensional lattices in
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general. It is important in our work that the different coordinate directions correspond to
distinct primes.

In Section 3, we present an alternative formulation of (T2) in terms of standard tiling
complements. Roughly speaking, if A⊕B = ZM is a tiling, then B satisfies (T2) if and only
if its tiling complement A can be replaced by a highly structured “standard set” A♭ with
the same prime power cyclotomic divisors as A. Such standard sets were already used in
[2] to prove that (T1) and (T2) imply tiling. Here, we state the formal implication in the
other direction. In this formulation, the condition (T2) can be viewed as a distant cousin of
questions on replacement of factors in factorization of finite abelian groups (see [44] for an
overview).

In Section 4, we introduce one of our main tools, the box product. The idea comes from
the unpublished paper [11], and our main harmonic-analytic identity, Theorem 4.6, is in fact
a reprise of [11, Theorem 1] with relatively minor modifications. We are, however, able to
use it much more effectively. (We caution the reader that, while Theorem 1 in [11] is correct,
the proof of the main tiling result in [11] contains an error that cannot be readily fixed with
the methods of that paper.)

Our goal is to be able to start with an arbitrary tiling A ⊕ B = ZM , and prove that
either at least one of the sets A or B can be replaced directly by the corresponding standard
tiling complement (which proves (T2) as indicated above), or else we can pass to tilings
with a smaller period N |M and apply an inductive argument. The machinery to do this is
developed in Sections 5–8, and includes the following main ingredients.

Cuboids (Section 5) and fibering (Section 8) are our main tools in determining cyclotomic
divisibility and proving structural properties. Cuboids have been used previously in the
literature in the context of vanishing sums of roots of unity [42] and Fuglede’s spectral set
conjecture [16]. We often have to use both cuboids and fibering at several scales at the
same time. In particular, we introduce “multiscale” cuboids that correspond to divisibility
by combinations of several cyclotomic polynomials.

In Section 6, we discuss two reductions that allow us to pass to tilings with a smaller
period, with the (T2) property preserved under the decomposition. We first review the
subgroup reduction from [2]. Next, we introduce a “slab reduction”, which we believe to be
new, and which covers many cases of interest that are not covered by the subgroup reduction.
We also develop a criterion for this reduction to apply. A concrete example of this is provided
in Corollary 6.7.

While the subgroup reduction is sufficient to prove Theorem 1.1, tilings with 3 or more
distinct prime factors include cases where such inductive arguments do not appear to be
easily applicable. One well-known obstruction to an inductive approach is provided by
Szabó-type examples [43]. However, Szabó’s examples are known to satisfy (T2). This was
observed already by Coven and Meyerowitz [2]; see also [4] for an explicit analysis of a class
of examples based on Szabó’s idea.

We do not know whether Szabó-type constructions are the only obstacle to an inductive
proof of (T2) for all finite tiles. In [24], we prove that this is indeed true for classes of
tilings that are broad enough to include all tilings of ZM with M = (p1p2p3)

2. The key new
concept turns out to be saturating sets – subsets of A and B that saturate appropriately
chosen box products (Section 7). Informally, if a tile A contains geometric configurations
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that indicate lack of structure on a certain scale, we are able to use it to our advantage
and locate highly structured configurations elsewhere in both A and B. In particular, the
less structure we have in one of the tiles, the more structured the other one is expected to
be. In the M = (p1p2p3)

2 case, we use this to prove that all tilings with “unfibered grids”
(see [24] for the definition) must in fact come from Szabó-type constructions. With this
established, we can prove (T2) for such tilings by reduction to standard tiling complements.
The full argument is carried out in [24], but we also provide examples of this procedure here
in Section 8.5.

In addition to applications to proving structural conditions such as (T2), we are also able
to use saturating sets to identify sets A ⊂ ZM that do not tile ZM based on the presence of
certain configurations. Results of this type include Lemma 7.9 and Proposition 7.10.

In Section 9, we discuss open questions and possible directions of study arising from our
research so far.

Since the work of Coven and Meyerowitz, there has been essentially no progress on proving
(T2), except for a few special cases of limited importance (such as [22]) and cases covered by
Corollary 6.2 ([46], [4], [39]). However, there have been significant recent developments on
other questions related to tiling and cyclotomic divisibility. Notably, Bhattacharya [1] has
established the periodic tiling conjecture in Z2, with a quantitative version due to Greenfeld
and Tao [13]. In a continuous setting, there has been recent work on tilings of the real line
by a function [19].

There is an important connection between the Coven-Meyerowitz tiling conditions and
Fuglede’s spectral set conjecture [10]. The conjecture, dating back to the 1970s, states that
a set Ω ⊂ Rn of positive n-dimensional Lebesgue measure tiles Rn by translations if and
only if the space L2(Ω) admits an orthogonal basis of exponential functions. A set with the
latter property is called a spectral set. While the question originated in functional analysis,
it has intriguing connections to many other areas of mathematics, from convex geometry to
wavelets, oscillatory integral estimates, and number theory. The conjecture is now known to
be false in dimensions 3 and higher [45], [20], [21], [8], [33], [9]. Nonetheless, many important
cases remain open and continue to attract attention. Iosevich, Katz and Tao [14] proved
in 2003 that Fuglede’s conjecture holds for convex sets in R2; an analogous result in higher
dimensions was proved only recently, by Greenfeld and Lev [12] for n = 3, and by Lev and
Matolcsi [29] for general n. There has also been extensive work on the finite abelian group
analogue of the conjecture [15], [31], [7], [16], [17], [18], [30], [39], [40], [41], [6], [48].

Combined with a sequence of results in [26], [27], [23], proving (T2) for all finite integer
tiles would resolve the “tiling implies spectrum” part of Fuglede’s spectral set conjecture for
all compact tiles of the real line in dimension 1. Additionally, Dutkay and Lai [5] proved
that if a similar property could be established for spectral sets, then this would also resolve
the converse part of the conjecture for compact sets in R. While proving (T2) for a more
narrow class of integer tiles does not have that implication, it still establishes one direction
of Fuglede’s conjecture for that class of tiles in the finite group setting, as well as for sets
E =

⋃
a∈A[a, a+ 1] ⊂ R, where A ⊂ Z is an integer tile in the permitted class [23].
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2. Notation and preliminaries

2.1. Multisets and mask polynomials. Let M ≥ 2 be a fixed integer. Usually, we will
work in either ZM or in ZN for some N |M . In the context of the tiling problem, we reserve
M for the tiling period and N for its divisors. We also reserve K for the number of the
distinct prime divisors of M , and use p1, . . . , pK to denote those divisors, so that

M =
K∏
i=1

pni
i ,

where p1, . . . , pK are distinct primes and n1, . . . , nK ∈ N. We fix this notation and use it
throughout the rest of the article. For a prime p, an integer m, and a nonnegative integer
α, we will say that pα ∥ m if pα|m but pα+1 ∤ m.

We use A(X), B(X), etc. to denote polynomials modulo XM −1 with integer coefficients.
If A(X) is such a polynomial, we define its weight function wA : ZM → Z so that wA(a) is the
coefficient of Xa in A(X). Thus A(X) =

∑
a∈ZM

wA(a)X
a. If A has 0-1 coefficients, then wA

is the characteristic function of a set A ⊂ ZM . However, we will also consider polynomials
with integer coefficients not necessarily equal to 0 or 1. In that case, A(X) will correspond to
a weighted multiset in ZM , which we will also denote by A, with weights wA(a) assigned to
each a ∈ ZM . We will use M(ZM) to denote the family of all such weighted multisets in ZM ,
and reserve the notation A ⊂ ZM for sets (with 0-1 weights). If A ∈ M(ZM), the polynomial
A(X) is sometimes called the mask polynomial of A. It will usually be clear from the context
whether A refers to the weighted multiset or the corresponding polynomial; whenever there
is any possibility of confusion, we will use A for the multiset and A(X) for the polynomial.

If N |M , then any A ∈ M(ZM) induces a weighted multiset A mod N in ZN , with the
corresponding mask polynomial A(X) mod (XN − 1), and induced weights

(2.1) wN
A (x) =

∑
x′∈ZM :x′≡xmodN

wA(x
′), x ∈ ZN .

For brevity, we will continue to write A and A(X) for A mod N and A(X) mod (XN − 1),
respectively, while working in ZN .

If A,B ∈ M(ZM), we will use A + B to indicate the weighted multiset corresponding to
the sum of mask polynomials, or, equivalently, the sum of weight functions:

wA+B(x) = wA(x) + wB(x), (A+B)(X) = A(X) +B(X).

We will use the convolution notation A ∗ B to denote the weighted sumset of A and B, so
that (A ∗B)(X) = A(X)B(X) and

wA∗B(x) = (wA ∗ wB)(x) =
∑
y∈ZM

wA(x− y)wB(y).

If one of the sets is a singleton, say A = {x}, we will simplify the notation and write
x ∗ B = {x} ∗ B. The direct sum notation A ⊕ B is reserved for tilings, i.e., A ⊕ B = ZM

means that A,B ⊂ ZM are both sets and A(X)B(X) = XM−1
X−1

mod (XM − 1).

Since we will not need to use derivatives of polynomials in this article, we will use notation
such as A′, A′′, etc., to denote multisets and polynomials that need not have anything to do
with the derivatives d

dX
A(X), d2

dX2A(X), and so on.



8 IZABELLA  LABA AND ITAY LONDNER

2.2. Array coordinates. Suppose that M =
∏K

i=1 p
ni
i , where p1, . . . , pK are distinct primes

and ni ∈ N. By the Chinese Remainder Theorem, we have

ZM =
K⊕
i=1

Zp
ni
i
,

which we represent geometrically as a K-dimensional lattice. The tiling A ⊕ B = ZM can
then be interpreted as a tiling of that lattice.

It will be useful to have an explicit coordinate system on ZM . We fix one as follows. Let
Mi = M/pni

i =
∏

j ̸=i p
nj

j , then each x ∈ ZM can be written uniquely as

x =
K∑
i=1

πi(x)Mi, πi(x) ∈ Zp
ni
i
.

The mapping x → (π1(x), . . . , πk(x)) identifies x with an element of Zp
n1
1

× · · · × Zp
nK
K

. We

will refer to the K-tuple (π1(x), . . . , πK(x)) as the M-array coordinates of x.

We state a few easy properties for future reference.

Lemma 2.1. (i) x ≡ πi(x)Mi mod pni
i ,

(ii) (x,M) =
∏K

i=1 p
γi
i if and only if pγii ∥ πi(x) for each i = 1, . . . , K,

(iii) in particular, x = 0 in ZM if and only if πi(x) = 0 for each i = 1, . . . , K,

(iv) if x =
∑

πi(x)Mi, y =
∑

πi(y)Mi, and x + y = z =
∑

πi(z)Mi are the respective
coordinate representations, then πi(z) ≡ πi(x) + πi(y) mod pni

i for each i = 1, . . . , k.

Each coordinate πi(x) of x ∈ ZM can be subdivided further into digits as follows. With
Zp

ni
i

represented as {0, 1, . . . , pni
i − 1} with addition and multiplication modulo pni

i , we can

write uniquely

πi(x) =

ni−1∑
j=0

πi,j(x)p
j
i , πi,j(x) ∈ {0, 1, . . . , pi − 1}.

Observe that (x− x′,M) =
∏K

j=1 p
γi
i if and only if for each i = 1, . . . , K,

(2.2) γi =

{
min{j : πi,j(x) ̸= πi,j(x

′)} if πi(x) ̸= πi(x
′)

ni if πi(x) = πi(x
′).

2.3. Grids, planes, lines, fibers.

Definition 2.2. Let D|M . A D-grid in ZM is a set of the form

Λ(x,D) := x+DZM = {x′ ∈ ZM : D|(x− x′)}
for some x ∈ ZM .

An important case of interest is as follows. LetN |M . IfN = pα1
1 . . . pαK

K , with α1, . . . , αK ≥
0, we let

D(N) := pγ11 . . . pγKK ,

where γi = max(0, αi − 1) for i = 1, . . . , K. Then a D(N)-grid is a “top-level” grid on the
scale N , and a natural setting to work on that scale.
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While a grid Λ is always an arithmetic progression in ZM , it is often helpful to represent ZM

by a K-dimensional coordinate array as in Section 2.2 and, accordingly, assign a geometric
interpretation to Λ. We point out several useful special cases below.

A line through x ∈ ZM in the pi direction is the set

ℓi(x) := Λ(x,Mi),

and a (K − 1)-dimensional plane through x ∈ ZM perpendicular to the pi direction is a set
of the form

(2.3) Π(x, pαi
i ) := Λ(x, pαi

i ).

Note that (2.3) defines a plane on the scale Mip
αi
i , which may be different from M .

An M-fiber in the pi direction is a set of the form x ∗ Fi, where x ∈ ZM and

(2.4) Fi = {0,M/pi, 2M/pi, . . . , (pi − 1)M/pi}.
Thus x∗Fi = Λ(x,M/pi). (More complicated multiscale fiber chains will be defined later.) A
set A ⊂ ZM is M-fibered in the pi direction if there is a subset A′ ⊂ A such that A = A′ ∗Fi.

2.4. Cyclotomic polynomials and cyclotomic divisibility. We state a few basic facts
about cyclotomic polynomials for future reference. By (1.2), we have

(2.5) 1 +X +X2 + · · ·+Xn−1 =
∏

s|n,s̸=1

Φs(X).

In particular, if p is a prime number, then Φp(X) = 1+X+ · · ·+Xp−1, and, more generally,
by induction

Φpα(X) = Φp(X
pα−1

) = 1 +Xpα−1

+X2pα−1

+ · · ·+X(p−1)pα−1

, α ≥ 1.

Thus Φpα(1) = p, and this together with (2.5) implies that Φs(1) = 1 for all s that are not
prime powers.

Suppose that A⊕B = ZM , with M =
∏K

i=1 p
ni
i as before. By (1.1), we have A(X)B(X) =

1 + X + · · · + XM−1 mod (XM − 1). For every prime power s = pα|M , we must have
Φs(X)|A(X)B(X), so that

M =
K∏
i=1

ni∏
αi=1

Φp
αi
i
(1)
∣∣∣A(1)B(1) = |A| |B| = M.

It follows that
|A| =

∏
s∈SA

Φs(1)

and similarly for B, with SA, SB defined as in Theorem 1.1; this is the proof of the tiling
condition (T1) given in [2]. Moreover, for any prime power s = pαi |M , we have that Φs(X)
divides exactly one of A(X) and B(X). (This is not true for s|M with two or more distinct
prime factors. For such s, the corresponding cyclotomic polynomial Φs(X) may divide either
one or both of A(X) and B(X).)

Divisibility by prime power cyclotomics has the following combinatorial interpretation.
For A ⊂ ZM , the condition Φpi |A means that the elements of A are uniformly distributed
modulo pi, so that

|A ∩ Π(x, pi)| = |A|/pi ∀x ∈ ZM .
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More generally, for 1 ≤ α ≤ ni, we have Φpαi
(X)|A(X) if and only if

(2.6) |A ∩ Π(x, pαi )| =
1

pi
|A ∩ Π(x, pα−1

i )| ∀x ∈ ZM ,

so that the elements of A are uniformly distributed mod pαi within each residue class mod
pα−1
i . In particular, this implies the following bound on the number of points of a tile in a
plane on a scale Mip

ni−αi
i , or, equivalently, in an arithmetic progression of step pni−αi

i .

Lemma 2.3 (Plane bound). Let A⊕B = ZM , where M =
∏

j p
nj

j and |A| =
∏

j p
βj

j . Then
for every x ∈ ZM and 0 ≤ αi ≤ ni we have

(2.7) |A ∩ Π(x, pni−αi
i )| ≤ pαi

i

∏
ν ̸=i

pβν
ν .

The bound in Lemma 2.3 is, in general, sharp. For example, if A ⊂ pni−1
i ZM and Φp

ni
i
|A,

then |A ∩ Π(x, pni
i )| = |A|/pi, so that (2.7) holds with equality for αi = 0. Examples of

sets A ⊂ ZM with the above properties are easy to construct using the standard tiling sets
defined in Section 3.

We also note the following. Let N |M . Then the condition

Φs|A ∀s|N, s ̸= 1,

means that 1 +X + · · · +XN−1 divides A(X), or, equivalently, that the elements of A are
uniformly distributed mod N . For example, let N = p1p2 . . . pK . Suppose that |A| = N and
that Φpi |A for all i = 1, . . . , K. Then A satisfies (T2) if and only if Φs|A for all s|N with
s ̸= 1, or, equivalently, if and only if each residue class mod N contains exactly one element
of A.

2.5. Divisor set and divisor exclusion.

Definition 2.4 (Divisor set). For a set A ⊂ ZM , define

(2.8) Div(A) = DivM(A) := {(a− a′,M) : a, a′ ∈ A}.

Informally, we will refer to the elements of Div(A) as the divisors of A or differences in A.
We also define

DivN(A) := {(a− a′, N) : a, a′ ∈ A}
for A ⊂ ZM and N |M .

Divisor sets will be a key concept in our analysis, thanks to the following theorem due to
Sands [37].

Theorem 2.5. (Divisor exclusion; Sands [37]) If A,B ⊂ ZM are sets, then A⊕B = ZM

if and only if |A| |B| = M and

(2.9) Div(A) ∩Div(B) = {M}.

An alternative proof of Sands’s Theorem, based on Theorem 4.6 due to [11], is included
in Remark 4.2.
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3. A reformulation of T2

3.1. Standard tiling complements. We continue to assume that M =
∏K

i=1 p
ni
i , where

p1, . . . , pK are distinct primes and ni > 0. We equip ZM with the array coordinate system
from Section 2.2 and use the notation of that section. Recall also that the divisor set Div(A)
for a set A ⊂ ZM was defined in (2.8).

Definition 3.1. Let A,B be sets in ZM such that A⊕B = ZM . Let

Ai(A) =
{
αi ∈ {1, 2, . . . , ni} : Φp

αi
i
(X)|A(X)

}
The standard tiling set A♭ is defined via its mask polynomial

A♭(X) =
K∏
i=1

∏
αi∈Ai(A)

Φpi

(
XMip

αi−1
i

)
.

=
K∏
i=1

∏
αi∈Ai(A)

(
1 +XMip

αi−1
i + · · ·+X(pi−1)Mip

αi−1
i

)
.

(3.1)

︷︸︸︷
M/p2j

{

{

{

A[

B[

M/p2i

A[ ∩B[

M/pj

M/pi

Figure 1. The standard sets A♭, B♭ ⊂ Zp2i p
2
j
with pi = 3, pj = 5

and Φp2i
Φp2j

|A,ΦpiΦpj |B

Lemma 3.2. Define A♭ as above. Then A♭(X) satisfies (T2) and has the same prime power
cyclotomic divisors as A(X).

Proof. Let α ∈ {1, 2, . . . , ni}. Then Φpαi
(X)|A♭(X) if and only if it divides one of the factors

Φpi(X
Mip

αi−1
i ) with αi ∈ Ai(A). By Lemma 3.3 below, this happens if and only if α = αi.

Furthermore, in that case we also have Φdp
αi
i
(X)|A♭(X) for all d|Mi, so that in particular

(T2) holds for A♭. □

Lemma 3.3. Let

Ψ(X) = 1 +XNpα−1

+X2Npα−1

+ · · ·+X(p−1)Npα−1

= Φp

(
XNpα−1

)
,

where (N, p) = 1. Then Φs(X)|Ψ(X) if and only if s = dpα for some d|N .

Proof. We have Φs(X)|Ψ(X) if and only if Ψ(e2πi/s) = 0, i.e. (e2πi/s)Npα−1
is a root of

Φp. This happens if and only if (Npα−1)/s = k/p for some integer k such that (k, p) = 1.



12 IZABELLA  LABA AND ITAY LONDNER

Equivalently, Npα = ks with (k, p) = 1. This means that k|N and s = N
k
pα = dpα, where

d = N/k is a divisor of N . □

Observe that the standard set A♭, while not necessarily a grid, is highly structured. In
terms of array coordinates, we have

A♭ =

x ∈ ZM : πi(x) =
∑

αi∈Ai(A)

πi,αi−1(x)p
αi−1
i , πi,αi−1(x) ∈ {0, 1, . . . , pi − 1}


= {x ∈ ZM : πi,αi−1(x) = 0 for all i, αi such that αi /∈ Ai(A)} .

(3.2)

The standard divisor set for A is

(3.3) Div(A♭) =

{
K∏
i=1

pαi−1
i : αi ∈ Ai(A) ∪ {ni + 1}, i = 1, . . . , K

}
.

We will refer to the elements of Div(A♭) as standard divisors of A. The set B♭ is defined
similarly.

With these definitions, we have the following alternative formulations of (T2).

Proposition 3.4. Suppose that A⊕B = ZM . Then the following are equivalent:

(i) Div(A♭) ∩Div(B) = {M},
(ii) A♭ ⊕B = ZM ,

(iii) B satisfies (T2),

(iv) |B ∩ (x ∗ A♭)| = 1 for every x ∈ ZM .

Proof. The equivalence between (i) and (ii) is a special case of Theorem 2.5. The implication
(iii) ⇒ (ii) follows from the construction in the proof of Theorem A in [2]; the converse impli-
cation (ii) ⇒ (iii) was not pointed out there, but it also follows from the same construction.
Specifically, by Lemma 3.3, A♭(X) is divisible by every cyclotomic polynomial Φs such that
pαi ∥ s for some i ∈ {1, . . . , K} and α ≥ 1 such that Φpαi

|A. In other words, the only s such

that s|M but Φs does not divide A(X) are those with s =
∏k

i=1 p
βi

i , where for each i we have
either βi = 0 or Φ

p
βi
i
(X)|B(X). Let SB be the set of such s.

If B satisfies (T2), then all Φs with s ∈ SB divide B(X), which implies (ii). Conversely,
suppose that (ii) holds. Then each Φs with s|M has to divide A(X)B(X). By Lemma 3.3
again, if s ∈ SB, then Φs does not divide A(X), so it must divide B(X). Therefore (T2)
holds for B.

For part (iv), we shall prove that (ii) implies (iv) and (iv) implies (i). Suppose that (ii)
holds. We first claim that

(3.4) |B ∩ (x ∗ A♭)| ≤ 1 ∀x ∈ ZM .

Indeed, if b, b′ ∈ B ∩ (x ∗ A♭), then b = x + a and b′ = x + a′ for some a, a′ ∈ A♭, so that
b− a = b′ − a′, contradicting (ii) unless b = b′ and a = a′.

It remains to prove that (x0 ∗ A♭) ∩ B ̸= ∅ for each x0 ∈ ZM . Let x0 ∈ ZM . Since
Div(B) = Div(−B), we have A♭ ⊕ (−B) = ZM by Theorem 2.5. It follows that there must
exist a0 ∈ A♭ and −b0 ∈ (−B) such that a0 − b0 = −x0. The latter means a0 + x0 = b0,
implying (x0 ∗ A♭) ∩B ̸= ∅ as claimed. Hence (iv) follows.
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Finally, suppose that (i) fails. Then there exist b, b′ ∈ B and m ∈ Div(A♭) \ {M} such
that (b− b′,M) = m. But then b, b′ ∈ B ∩ (b ∗ A♭) with b ̸= b′, contradicting (iv). □

Remark 3.1. If A⊕B tiles ZM , where M = pn is a prime power, then (T2) holds vacuously
for both sets. Hence we have both A⊕B♭ = ZM and A♭ ⊕B = ZM .

It is tempting to try to prove that if A⊕B = ZM , then we should have Div(A♭) ⊆ Div(A).
By Proposition 3.4, this would imply that B satisfies (T2). However, the example below
shows that Div(A) does not in fact have to contain Div(A♭).

Example. Let M = p2q, where p, q are distinct primes with p > q, and let A be the set of
numbers whose array coordinates in ZM are (i+ jp, i), i = 0, 1, . . . , q− 1, j = 0, 1, . . . , p− 1.
Then A ⊕ B = ZM with B = {(j, 0) : j = 0, 1, . . . , p − 1}, and both sets satisfy T2. Since
Φp2 and Φq divide A(X), we have A♭ = {(jp, i) : i = 0, 1, . . . , q − 1, j = 0, 1, . . . , p − 1},
and in particular p ∈ Div(A♭). However, p /∈ Div(A). To see this, consider a, a′ ∈ A with
coordinates (i + jp, i) and (i′ + j′p, i′). If i ̸= i′, then (a− a′,M) = 1. If on the other hand
i = i′ but a ̸= a′, then (a− a′,M) = pq.

This shows that the condition Div(A♭) ⊆ Div(A) is not necessary for a tiling, nor is it
simply a consequence of A(X) having the requisite prime power cyclotomic divisors. Note,
however, that in this example we still have p /∈ Div(B).

3.2. T2-equivalence.

Definition 3.5. We say that the tilings A⊕B = ZM and A′⊕B = ZM are T2-equivalent if

(3.5) A satisfies (T2) ⇔ A′ satisfies (T2).

Since the sets A and A′ tile the same group ZM with the same tiling complement B, they
must have the same cardinality and the same prime power cyclotomic divisors, as discussed
in Section 2.4. For brevity, we will sometimes say simply that A is T2-equivalent to A′ if
both M and B are clear from context.

In practice, A′ will be a set obtained from A using certain permitted manipulations such
as fiber shifts. We will use T2-equivalence to reduce proving (T2) for the initial tiling to
proving (T2) for related tilings that are increasingly more structured. In particular, the
following reduction is sufficient to prove (T2) for both sets in the given tiling.

Corollary 3.6. Suppose that the tiling A⊕B = ZM is T2-equivalent to the tiling A♭ ⊕B =
ZM . Then A and B satisfy (T2).

Proof. Since A♭ satisfies (T2), by (3.5) so does A. By Proposition 3.4, B satisfies (T2) as
well. □

4. Box product

4.1. Box product characterization of tiling. We continue to assume thatM =
∏K

i=1 p
ni
i ,

where p1, . . . , pK are distinct primes. We will use ϕ and µ to denote, respectively, the Euler
totient function and the Möbius function: if n =

∏L
j=1 q

rj
j , where q1, . . . , qL are distinct

primes, then

ϕ(n) = n
L∏

j=1

qj − 1

qj
=

L∏
j=1

(qj − 1)q
rj−1
j ,
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µ(n) =

{
(−1)L if r1 = r2 = · · · = rL = 1,

0 if ∃j ∈ {1, . . . , L} such that rj ≥ 2.

Let N |M . Reordering the primes if necessary, we may assume that N = pα1
1 . . . pαk

k , with
1 ≤ k ≤ K and α1, . . . , αk ≥ 1.

Definition 4.1. (N-boxes) An N -box is a k-dimensional matrix

A =
(
A(γ1,...,γk)

)
0≤γj≤αj , j=1,...,k

of size (α1+1)×· · ·×(αk+1), with entries A(γ1,...,γk) ∈ R. Since each multiindex (γ1, . . . , γk)
with 0 ≤ γj ≤ αj can be uniquely associated with a divisor m of N given by m = pγ11 . . . pγkk ,
we will use such divisors to index the entries of A, so that

A = (Am)m|N , Am = A(γ1,...,γk) for m = pγ11 . . . pγkk .

For any N |M , N -boxes form a vector space over R, with addition of boxes and multipli-
cation of a box by a scalar defined in the obvious way. We also equip this space with an
inner product structure as follows.

Definition 4.2. (Box product) If A and B are N-boxes, define

(4.1) ⟨A,B⟩ =
∑
m|N

1

ϕ(N/m)
AmBm.

Of course, (4.1) depends on N , but since N is determined by the fact of A and B being
N -boxes, we will not use additional subscripts or superscripts to indicate that.

The N -boxes associated with multisets in ZN are as follows.

Definition 4.3. (Boxes associated with multisets) Let A ∈ M(ZM) and N |M . Con-
sider the induced multiset A ∈ M(ZN), with the weight function mod N defined in (2.1).
For x ∈ ZN , define AN [x] = (AN

m[x])m|N , where

AN
m[x] =

∑
a∈ZN : (x−a,N)=m

wN
A (a).

In particular, if A ⊂ ZN is a set, we have

AN
m[x] = #{a ∈ A : (x− a,N) = m}.

If N = M , we will skip the superscript and write Am[x] = AM
m [x] whenever there is no

possibility of confusion.

Theorem 4.4 below explains the reason for Definition 4.2. The theorem is based on [11,
Theorem 1] (see Sections 4.2 and 4.3 for details). The equivalence between A⊕B = ZM and
the condition in (ii) provides an alternative proof of Theorem 2.5; however, Sands’s proof is
easier and does not require Theorem 4.4. The point of Theorem 4.4 is that tiling also implies
the formally stronger condition (4.2) for all N |M and x, y ∈ ZM .

Theorem 4.4. (Box product characterization of tiling) (i) Suppose that A⊕B = ZM

is a tiling. Then for any N |M , and for any x, y ∈ ZM , we have

(4.2) ⟨AN [x],BN [y]⟩ = |A||B|
N

=
M

N
.
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In particular,

(4.3) ⟨AM [x],BM [y]⟩ = 1 ∀x, y ∈ ZM .

(ii) Conversely, suppose that A,B ⊂ ZM are sets such that |A||B| = M and ⟨AM [a],BM [b]⟩ =
1 for all a ∈ A and b ∈ B. Then A⊕B = ZM .

Corollary 4.5. Under the assumptions of Theorem 4.4, let LN(A) be the linear space
spanned by the boxes AN [x], i.e.

LN(A) =

{∑
x∈ZN

cxAN [x] : cx ∈ R

}
,

and similarly for B. Then for any N-boxes A ∈ LN(A) and B ∈ LN(B), we have

(4.4) ⟨A,B⟩ = 1

N
Σ(A)Σ(B),

where Σ(A) =
∑

m|N Am.

N -boxes AN [x], x ∈ ZM , are a convenient way of encoding structural information about
A. Theorem 4.4 provides a tiling criterion for A ⊕ B = ZM in terms of the box product,
and it is also possible to express cyclotomic divisibility in terms of N -boxes. However, this
convenience comes with some loss of information. In [24], we have to work with the actual
sets A and B, not just with the N -boxes representing them. We do not know whether it is
possible to give a proof of properties such as (T2) purely in terms of the N -boxes associated
with the sets.

Remark 4.1. The equivalence between the conditions (iii) and (iv) in Proposition 3.4 can
be stated in terms of M-boxes. Suppose that A⊕B = ZM is a tiling. Then the following are
equivalent:

(i) B satisfies (T2),

(ii)
∑

m∈Div(A♭) Bm[y] = 1 for all y ∈ ZM .

Indeed, the condition (iv) of Proposition 3.4 can be rewritten as follows: for any y ∈ ZM ,
there exist unique b ∈ B and a ∈ A♭ such that b = y + a, or equivalently, y − b = −a. Since
{a ∈ ZM : (−a,M) ∈ Div(A♭)} = A♭, this implies the claim.

4.2. A Fourier-analytic identity. FixN = pα1
1 . . . pαk

k , where p1, . . . , pk are distinct primes
and α1, . . . , αk ∈ N. Let A,B,C,D ∈ M(ZN). For m|N , we define

AN
m[C] :=

∑
c∈C

AN
m[c]wC(c) =

∑
a,c∈ZN

wA(a)wC(c)1(a−c,N)=m.

In particular, if A(X) is a polynomial with 0-1 coefficients corresponding to a set A ⊂ ZN ,
then

AN
m[A] = #{(a, a′) ∈ A× A : (a− a′, N) = m}.

This defines N -boxes in the sense of Definition 4.3, and in particular we may consider the
box product

⟨AN [C],BN [D]⟩ =
∑
m|N

1

ϕ(N/m)
AN

m[C]BN
m[D].
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The following theorem is a slight generalization of the main identity from [11]. Specif-
ically, Theorem 1 in [11] states that (4.6) holds when A(X) and B(X) are polynomials
corresponding to multisets A,B ⊂ ZN . We will need an extension of it to 4 polynomials,
not necessarily with non-negative coefficients. The proof is essentially the same, but since
[11] remains unpublished, we include it here for completeness.

Theorem 4.6. Let A(X), B(X), C(X), D(X) be polynomials modulo XN − 1 with integer
coefficients. Then

(4.5) ⟨AN [C],BN [D]⟩ =
∑
d|N

1

Nϕ(d)

 ∑
ζ:Φd(ζ)=0

A(ζ)C(ζ)

 ∑
ζ:Φd(ζ)=0

B(ζ)D(ζ)

 .

In particular,

(4.6) ⟨AN [A],BN [B]⟩ =
∑
d|N

1

Nϕ(d)
Ed(A)Ed(B),

where

Ed(A) =
∑

ζ:Φd(ζ)=0

|A(ζ)|2.

The rest of this section is devoted to the proof of Theorem 4.6. We will use the discrete
Fourier transform in ZN : if f : ZN → C is a function, then

f̂(ξ) =
∑
x∈ZN

f(x)e2πixξ/N , ξ ∈ ZN .

Lemma 4.7. Let

Λm := {x ∈ ZN : m|x},

Hm := {x ∈ ZN : (x,N) = m} = Λm \
⋃

m′:m|m′|N,m′ ̸=m

Λm′ .

Then 1̂Hm(ξ) = Gξ(N/m), where

(4.7) Gξ(v) =
∑
d|(v,ξ)

µ(v/d)d.

Proof. Using that

1̂Λm(ξ) =
N

m
1ΛN/m

(ξ),
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we get by inclusion-exclusion

1̂Hm(ξ) =
∑
d|N

m

µ(d)1̂Λmd
(ξ)

=
∑
d|N

m

µ(d)
N

md
1ΛN/md

(ξ)

=
∑
d′|N

m

µ
( N

md′

)
d′ 1Λd

(ξ)

=
∑

d′|(N
m
,ξ)

µ
( N

md′

)
d′

= Gξ(N/m).

□

Proposition 4.8. We have

(4.8)
∑
v|N

1

ϕ(v)
Gξ(v)Gξ′(v) =

{
N

ϕ(N/d)
if (ξ,N) = (ξ′, N) = d

0 if (ξ,N) ̸= (ξ′, N).

Proof. We first claim that for every ξ, the function Gξ(v) is multiplicative in v. Indeed, let
(x, y) = 1, (x, ξ) = t, (y, ξ) = s. Then (t, s) = 1 and (xy, ξ) = ts. Writing u = u′ · u′′, u′|x
and u′′|y, we get

Gξ(xy) =
∑

u|(xy,ξ)

µ(
xy

u
)u =

∑
u′|(x,ξ),u′′|(y,ξ)

µ(
x

u′ )µ(
y

u′′ )u
′u′′ = Gξ(x)Gξ(y).

ThereforeGξ(v) is entirely determined by its valuesGξ(v) on prime powers pji , j = 0, 1, . . . , αi,

i = 1, . . . , k. Let ξ = pν11 . . . pνkk . Then pκi ∥ (pji , ξ) for κ = min(j, νi). If j = 0, we have κ = 0
and Gξ(p

0
i ) = Gξ(1) = 1. If j ≥ 1, we have

Gξ(p
j
i ) =

∑
u|pκi

µ

(
pji
u

)
u =


pji − pj−1

i if κ = j

−pj−1
i if κ = j − 1

0 if κ < j

which is equivalent to

(4.9) Gξ(p
j
i ) =


pji − pj−1

i = ϕ(pji ) if j ≤ νi

−pνii if j = νi + 1

0 if j > νi + 1

Next, if F is a multiplicative function, then

∑
v|N

F (v) =
∑

0≤j1≤α1, ..., 0≤jk≤αk

F (pj11 . . . pjkk ) =
k∏

i=1

(
αi∑

ji=0

F (pjii )

)
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Applying this with F (v) = Gξ(v)Gξ′(v) for fixed ξ, ξ′, we get

(4.10)
∑
v|N

1

ϕ(v)
Gξ(v)Gξ′(v) =

k∏
i=1

(
αi∑

ji=0

1

ϕ(pjii )
Gξ(p

ji
i )Gξ′(p

ji
i )

)

Fix a prime divisor pi|N , and consider the corresponding factor in (4.10). Suppose that
0 ≤ ν, ν ′ ≤ αi are such that pνi ∥ ξ, pν

′
i ∥ ξ′. Without loss of generality, we may assume that

ν ≤ ν ′. In accordance with (4.9), we have three cases.

• If ν < ν ′ ≤ αi, then ν + 1 ≤ αi and

αi∑
j=0

1

ϕ(pji )
Gξ(p

j
i )Gξ′(p

j
i ) = 1 +

ν∑
j=1

1

ϕ(pji )
ϕ(pji )(p

j
i − pj−1

i ) +
1

ϕ(pν+1
i )

ϕ(pν+1
i )(−pni )

= 1 +
ν∑

j=1

(pji − pj−1
i )− pν = 0

• If ν = ν ′ < αi, then ν + 1 = ν ′ + 1 ≤ αi and

αi∑
j=0

1

ϕ(pji )
Gξ(p

j
i )Gξ′(p

j
i ) = 1 +

ν∑
j=1

(pji − pj−1
i ) +

1

pν+1
i − pνi

(−pνi )
2 =

pν+1
i

pi − 1

• If ν = ν ′ = αi, then

αi∑
j=0

1

ϕ(pji )
Gξ(p

j
i )Gξ′(p

j
i ) = 1 +

αi∑
j=1

(pji − pj−1
i ) = pαi

i

Since

pαi
i

ϕ(pαi−ν
i )

=

{
pαi if ν = αi

pαi

(pi−1)p
αi−ν−1
i

=
pν+1
i

pi−1
if ν < αi

we conclude that
αi∑
j=0

1

ϕ(pji )
Gξ(p

j
i )Gξ′(p

j
i ) =

{
0 if ν ̸= ν ′

p
αi
i

ϕ(p
αi−ν
i )

if ν = ν ′

We now plug this into (4.10), and, since pi is no longer fixed, write νi and ν ′
i instead of ν

and ν ′. If (ξ,N) ̸= (ξ′, N), then νi ̸= ν ′
i for at least one pi, so that∑

v|N

1

ϕ(v)
Gξ(v)Gξ′(v) = 0.

If on the other hand (ξ,N) = (ξ′, N), we get

∑
v|N

1

ϕ(v)
Gξ(v)Gξ′(v) =

k∏
i=1

pαi
i

ϕ(pαi−νi
i )

=
N

ϕ(N/(ξ,N))
,

which proves the proposition. □
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In order to finish the proof of Theorem 4.6, we write

AN
m[C] =

∑
x,y,z∈ZN

wA(x)wC(y)1Hm(z)1x−y=z

=
1

N

∑
x,y,z∈ZN

wA(x)wC(y)1Hm(z)
∑
ξ∈ZN

e−2πiξ(x−y+z)/N

=
1

N

∑
ξ∈ZN

ŵA(ξ)ŵC(ξ)1̂Hm(ξ)

=
1

N

∑
ξ∈ZN

ŵA(ξ)ŵC(ξ)Gξ(N/m)

Therefore

⟨AN [C],BN [D]⟩ = 1

N2

∑
v|N

1

ϕ(v)

(∑
ξ∈ZN

ŵA(ξ)ŵC(ξ)Gξ(v)

)(∑
ξ′∈ZN

ŵB(ξ
′)ŵD(ξ′)Gξ′(v)

)

=
1

N2

∑
ξ,ξ′∈ZN

ŵA(ξ)ŵC(ξ)ŵB(ξ
′)ŵD(ξ′)

∑
v|N

1

ϕ(v)
Gξ(v)Gξ′(v)


By Proposition 4.8,

⟨AN [C],BN [D]⟩ = 1

N2

∑
d|N

N

ϕ(N/d)

 ∑
ξ:(ξ,N)=d

ŵA(ξ)ŵC(ξ)

 ∑
ξ′:(ξ′,N)=d

ŵB(ξ
′)ŵD(ξ′)

 ,

which is (4.6), since ŵA(ξ) = A(e−2πiξ/N) and ζ = e−2πiξ/N is a root of Φd(X) if and only if
(ξ,N) = N/d.

4.3. Proof of Theorem 4.4. (i) Assume that A ⊕ B = ZM . Let N |M , and let C = {x}
and D = {y} for x, y ∈ ZN . By (4.5), we have

⟨AN [x],BN [y]⟩ =
∑
d|N

1

Nϕ(d)

 ∑
ζ:Φd(ζ)=0

A(ζ)C(ζ)

 ∑
ζ:Φd(ζ)=0

B(ζ)D(ζ)

 .

If d ̸= 1, then Φd(X) divides at least one of A(X) and B(X). Hence the only non-zero
contribution is from d = 1, which yields

⟨AN [x],BN [y]⟩ = 1

N
A(1)C(1)B(1)D(1) =

|A||B|
N

.

This proves (4.2).

(ii) Suppose that A,B ⊂ ZM satisfy ⟨AM [a],BM [b]⟩ = 1 for all a ∈ A, b ∈ B. Then

⟨AM [A],BM [B]⟩ =
∑

a∈A,b∈B

⟨AM [a],BM [b]⟩

=
∑

a∈A,b∈B

1 = |A||B| = M.
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By (4.6), this implies that ∑
d|M

1

ϕ(d)
Ed(A)Ed(B) = M2.

However, we are also assuming that E1(A)E1(B) = |A|2|B|2 = M2. Hence Ed(A)Ed(B) = 0
for all d|M , d ̸= 1, so that A⊕B = ZM as claimed.

Remark 4.2. We indicate a proof of Theorem 2.5 based on (4.6). Suppose that A⊕B = ZM

is a tiling, and apply (4.6) with N = M . Since Φd(X)|A(X)B(X) for all d|M , d ̸= 1, we
get ∑

m|M

1

ϕ(M/m)
AM

m [A]BM
m [B] =

|A(1)|2|B(1)|2

M
= M.

But we also have AM
M [A]BM

M [B] = |A||B| = M . Hence all other terms AM
m [A]BM

m [B] with
m ̸= M must vanish. This proves Theorem 2.5.

5. Cuboids

5.1. Definitions.

Definition 5.1. Let M =
∏K

i=1 p
ni
i .

(i) A cuboid type T on ZN is an ordered triple T = (N, δ⃗, T ), where:

• N =
∏K

i=1 p
ni−αi
i is a divisor of M , with 0 ≤ αi ≤ ni for each i = 1, . . . , K,

• δ⃗ = (δ1, . . . , δK), with 0 ≤ δi ≤ ni − αi for i = 1, . . . , K,
• T ⊂ ZN is a nonempty set.

We will refer to N as the scale of T , and to T as its template. We also define J = Jδ⃗ :=
{j : δj ̸= 0}.

(ii) Let T = (N, δ⃗, T ) be a cuboid type as above. A cuboid ∆ of type T is a weighted
multiset corresponding to a mask polynomial of the form

(5.1) ∆(X) = Xc
∏
j∈J

(1−Xdj),

where c, dj are elements of ZM such that (dj, N) = N/p
δj
j . The vertices of ∆ are the points

(5.2) xϵ⃗ = c+
∑
j∈J

ϵjdj : ϵ⃗ = (ϵj)j∈J ∈ {0, 1}|J|,

with weights w∆(xϵ⃗) = (−1)
∑

j∈J ϵj .

(iii) Let A ∈ M(ZN), and let ∆ be a cuboid of type T . Then the (∆, T )-evaluation of A
is

AT [∆] = AN
N [∆ ∗ T ] =

∑
ϵ⃗∈{0,1}k

w∆(xϵ⃗)AN
N [xϵ⃗ ∗ T ],

where we recall that x ∗ T = {x+ t : t ∈ T}, so that

AN
N [xϵ⃗ ∗ T ] :=

∑
t∈T

AN
N [xϵ⃗ + t].
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For consistency, we will also write

AT [x] = AN
N [x ∗ T ], x ∈ ZM .

In some situations, it will be easier to write out ∆ in its polynomial form. We will then iden-
tify the polynomial ∆(X) with the corresponding weighted multiset ∆, and write AT [∆(X)]
instead of AT [∆].

Definition 5.2. Let A ∈ M(ZM), and let T = (N, δ⃗, T ) be a cuboid type as above. We will
say that A is T -null if for every cuboid ∆ of type T ,

(5.3) AT [∆] = 0.

Lemma 5.3. Let A ∈ M(ZM), and let T = (N, δ⃗, T ) be a cuboid type. Suppose that for all

m|N , the cyclotomic polynomial Φm(X) divides at least one of A(X), T (X), or 1−XN/p
δj
j

for some j ∈ J(δ⃗). Then A is T -null.

Proof. This follows e.g. from Theorem 4.6 applied to A(X) and C(X) = ∆(X)T (X), with
B = D = {0}. □

5.2. Classic cuboids.

Definition 5.4. An N -cuboid is a cuboid of type T = (N, δ⃗, T ), where N |M , T (X) = 1,
and δj = 1 for all j such that pj|N . Thus, N-cuboids have the form

∆(X) = Xc
∏
pj |N

(1−XρjN/pj)

with (ρj, pj) = 1 for all j, and the associated ∆-evaluation of a multiset A ∈ M(ZN) is

AN
N [∆] =

∑
ϵ⃗∈{0,1}|J|

w∆(xϵ⃗)AN
N [xϵ⃗],

where J = {j : pj|N} and the cuboid vertices xϵ⃗ are defined in (5.2). If T is as above and
A ∈ M(ZN) is T -null, we will also say for short that A is N-null.

︸ ︷︷ ︸ ︸ ︷︷ ︸

︸︷︷︸ρiN/pi

ρjN/pj

ρkN/pk

−1weighted

+1weighted

Figure 2. An N -cuboid with N having 3 prime factors

The geometric interpretation of N -cuboids ∆ is as follows. With notation as in Definition
5.4, recall that D(N) = N/

∏
j∈J pj. Then the vertices xϵ⃗ of ∆ form a full-dimensional

rectangular box in the grid Λ(c,D(N)), with one vertex at c and alternating ±1 weights.
We reserve the term “N -cuboid”, without cuboid type explicitly indicated, to refer to cuboids
as in Definition 5.4; for cuboids of any other type, we will always specify T .

The following cyclotomic divisibility test has been known and used previously in the
literature, see e.g. [42, Section 3] in the context of vanishing sums of roots of unity, or [16,
Section 3] and [17] with applications to the “spectral implies tiling” direction of Fuglede’s
conjecture.
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Proposition 5.5. Let A ∈ M(ZN). Then the following are equivalent:

(i) ΦN(X)|A(X),

(ii) For all N-cuboids ∆, we have

(5.4) AN
N [∆] = 0.

Proof. Let m|N satisfy m ̸= N . Then m|(N/pi) for some i such that pi|N , so that Φm|(1−
XN/pi). The implication (i) ⇒ (ii) now follows from Lemma 5.3.

An alternative proof that (i) implies (ii) (without using Theorem 4.6; cf. [42], [16]) is as
follows. By classic results on vanishing sums of roots of unity (see [3], [28], [32], [35], [36],
[38]), ΦN(X)|A(X) if and only if A(X) is a linear combination of the polynomials Φp(X

N/p),
where p runs over all prime divisors of N , with integer (but not necessarily nonnegative)
coefficients. Equivalently, ΦN(X)|A(X) if and only if A can be represented as a linear
combination of N -fibers. It is very easy to see that (5.4) holds for all N -cuboids ∆ if A mod
N is an N -fiber, therefore it also holds if A mod N is a linear combination of such fibers.

The proof that (ii) implies (i) is by induction on the number of prime divisors of N (this
argument was also known previously in the literature, see e.g. [42, Proposition 2.4]). We
present it here for completeness.

If N = pα is a prime power, the claim follows from (2.6). Suppose that the claim is true
for all N ′ with at most k prime divisors. Suppose that N has k+1 prime divisors, and that
A ∈ M(ZN) obeys (5.4) for all N -cuboids ∆ in ZN . Let p be a prime divisor of N , and let
N ′ = N/pα, where (N ′, p) = 1.

Assume first that

(5.5) A ∈ M(pα−1ZN).

Write A(X) =
∑p−1

j=0 X
jN/pAj(X), where Aj ∈ M(pαZN). Each “layer” Aj can be identified

in the obvious manner with a multiset in ZN ′ .

For j = 0, 1, . . . , p − 1, let Aj,0 be the weighted multiset defined via Aj,0(X) = Aj(X) −
A0(X). The condition (5.4) implies that, with the obvious notation,

(Aj,0)
N ′
[∆′] = 0

for every full-dimensional cuboid ∆′ in ZN ′ . By the inductive assumption, ΦN ′(X)|Aj,0(X).
By the structure theorem for vanishing sums of roots of unity, Aj,0 is a linear combination
of N ′-fibers in ZN ′ . Returning to ZN now, and summing in j, we get that A(X) = A′(X) +
A′′(X), where:

• A′(X) =
∑p−1

j=0 X
jN/pAj,0(X). By the above argument, A′ is a linear combination of

fibers in directions perpendicular to p.
• A′′ =

∑p−1
j=0 X

jN/pA0(X). This is a linear combination of fibers in the p direction.

Thus A is a linear combination of fibers, and therefore ΦN(X)|A(X).

Finally, in the general case (without assuming (5.5), we can write A as a union of multisets
A(i), i = 0, 1, . . . , pα−1 − 1, where each A(i) is a translate of a multiset satisfying (5.5). If
(5.4) holds for A, then it also holds for each A(i). By the previous argument we get that
ΦN(X)|A(i)(X) for each i, therefore it divides A(X). This completes the proof that (ii)
implies (i). □
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Remark 5.1. Proposition 5.5 implies in particular that, for any N |M , ΦN divides A if and
only if it divides the mask polynomial of A ∩ Λ(x,D(N)) for every x ∈ ZM . Indeed, the
vertices of any N-cuboid ∆ are all contained in the same D(N)-grid. Hence the divisibility
of A by ΦM is associated with the structure of A on such grids.

5.3. Multiscale cuboids. In many situations, we need to work with cuboids on several
scales simultaneously. This happens, for example, when we investigate divisibility of a poly-
nomial A(X) by combinations of cyclotomic polynomials, or when we try to reduce a tiling
of ZM to tilings of cosets of a subgroup. We will use cuboids with nontrivial templates to
facilitate such multiscale cuboid analysis.

Definition 5.6. (Folding templates) Let M =
∏K

i=1 p
ni
i and N =

∏K
i=1 p

ni−αi
i , with 0 ≤

αi ≤ ni for i = 1, . . . , K. The folding template TM
N is given by

TM
N (X) =

∏
i:pi|MN

αi∏
νi=1

ΨM/p
νi
i
(X) ≡ XM − 1

XN − 1
mod (XM − 1)

where

(5.6) ΨM/pδi
(X) = Φpi(X

M/pδi ) = 1 +XM/pδi +X2M/pδi + · · ·+X(pi−1)M/pδi .

When M is fixed, we will sometimes write TN instead of TM
N for simplicity.

Strictly speaking, ΨM/pδi
depends on both M and pδi , and not just on their quotient;

however, both numbers will always be clear from the context. We also note that ΨM/pi = Fi.

Definition 5.6 allow us to considerN -cuboids as cuboids with templates in ZM . Specifically,
let N |M be as in Definition 5.6. Then for any A ∈ M(ZM) and x ∈ ZM ,

(5.7) AN
N [x] = AM

M [x ∗ TM
N ].

Consequently, we have the following.

Lemma 5.7. With M and N as in Definition 5.6, let T = (M, δ⃗, TM
N ), where

(5.8) δi =

{
αi + 1 if αi < ni

0 if αi = ni

i ∈ {1, . . . , K}

We will sometimes write δ⃗ = δ⃗MN to indicate the dependence on M and N . Let A ∈ M(ZM)
be a multiset. Then the following are equivalent:

• ΦN |A,
• A is T -null in ZM ,
• the multiset induced by A in ZN is N-null (see Definition 5.4).

Let

(5.9) ∆ = Xc
∏
i:pi|N

(1−Xdi), c ∈ ZM , (M,di) = M/pαi+1
i ,

be a cuboid of type T as in Lemma 5.7. Then the cuboid ∆ mod N , induced by ∆ in
ZN , is an N -cuboid. Conversely, any N -cuboid ∆′ in ZN can be written (not necessarily
uniquely) as ∆ (mod N), where ∆ is a cuboid of the form (5.9) in ZM . Therefore, whenever
working on scales N and M simultaneously, we will represent N -cuboids as cuboids of the
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form (5.9) in ZM . In this notation, a multiset A ∈ M(ZM) satisfies any one (therefore all)
of the conditions in Lemma 5.7 if and only if

AN
N [∆] = AT [∆] = AM

M [∆ ∗ TM
N ] = 0

for all ∆ as in (5.9). Transitions between several intermediate scales N1, N2, . . . |M will be
handled similarly, with ZM as the default ambient space.

Cuboids with more general templates can be used to indicate divisibility by combinations
of several cyclotomic polynomials. We will be particularly interested in implications of the
form “if Φs1 , . . . ,Φsl divide A(X), then A is T -null for a given cuboid type T .” It will not
be necessary to aim for “if and only if” conditions such as those in Lemma 5.7.

Examples. Let M =
∏K

i=1 p
ni
i .

(1) Assume that ni ≥ 2 for some i ∈ {1, . . . , K}. Let T = (M, δ⃗, 1) and T ′ =

(M, δ⃗, TM
M/pi

), with δi = 2 and δj = 1 for j ̸= i. Then

ΦM/pi |A ⇔ A is T ′-null,

ΦMΦM/pi |A ⇔ A is T -null.

The first equivalence follows from Lemma 5.7. The second one is easy to check
directly. Specifically, if ∆ is a cuboid of type T , then Φm|∆ for allm|M except form ∈
{M/pi,M}; conversely, both M -cuboids and M/pi-cuboids can be expressed as linear
combinations of cuboids of type T . (A similar result appears in [17, Lemma 2.13],
where it is stated in terms of “n-dimensional cube rules” and applied to Fuglede’s
conjecture on cyclic groups.)

︸︷︷︸
M/pj

︸︷︷︸M/pk

︸︷︷︸ M/p2i

︸︷︷︸M/pi

Figure 3. A classic M -cuboid (green) vs. a multiscale cuboid (red)
corresponding to the product ΦMΦM/pi

(2) Let 2 ≤ α ≤ ni. Then

ΦMΦM/pi . . .ΦM/pαi
|A

if and only if A is Tα-null, where Tα = (M, δ⃗, 1), δi = α + 1 if αi < ni, δi = 0 if
αi = ni, and δj = 1 for j ̸= i. This can be proved in the same way as in Example (1)
above.
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(3) Assume that ni ≥ 2 for some i ∈ {1, . . . , K}. Let T = (M, δ⃗, T ), where δi = 3 if
ni ≥ 3, δi = 0 if ni = 2, δj = 1 for j ̸= i, and

T (X) =
XM/pi − 1

XM/p2i − 1
= 1 +XM/p2i + · · ·+X(pi−1)M/p2i .

We claim that if ΦMΦM/p2i
|A, then A is T -null. Indeed, if ni ≥ 3, cuboids of type T

have the form

∆(X) = Xc(1−XµiM/p3i )
∏
j ̸=i

(1−XµjM/pj),

where (µi,M) = (µj,M) = 1. It follows that ∆(X)T (X) is divisible by all cyclotomic
polynomials Φm(X), m|M , except for ΦM/p2i

and ΦM . If ni = 2, the same argument

applies, except that there is no factor 1−XµiM/p3i in ∆(X).

6. Tiling reductions

6.1. Subgroup reduction. In this section, we discuss two ways in which the question of
proving (T2) for a tiling A ⊕ B = ZM (and, more generally, investigating the structure of
such tilings) may be reduced to the analogous question for tilings A′⊕B′ = ZN , where N |M
and N ̸= M . We start with a recap, in a slightly more general setting, of the reduction that
Coven and Meyerowitz used in [2] to prove Theorem 1.1.

Theorem 6.1. (Subgroup reduction) ([2, Lemma 2.5]; see also [4, Theorem 4.4]) Assume

that A⊕B = ZM , where M =
∏K

i=1 p
ni
i , and that:

(i) there exists an i ∈ {1, . . . , K} such that A ⊂ piZM ,
(ii) (T2) holds for both A′ and B′ in any tiling A′ ⊕ B′ = ZNi

, where Ni = M/pi,
|A′| = |A|, and |B′| = |B|/pi.

Then A and B satisfy (T2).

Proof. We have A(X) = A′(Xpi) for some A′ ⊂ ZNi
. Write also

B(X) ≡
pi−1∑
ν=0

XνM/p
ni−1
i Bν(X

pi) mod XM − 1,

where Bν ⊂ ZNi
for ν = 0, 1, . . . , pi − 1. If b ∈ B and b ≡ r mod pi, then a + b ≡ r mod pi

for all a ∈ A; in other words, the tiling breaks down into separate tilings of residue classes
mod pi, with A′ ⊕Bν = ZNi

for each ν.

By the assumption (ii), A′ and Bν satisfy (T2) for all ν. We need to check that this is still
true for A and B. We first claim that for any polynomial F (X), and for any s ∈ N,
(6.1) Φτ(s)(X)|F (Xpi) ⇔ Φs(X)|F (X),

where

τ(s) =

{
s if pi ∤ s,
pis if pi|s.

Indeed, we have Φτ(s)(X)|F (Xpi) if and only if F (e2πipi/τ(s)) = 0. This means that F (e2πi/s) =

0 if pi|s, and F (e2πipi/s) = 0 if pi ∤ s. In both cases, this is equivalent to Φs|F .
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Observe first that, by (2.6), we must have

Φpi |B.

Suppose that s1, . . . , sk are powers of distinct primes such that Φs1 . . .Φsk |A. As noted above,
we cannot have sj = pi for any j. Let s′j = sj/pi if sj is a power of pi, and s′j = sj otherwise.
Then s′j are prime powers, and sj = τ(s′j). By (6.1), Φs′1

. . .Φs′k
|A′, and since (T2) holds for

A′, we have Φs′1...s
′
k
|A′. Since τ(s′1 . . . s

′
k) = s1 . . . sk, we get that Φs1...sk |A.

Suppose now that s1, . . . , sk are powers of distinct primes such that Φs1 . . .Φsk |B and
s1, . . . , sk ̸= pi, and define s′1, . . . , s

′
k as above. Then for j = 1, . . . , k we have Φsj ∤ A,

therefore Φs′j
∤ A′ and, since A′ ⊕ Bν = ZNi

is a tiling, Φs′j
|Bν for each ν. Since Bν satisfies

(T2), we have Φs′1...s
′
k
|Bν . It follows that Φs1...sk |Bν(X

pi) for each ν, and therefore Φs1...sk |B.

Finally, suppose that s1, . . . , sk are powers of distinct primes such that Φs1 . . .Φsk |B and
s1, . . . , sk are not powers of pi, and consider Φpis with s = s1 . . . sk. We have

B(e2πi/pis) =

pi−1∑
ν=0

e2πiνM/sp
ni
i Bν(e

2πis) = 0,

by (T2) for each Bν . □

Corollary 6.2. Let A⊕B = ZM , where M = pn1
1 pn2

2 pn3
3 . . . pnK

K . Assume that for each i ≥ 3,
the prime factor pi divides at most one of |A| and |B|. (This happens e.g., if ni = 1 for
i ̸∈ {1, 2}). Then both A and B satisfy (T2).

Proof. This is not stated explicitly in [2], but it follows by a very similar argument. (See
also [46], [4], [39].) We proceed by induction in the number of prime factors. If K = 2 and
M = pn1

1 pn2
2 , this is Theorem 1.1. Suppose that K ≥ 3 and that (T2) holds for both A′ and

B′ in any tiling A′ ⊕ B′ = ZM/pK . By the assumption of the lemma, at least one of |A| and
|B| is not divisible by pK . Assume without loss of generality that pK ∤ |A|. By Tijdeman’s
theorem ([47, Theorem 1]; see also [2, Lemma 2.2]), Ã ⊕ B = ZM is again a tiling, where
Ã(X) = A(XpK ). We have Ã ⊂ pKZM , so that we may apply Theorem 6.1 to conclude
that Ã and B satisfy (T2). By (6.1), this also means that A satisfies (T2), since the (T2)
condition for A involves only cyclotomic polynomials Φs with (s, pK) = 1. □

6.2. Slab reduction. Our second tiling reduction also involves passing from a tiling A⊕B =
ZM to a tiling of a smaller cyclic group. However, instead of restricting to residue classes and
thus constructing a family of tilings of a subgroup piZM , we will use periodicity. Recall that
M -fibers Fi and M -fibered sets were defined in Section 2.3 (see (2.4)). Let M =

∏K
i=1 p

ni
i ,

and define

(6.2) Api = {a ∈ A : 0 ≤ πi(a) ≤ pni−1
i − 1},

where πi is the array coordinate defined in Section 2.2. Suppose that we have S ⊕B = ZM ,
where S is the M/pi-periodic extension of Api to ZM :

(6.3) S(X) = Api(X)Fi(X).

Then we may reduce the period of the tiling and write Api ⊕ B = ZM/pi , where Api and B
are now considered mod M/pi.

As a motivating example, suppose that A ⊕ B = ZM , with M as above, and that A is
M -fibered in the pi direction. Let A′ be a set obtained from A by choosing one point from
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each fiber, so that |A′| = |A|/pi and A = A′ ∗ Fi. Then A is the periodic extension of A′,
and we have A′ ⊕B = ZM/pi .

Our main results in this section are Theorem 6.5 and Corollary 6.6, where we develop a
criterion for Api to admit periodic tilings as described above, and prove that passing to such
tilings preserves the (T2) property.

Lemma 6.3. Let A ∈ M(ZM), with M as above. Assume that Φd|A for some d such that
pni
i |d|M . Then for every 1 ≤ αi ≤ ni,

Φd/p
αi
i
|A ⇒ Φd/p

αi
i
|Api .

Proof. Let d = M/
∏

j ̸=i p
αj

j and d′ = d/pαi
i . Assume that ΦdΦd′|A. We would like to show

that Φd′ |Api . To this end, we define cuboid types T = (M, δ⃗, Td) and T ′ = (M, δ⃗′, Td′), where

Td = TM
d , Td′ = TM

d′ are the folding templates from Definition 5.6, and δ⃗ = δ⃗Md , δ⃗′ = δ⃗Md′ are
defined as in (5.8) with N = d and N = d′, respectively.

Let S be the periodic extension of Api to ZM defined in (6.3). We have Φd|Fi but Φd′ ∤ Fi,
so that Φd′|S if and only if Φd′|Api . We need to prove that

Sd′

d′ [∆] = 0

for all cuboids ∆ of type T ′. Fix such a cuboid

∆(X) = Xy ·
∏
j

(1−Xdj), where y ∈ ZM , (dj,M) = M/p
δ′j
j .

Let

∆i(X) = Xy ·
∏
j ̸=i

(1−Xdj)

so that

∆(X) =

{
(1−Xdi)∆i(X) if αi < ni,

∆i(X) if αi = ni.

Observe that if ρi ∈ ZM satisfies (ρi,M) = M/pi, then (1−Xρi)∆i(X) is a cuboid of type
T . Since A is T -null, we have Ad

d[(1−Xρi)∆i(X)] = 0, so that

Ad
d[∆i] = Ad

d[ρi ∗∆i].

Averaging the last equality over all ρi ∈ {M/pi, 2M/pi, . . . , (pi − 1)M/pi}, we get

Ad
d[∆i] =

1

ϕ(pi)
Ad

d[∆i ∗ (Fi − 1)].

Clearly we may take linear combinations of the latter, i.e. for any set V ⊂ ZM ,

(6.4) Ad
d[∆i ∗ V ] =

1

ϕ(pi)
Ad

d[∆i ∗ (Fi − 1) ∗ V ].

Let Ψ ⊂ ZM be a set such that Ψ(X) ≡
∏αi

ν=2 ΨM/pνi
(X) mod XM/pi − 1, and

(6.5) 0 ≤ πi(y + z) ≤ pni−1
i − 1 ∀z ∈ Ψ.
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Then

Td′(X) = Td(X)Fi(X)Ψ(X)

= Td(X)Ψ(X) + (Fi − 1)Td(X)Ψ(X),

so that

Ad′

d′ [∆i] = AM
M [∆i ∗ Td′ ]

= AM
M [∆i ∗ Td ∗Ψ] + AM

M [∆i ∗ (Fi − 1) ∗ Td ∗Ψ]

= Ad
d[∆i ∗Ψ] + Ad

d[∆i ∗ (Fi − 1) ∗Ψ]

By (6.4) with V = Ψ, we get

(6.6) Ad′

d′ [∆i] =
pi

ϕ(pi)
Ad

d[∆i ∗Ψ].

The proof of (6.6) used only that Φd|A. Since S has the same property, it follows that

Sd′

d′ [∆i] =
pi

ϕ(pi)
Sd
d[∆i ∗Ψ],

By (6.5), we also have

Ad
d[∆i ∗Ψ] = Sd

d[∆i ∗Ψ].

Assume first that αi < ni, and note that all of the above arguments apply with ∆i replaced
by di ∗∆i, yielding the same conclusions with Ψ replaced by Ψ′ such that (6.5) holds with
y replaced by y + di. Recall that A is T ′-null, so that

0 = Ad′

d′ [∆]

= Ad′

d′ [∆i]− Ad′

d′ [di ∗∆i]

=
pi

ϕ(pi)
(Ad

d[∆i ∗Ψ]− Ad
d[di ∗∆i ∗Ψ′])

=
pi

ϕ(pi)
(Sd

d[∆i ∗Ψ]− Sd
d[di ∗∆i ∗Ψ′]).

Taking the convolution with ΨM/pi , and using that Ψ(X)ΨM/pi(X) ≡ Ψ′(X)ΨM/pi(X) mod
(XM − 1), we conclude that

0 = Sd
d[∆ ∗Ψ ∗ΨM/pi ]

= Sd′

d′ [∆]

It follows that S is T ′-null, as required.

If αi = ni, the proof is the same as above, except that then ∆ = ∆i and so the terms with
di ∗∆i do not appear in the above calculation. □

Lemma 6.4. Let A ∈ M(ZM), with M as above, and let pni
i |d|M and 1 ≤ αi ≤ ni. Assume

that Φd/p
αi
i
|A′

pi
for all translates A′ of A. Then ΦdΦd/p

αi
i
|A.

Proof. Let d = M/
∏

j ̸=i p
αj

j and d′ = d/pαi
i . Define the cuboid types T = (M, δ⃗, Td) and

T ′ = (M, δ⃗′, Td′) as in the proof of Lemma 6.3.
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In order to prove that Φd′ |A, it suffices to show Ad′

d′ [∆] = 0 for all cuboids of the form

(6.7) ∆′(X) = Xy ·
∏
j

(1−Xdj), y ∈ ZM , (dj,M) = M/p
δ′j
j .

We write A(X) =
∑pi−1

ν=0 Aν(X), where

(6.8) Aν = {a ∈ A | 0 ≤ πi(a)− νpni−1
i ≤ pni−1

i − 1}, ν = 0, 1, . . . , pi − 1.

Then

Ad′

d′ [∆
′] =

pi−1∑
ν=0

(Aν)
d′

d′ [∆
′] = 0

using the assumption that Aν are T ′-null for all ν.

We now prove that Φd|A. It suffices to show Ad
d[∆] = 0 for any cuboid of the form

(6.9) ∆(X) = (1−XM/pi)∆i(X),

where y ∈ ZN , and

∆i(X) = Xy ·
∏
j ̸=i

(1−Xdj), y ∈ ZM , (dj,M) = M/p
δj
j .

Indeed, any cuboid of type T can be written as a linear combination of cuboids as in (6.9).

Let Ψ(X) =
∏αi

ν=2ΨM/pνi
(X), and

∆′′(X) =

{(
1−XM/p

αi+1
i

)
∆i(X) if αi < ni,

∆i(X) if αi = ni.

Define also

A′
i = {a ∈ A : 0 ≤ πi(a− y) ≤ pni−1

i − 1},
A′′

i = {a ∈ A : 1 ≤ πi(a− y) ≤ pni−1
i }.

By our assumption on A, Φd′ divides both A′
i and A′′

i . Suppose first that αi < ni. Then

0 = (A′
i)
d′

d′ [∆
′′] = Ad

d[∆i ∗Ψ]− Ad
d[(M/pαi+1

i ) ∗∆i ∗Ψ],

0 = (A′′
i )

d′

d′ [∆
′′] = Ad

d[∆i ∗Ψ′]− Ad
d[(M/pαi+1

i ) ∗∆i ∗Ψ],

where Ψ′(X) = Ψ− 1 +XM/pi . Taking the difference, we get

0 = (A′
i)
d′

d′ [∆
′′]− (A′′

i )
d′

d′ [∆
′′]

= Ad
d[∆i ∗Ψ]− Ad

d[∆i ∗Ψ′]

= Ad
d[∆],

which proves the claim.

If αi = ni, the proof is the same, except that the terms with (M/pαi+1
i ) ∗∆i are replaced

by 0 in the above calculation. □

Theorem 6.5. Assume that A⊕B = ZM and Φp
ni
i
|A. Then the following are equivalent:

(i) For any translate A′ of A we have A′
pi
⊕B = ZM/pi.
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(ii) For every d such that pni
i |d|M , at least one of the following holds:

(6.10) Φd|A,

(6.11) Φd/piΦd/p2i
. . .Φd/p

ni
i

| B.

(iii) For every pni
i |m|M ,

(6.12) m ∈ Div(A) ⇒ m/pi /∈ Div(B).

Proof. Let Ni = M/pi. The assumption that Φp
ni
i
|A implies that for any translate A′ of A,

we have |A′
pi
| = |A|/pi, so that

(6.13) |A′
pi
| |B| = Ni.

(i) ⇒ (ii): Assume that (i) holds, and suppose that (6.11) fails for some pni
i |d|M . Then

there is an αi such that 1 ≤ αi ≤ ni and Φd/p
αi
i

∤ B. Then Φd/p
αi
i
|A′

pi
for any translate A′ of

A. By Lemma 6.4, (6.10) must hold.

(ii) ⇒ (i): Assume that (ii) holds. With (6.13) in place, it suffices to prove that for every
d′|Ni, d

′ > 1, Φd′ divides at least one of A′
pi
(X) and B(X). Let d′|Ni, d

′ > 1, and suppose
that Φd′ ∤ B. Then d′ = d/pαi

i for some pni
i |d|M and 1 ≤ αi ≤ ni. By (ii), we must have

Φd|A. Since A⊕B = ZM is a tiling, we must also have Φd′ |A. By Lemma 6.3, we must have
Φd′|A′

pi
as claimed.

(i) ⇒ (iii): Assume that (i) holds. This implies in particular that A′
pi
and B mod ZNi

are
sets, so that Ni ̸∈ Div(B) and (6.12) holds for m = M .

Next, Theorem 2.5 applied to the tiling A′
pi
⊕B = ZNi

implies that

(6.14) DivNi
(A) ∩DivNi

(B) = {Ni},

Suppose that (6.12) fails for some m ̸= M such that pni
i |m|M , so that m ∈ Div(A) and

m/pi ∈ Div(B). Then m/pi ̸= Ni and m/pi ∈ DivNi
(A) ∩ DivNi

(B). But this contradicts
(6.14).

(iii) ⇒ (i): Assume that (iii) holds. By Theorem 2.5, it suffices to prove that A′
pi
, B mod

ZNi
are sets such that (6.14) holds.

We first verify that A′
pi
, B mod ZNi

are sets. Indeed, if a, a′ ∈ A′
pi

and a ≡ a′ mod Ni,
then a = a′ by the definition of A′

pi
. On the other hand, M ∈ Div(A) trivially, and by (6.12)

it follows that Ni ̸∈ Div(B), so that B mod Ni is also a set.

Suppose now that (6.14) fails, with m1 ∈ (DivNi
(A) ∩ DivNi

(B)) \ {Ni}. Since Div(A) ∩
Div(B) = {M}, we must have m1 = m2/pi for some m2 with pni

i |m2|M , so that

mj ∈ Div(A′
pi
), mk ∈ Div(B)

for some permutation (j, k) of (1, 2). By the definition of A′
pi
, we cannot have pni−1

i ∥ s for
s ∈ Div(A′

pi
), so that j = 2, k = 1. But this contradicts (6.12). □

Remark 6.1. In the special case when A is M-fibered in the pi direction, the condition (6.11)
of Theorem 6.5 is satisfied since then Φd|A for all pni

i |d|M . It is also easy to verify directly
that (6.12) holds in this case.
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Corollary 6.6. (Slab reduction) Assume that A ⊕ B = ZM , where M =
∏K

i=1 p
ni
i , and

that:

• (T2) holds for both A′ and B′ in any tiling A′ ⊕ B′ = ZNi
, where Ni = M/pi,

|A′| = |A|/pi, and |B′| = |B|,
• there exists an i ∈ {1, . . . , K} such that Φp

ni
i
|A and A,B obey one (therefore all) of

the conditions (i)-(iii) of Theorem 6.5.

Then A and B satisfy (T2).

Proof. We are assuming that A′
pi
⊕ B = ZM/pi for any translate A′ of A. By the inductive

part of the assumption, A′
pi

and B satisfy (T2). It remains to prove (T2) for A. Suppose

that d =
∏

j∈J p
αj

j , where J ⊂ {1, . . . , K}, 1 ≤ αj ≤ nj for all j ∈ J , and Φ
p
αj
j
(X)|A(X) for

all j ∈ J . For each prime power p
αj

j with αj ̸= 0, the polynomial Φ
p
αj
j
(X) can divide only

one of A and B in the tiling A⊕B = ZM , hence

(6.15) Φ
p
αj
j

∤ B ∀j ∈ J.

Write A(X) =
∑pi−1

ν=0 Aν(X), where Aν are as in (6.8), so that Aν ⊕ B = ZNi
for each ν.

We consider two cases.

• Assume that either i ̸∈ J , or i ∈ J but αi ̸= ni. By (6.15), we have Φ
p
αj
j
|Aν for

all j ∈ J and ν = 0, 1, . . . , pi − 1. We are assuming that (T2) holds for Aν , so that
Φd|Aν . Summing over ν, we get that Φd|A.

• Assume now that i ∈ J and αi = ni, and let d′ = d/pni
i . Then Φd′|A′

pi
for any

translate A′ of A, by the argument in the first case applied to A′ instead of A. By
Lemma 6.4, it follows that Φd|A.

□

We note the following special case.

Corollary 6.7. Assume that A⊕ B = ZM , where M = pn1
1 pn2

2 pn3
3 and p1, p2, p3 are distinct

primes. Moreover, assume that there is a permutation (i, j, k) of (1, 2, 3) such that |A| =
pip

αj

j pαk
k for some 0 ≤ αj ≤ nj, 0 ≤ αk ≤ nk, and that A is M-fibered in the pi direction.

Then A and B satisfy (T2).

Proof. This follows from Corollary 6.6 and Corollary 6.2. □

7. Saturating sets

7.1. Preliminaries.

Definition 7.1. (Restricted N-boxes) Let A,X ⊆ ZM , and x ∈ ZM . The restriction of
AN [x] to X is the N-box AN [x|X] with entries

AN
m[x|X] =

∑
a∈X: (x−a,N)=m

wN
A (a), m|N.

In particular,
AM

m [x|X] = #{a ∈ A ∩X : (x− a,M) = m}.
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The next definition is the key to our analysis of unfibered tilings in [24]. While it could
be extended in an obvious way to N -boxes with N |M , our current arguments only use the
M -box version below.

Definition 7.2. (Saturating sets) Let A,B ⊆ ZM , and x, y ∈ ZM . Define

Ax,y := {a ∈ A : (x− a,M) = (y − b,M) for some b ∈ B},

Ax :=
⋃
b∈B

Ax,b.

Equivalently,

(7.1) Ax = {a ∈ A : (x− a,M) ∈ Div(B)}.

We will refer to Ax as the saturating set for x. The sets By,x and By are defined similarly,
with A and B interchanged.

With the above notation, Ax,y is the minimal set that saturates (the A-side of) the product
⟨AM [x],BM [y]⟩, in the sense that

(7.2) ⟨AM [x|X],BM [y]⟩ = ⟨AM [x],BM [y]⟩

holds for X = Ax,y, and if X ⊂ ZM is any other set for which (7.2) holds, then Ax,y ⊂ X.
The set Ax is the minimal set such that

(7.3) ⟨AM [x|Ax],BM [b]⟩ = ⟨AM [x],BM [b]⟩ ∀b ∈ B.

While Definition 7.2 makes sense for general sets A,B ⊆ ZM , our intended application is
to the tiling situation A⊕B = ZM . In that case, by Theorem 4.4, the box products on the
right side of (7.2) and (7.3) evaluate to 1. Hence Ax,y is the smallest set such that

(7.4) ⟨AM [x|Ax,y],BM [y]⟩ = 1,

and Ax is the smallest set such that

(7.5) ⟨AM [x|Ax],BM [b]⟩ = 1 ∀b ∈ B.

Observe in particular that a saturating set for any x ∈ ZM must be nonempty, and that by
Theorem 2.5,

(7.6) Aa = {a} ∀a ∈ A.

In the next few definitions and lemmas, we will work towards geometric descriptions of
saturating sets. Assume that A⊕ B = ZM . Let x ∈ ZM \ A, and suppose that a ∈ Ax. By
(7.1) and divisor exclusion, we must have (x−a,M) ̸∈ Div(A), and in particular (x−a,M) ̸=
(a′ − a,M) for all a′ ∈ A. This motivates the definition below.

Definition 7.3. Let M = pn1
1 . . . pnK

K , where p1, . . . , pK are distinct primes, and let x, x′ ∈
ZM , x ̸= x′. Suppose that (x− x′,M) = pα1

1 . . . pαK
K , with 0 ≤ αj ≤ nj for j = 1, . . . , K.

Define

Span(x, x′) =
⋃

i:αi<ni

Π(x, pαi+1
i ),

Bispan(x, x′) = Span(x, x′) ∪ Span(x′, x).

(7.7)
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Examples: Let M = pn1
1 pn2

2 pn3
3 , where p1, p2, p3 are distinct primes and n1, n2, n3 ≥ 2. Let

x, x′ ∈ ZM , and let m = (x− x′,M).

• Suppose that m = M/p1p2p3, so that αi = ni − 1 for i = 1, 2, 3, and represent
ZM as a 3-dimensional M -array. Then Span(x, x′) is the union of the 2-dimensional
planes Π(x, pni

i ) with i = 1, 2, 3, all passing through x, and similarly for Span(x′, x),
with x and x′ interchanged. Geometrically, Bispan(x, x′) is the union of those 2-
dimensional planes at the top scale that contain at least one 2-dimensional face of
the 3-dimensional rectangular box “spanned” by x and x′.

• Suppose now that m = M/pi for some i ∈ {1, 2, 3}. Then Span(x, x′) = Π(x, pni
i ) is a

single plane passing through x and perpendicular to the pi direction, and, similarly,
Span(x′, x) = Π(x′, pni

i ).
• If m = M/pipj for some i ̸= j, then Span(x, x′) = Π(x, pni

i ) ∪ Π(x, p
nj

j ) is a union of
two planes.

The higher-dimensional case has a similar interpretation. As should be clear from the
above examples, the definition is not symmetric with respect to x, x′, so that Span(x, x′) ̸=
Span(x′, x). However, we have the following.

Lemma 7.4. Let x, x′ ∈ ZM . Then

x′ ∈ Span(x, z) ⇔ x ∈ Span(x′, z).

Proof. We have x′ ∈ Span(x, z) if and only if there exist i ∈ {1, . . . , K} and 0 ≤ αi < ni

such that pαi
i ∥ x− z, pαi

i ∥ x′ − z, and pαi+1
i |x− x′. These conditions are clearly symmetric

with respect to x and x′. □

Lemma 7.5. If (x− x′,M) = (x− x′′,M) = m, then Span(x, x′) = Span(x, x′′).

Proof. This follows directly from the definition. □

Lemma 7.6. Let A,B ⊂ ZM , x, x′ ∈ ZM , and a ∈ A. If (x − a,M) ̸= (x′ − a,M), then
a ∈ Bispan(x, x′).

Proof. Suppose that (x− a,M) ̸= (x′ − a,M). It follows that (x− a, pni
i ) ̸= (x′ − a, pni

i ) for
some i ∈ {1, . . . , K}. Interchanging x and x′ if necessary, we may assume that pαi

i ∥ x − a
and pαi+1

i |x′−a for some αi ∈ {0, 1, . . . , ni−1}. Hence pαi
i ∥ x−x′, and a ∈ Span(x′, x). □

Lemma 7.7. Let A,B ⊂ ZM be fixed. Then:

(i) For any x, x′, y ∈ ZM , we have

(7.8) Ax′,y ⊂ Ax,y ∪ Bispan(x, x′).

(ii) Suppose that A⊕B = ZM . Then for any x ∈ ZM ,

(7.9) Ax ⊂
⋂
a∈A

Bispan(x, a).

Proof. To prove (i), suppose that a ∈ Ax′,y. Then (x′−a,M) = (y−b,M) for some b ∈ B. If
(x−a,M) = (x′−a,M), it follows that a ∈ Ax,y. If on the other hand (x−a,M) ̸= (x′−a,M),
then by Lemma 7.6 we must have a ∈ Bispan(x, x′). This proves (7.8). Part (ii) follows from
(i) and (7.6), since a ∈ Span(a, x). □
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We note a lemma which will be useful in the evaluation of saturating sets.

Lemma 7.8. (Enhanced divisor exclusion) Let A ⊕ B = ZM , with M =
∏K

i=1 p
ni
i . Let

m =
∏K

i=1 p
αi
i and m′ =

∏K
i=1 p

α′
i

i , with 0 ≤ αi, α
′
i ≤ ni. Assume that at least one of m,m′ is

different from M , and that for every i = 1, . . . , K we have either αi ̸= α′
i or αi = α′

i = ni.
Then for all x, y ∈ ZM we have

AM
m [x]AM

m′ [x]BM
m [y]BM

m′ [y] = 0.

In other words, there are no configurations (a, a′, b, b′) ∈ A× A×B ×B such that

(7.10) (a− x,M) = (b− y,M) = m, (a′ − x,M) = (b′ − y,M) = m′.

Proof. If we did have a configuration as in (7.10), then, under the assumptions of the lemma,
we would have

(a− a′,M) = (b− b′,M) =
K∏
i=1

p
min(αi,α

′
i)

i ,

with the right side different from M . But that is prohibited by Theorem 2.5. □

7.2. Examples and applications. We first provide examples of using Lemma 7.7 to derive
geometric constraints on saturating sets. For simplicity, in the examples below we return to
the 3-prime case with M = pn1

1 pn2
2 pn3

3 , where p1, p2, p3 are distinct primes and n1, n2, n3 ≥ 2.
Assume that A⊕B = ZM is a tiling, and let x ∈ ZM .

• Suppose that (x− a,M) = M/pi for some a ∈ A and i ∈ {1, 2, 3}. Then
Ax ⊂ Bispan(x, a) = Π(x, pni

i ) ∪ Π(a, pni
i ).

x

a

︸︷︷
︸

M/pi

• Suppose that there are two distinct elements a, a′ ∈ A such that (x − a,M) =
(x− a′,M) = M/pi. Then

Ax ⊂ Bispan(x, a) ∩ Bispan(x, a′) = Π(x, pni
i ).

x

a

︸︷︷
︸

M/pi

a′
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• Suppose that there are two elements ai, aj ∈ A such that (x − ai,M) = M/pi and
(x− aj,M) = M/pj, with i, j ∈ {1, 2, 3} distinct. Then

Ax ⊂ Bispan(x, ai) ∩ Bispan(x, aj) = ℓk(x) ∪ ℓk(ai) ∪ ℓk(aj) ∪ ℓk(xij),

where {1, 2, 3} \ {i, j} = {k}, and xij ∈ ZM is the unique point such that (xij −
ai,M) = M/pj and (xij − aj,M) = M/pi.

• Suppose that (x− a,M) = M/pipj for some a ∈ A and i, j ∈ {1, 2, 3} distinct. Then

Ax ⊂ Π(x, pni
i ) ∪ Π(a, pni

i ) ∪ Π(x, p
nj

i ) ∪ Π(a, p
nj

i ).

• We leave it as an easy exercise for the reader to verify that if there are a, a′, a′′ ∈ A
such that (z − z′,M) = M/pipj for all pairs of distinct elements z, z′ ∈ {x, a, a′, a′′},
then

Ax ⊂ Π(x, pni
i ) ∪ Π(x, p

nj

i ).

• Suppose that x ∈ ZM \ A and y ∈ ZM \B with

(7.11) (x− a,M) = (y − b,M) = M/pi for some a ∈ A, b ∈ B.

We claim that

(7.12) Ax,y ⊂ Π(x, pni−1
i ), By,x ⊂ Π(y, pni−1

i ).

One way to prove this is as follows. Let a ∈ A and b ∈ B be as in (7.11). As
in the first example above, we have Ax,b ⊂ Bispan(x, a) ⊂ Π(x, pni−1

i ). Hence
Bb,x ⊂ Π(b, pni−1

i ) = Π(y, pni−1
i ). Applying (7.8) to B, and using that Bispan(y, b) ⊂

Π(y, pni−1
i ), we get that By,x ⊂ Π(y, pni−1

i ) as claimed. This also implies the first half
of (7.12). Alternatively, (7.12) can also be deduced from Lemma 7.8.

Saturating sets are very useful in identifying configurations that cannot occur in tiling
complements. For example, we have the following easy but important lemma.

Lemma 7.9 (No missing joints). Let A⊕B = ZM , where M = pn1
1 . . . pnK

K . Suppose that

(7.13) {D(M)|m|M} ∩Div(B) = ∅,

and that for some x ∈ ZM there exist a1, . . . , aK ∈ A such that

(7.14) (x− ai,M) = M/pi ∀i ∈ {1, . . . , K}.

Then x ∈ A.

Proof. Suppose that x ̸∈ A, and let ∆ be the M -cuboid with vertices x, a1, . . . , aK . By (7.14)
and (7.9), the saturating set Ax is contained in the vertex set of ∆. But that is impossible
by (7.13). □

As an application, we prove the following restriction on fibered grids that can be a part
of a tiling set.

Proposition 7.10. Let M = pn1
1 pn3

2 pn3
2 . Assume that A⊕B = ZM is a tiling, and that there

exists a D(M)-grid Λ such that A∩Λ is a nonempty union of disjoint M-fibers. Then there
is a subset {ν1, ν2} ⊂ {1, 2, 3} of cardinality 2 such that A∩Λ is a union of disjoint M-fibers
in the pν1 and pν2 directions.



36 IZABELLA  LABA AND ITAY LONDNER

Proof. Fix A and Λ as in the statement of the proposition. We will say that κ : A ∩ Λ →
{1, 2, 3} is an assignment function if A ∩ Λ can be written as

A ∩ Λ =
⋃

a∈A∩Λ

(a ∗ Fκ(a)),

where for any a, a′ ∈ A∩Λ, the fibers a ∗ Fκ(a) and a′ ∗ Fκ(a′) are either identical or disjoint.
Thus, if a′ ∈ a ∗ Fκ(a), then κ(a′) = κ(a). Note that κ is not necessarily unique, since there
exist sets that can be split into nonintersecting fibers in more than one way. We will use Ξ
to denote the set of all assignment functions for A ∩ Λ.

It suffices to prove that any assignment function κ ∈ Ξ may take at most two values. To
prove this, assume for contradiction that there exists κ ∈ Ξ such that κ(a1) = 1, κ(a2) = 2,
κ(a3) = 3 for some a1, a2, a3 ∈ A ∩ Λ. Then the fibers a1 ∗ F1, a2 ∗ F2, a3 ∗ F3 are contained
in A and pairwise disjoint.

Let x ∈ Λ be the point such that

Π(a1, p
n2
2 ) ∩ Π(a2, p

n3
3 ) ∩ Π(a3, p

n1
1 ) = {x}.

Then there are points a′1 ∈ a1 ∗ F1, a
′
2 ∈ a2 ∗ F2, a

′
3 ∈ a3 ∗ F3 such that

(x− a′1,M) = M/p3, (x− a′2,M) = M/p1, (x− a′3,M) = M/p2.

Moreover, {D(M)|m|M} ⊂ Div(A ∩ Λ), hence (7.13) holds. By Lemma 7.9, we must have
x ∈ A. However, there is no permitted value for κ(x), since x ∗ F1 intersects a2 ∗ F2, x ∗ F2

intersects a3 ∗ F3, and x ∗ F3 intersects a1 ∗ F1. This contradicts the definition of κ. □

For example, under the assumptions of Proposition 7.10, if A⊕ B = ZM is a tiling, then
A ∩ Λ cannot consist of three nonintersecting fibers in different directions.

Figure 4. A D(M) grid with disjoint M-fibers in all 3 directions

Remark 7.1. Suppose that ΦM |A, where M = pn1
1 pn2

2 pn3
3 . Let Λ be a D(M)-grid such that

A ∩ Λ ̸= ∅. As discussed in Section 5.2, A ∩ Λ(X) can be written as

(7.15) (A ∩ Λ)(X) =
∑

ν∈{1,2,3}

Qν(X)Fν(X),

where Q1, Q2, Q3 are polynomials with integer coefficients depending on both A and Λ. If, in
addition, Q1, Q2, Q3 are polynomials with nonnegative coefficients, then A∩Λ is a nonempty
union of disjoint M-fibers. By Proposition 7.10, if A⊕ B = ZM is a tiling, then A ∩ Λ can
be written in the form (7.15) with at least one of Q1, Q2, Q3 equal to 0.
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It is likely that some consistency conditions of this type occur more broadly in tiling sets.
For example, in part (IIa) of [24, Theorem 9.1], we prove a much more difficult and technical
result of this type on a lower scale.

8. Fibers and cofibers

8.1. Fibers and fiber chains.

Definition 8.1. Let N |M , and assume that pδi | N for some δ ≥ 1. Define

(8.1) ΨN/pδi
(X) := Φpi(X

N/pδi ) = 1 +XN/pδi +X2N/pδi + · · ·+X(pi−1)N/pδi

This is the same notation as in (5.6), but here we are using it for a different purpose.
Specifically, we will use polynomials of the form (8.1) as building blocks for multiscale fibers
and fiber chains below. While ΨN/pδi

depends on both N/pδi and pi, both numbers will always
be clear from the context. We will also use that

(8.2) ΨN/pδi
(X) =

XN/pδ−1
i − 1

XN/pδi − 1
=

∏
s|M : s ̸=1, pν−δ+1

i ∥s

Φs(X),

where ν ≥ 1 is the exponent such that pνi ∥ N .

Definition 8.2. (Fibers and fiber chains) Let N |M , and assume that pi|N .

(i) A set F0 ⊂ ZM is an N -fiber in the pi direction if F0 mod N has the mask polynomial

(8.3) F0(X) ≡ cXaΨN/pi(X) mod XN − 1,

with fixed c ∈ N and a ∈ ZN . Equivalently, F0 mod N is a multiset in ZN with weights

wN
F0
(x) =

{
c if x ∈ {a, a+N/pi, a+ 2N/pi, . . . , a+ (pi − 1)N/pi},
0 otherwise.

If a fiber F0 has the form (8.3), we will refer to c as its multiplicity, and will say that the
fiber is rooted at a or passes through a.

(ii) A set A ⊂ ZM is N -fibered in the pi direction if it can be written as a union of disjoint
N-fibers in the pi direction, all with the same multiplicity.

(iii) Let P ⊂ {1, 2, . . . , ni} be non-empty, where pni
i ∥ M . A set F ⊂ ZM is a P-fiber chain

in the pi direction if |F | = p
|P|
i and F is N-fibered in the pi direction for each N = M/pα−1

i ,
where α ∈ P. We will also use the convention that if P = ∅, then a P-fiber chain in any
direction is any singleton set {x} with x ∈ ZM .

(iv) A set A ⊂ ZM is P-fibered in the pi direction if it can be written as a union of disjoint
P-fiber chains in the pi direction.

We list a few examples. Observe that, while we will not use P-fiber chains with multiplic-
ities greater that 1, Definition 8.2 (iii) does require the concept of N -fibers with multiplicity.

• A {1}-fiber chain in the pi direction is simply an M -fiber in that direction, and an
{1}-fibered set in the pi direction with multiplicity 1 is M -fibered in that direction,
as defined in Section 2.3.
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• A {2}-fiber chain in the pi direction is a set F ⊂ ZM such that for some a ∈ ZM we

have F (x) ≡ Xa(1 + XM/p2i + X2M/p2i + · · · + X(pi−1)M/p2i ) mod (XM/pi − 1). Note
that |F | = pi.

• A {1, 2}-fiber chain in the pi direction is a set F ⊂ ZM such that for some a ∈ ZM we

have F (x) ≡ Xa(1 +XM/p2i +X2M/p2i + · · ·+X(p2i−1)M/p2i ) mod (XM − 1). Note that
|F | = p2i , F is M -fibered in the pi direction with multiplicity 1, and M/pi-fibered in
the pi direction with multiplicity pi.

Lemma 8.3. (Properties of fibered sets) Assume that A ⊂ ZM is P-fibered in the pi
direction for some P ⊂ {1, 2, . . . , ni}. Then the following hold.

(i) We have

(8.4)
∏
α∈P

ΨM/pαi
(X)|A(X).

In particular, Φs(X)|A(X) for all s|M , s ̸= 1, such that s = pni−α+1
i s′, where α ∈ P and

(s′, pi) = 1.

(ii) We have p
|P|
i | |A|. In particular, a P-fiber chain F as in Definition 8.2 (iii) is a

minimal set that is P-fibered in the pi direction.

(iii) {M/pαi : α ∈ P} ⊂ Div(A).

(iv) Let F ⊂ ZM be a P-fiber chain with multiplicity 1 in the pi direction. Translating F
if necessary, we may assume that 0 ∈ F . Let γ = maxP. Then F ⊂ (M/pγi )ZM ⊂ ℓi(0),
and F tiles (M/pγi )ZM ≃ Zpγi

with the standard tiling complement G, where

G(X) =
∏

τ : 1≤τ<γ, τ /∈P

ΨM/pτi
(X).

(We use the convention that an empty product is equal to 1.)

Proof. Part (i) follows directly from the definition, and (ii) follows from (i) since ΦM/pαi
(1) =

pi. For (iii), let α ∈ P , and let a, a′ ∈ A be elements that belong to the same M/pα−1
i -fiber

in the pi direction, but not to the same M/pβi -fiber in the pi direction for any β < α − 1.
Then (a− a′,M) = M/pαi , as claimed.

We now prove (iv). Assume that 0 ∈ F . Since ΨM/pαi
(X) = Φpγ−α+1

i
(XM/pγi ) for α ≤ γ, by

(i) we have F (X) ≡ Q(X)Ψ(XM/pγi ) mod (XM − 1), where

Ψ(X) =
∏
α∈P

Φpγ−α+1
i

(X).

Since Ψ(1) =
∏

α∈P pi = |F |, we have Q(1) = 1. Splitting up the weighted multiset corre-
sponding to Q(X) into residue classes mod M/pγi , and using that F is a set, we see that
Q ∈ M((M/pγi )ZM). Hence F ⊂ (M/pγi )ZM .

Let F ′ = { x
M/pγi

: x ∈ F}, so that F ′ ⊂ Zpγi
and Ψ(X) | F ′(X), with Ψ(1) = |pi||P| =

|F ′|. This is the (T1) tiling condition for F ′. Hence F ′ tiles Zpγi
with the standard tiling

complement (see Remark 3.1). Rescaling back to F ⊂ ZM , we get (iv). □
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8.2. Cofibers and cofibered structures. Given a tiling A⊕B = ZM , we will be interested
in the occurrences of “complementary” fiber chains in A and B, in the following sense.

Definition 8.4 (Cofibers). Let A,B ⊂ ZM , and fix 1 ≤ γ ≤ ni. Let PA,PB be two disjoint
sets such that

(8.5) PA ∪ PB = {1, 2, . . . , γ}.
We say that F ⊂ A,G ⊂ B are (PA,PB)-cofibers in the pi direction if:

• F is a PA-fiber chain in the pi direction,
• G is a PB-fiber chain in the pi direction.

We will also refer to (F,G) as a (PA,PB)-cofiber pair.

Note that if γ = 1, then one of the sets PA and PB must be empty. If γ = 1 and PA = ∅,
then F is a singleton and G is an M -fiber in the pi direction.

Our goal will be to find global cofibered structures as described below. If A⊕B = ZM is a
tiling pair, having a cofibered structure will often allow us to reduce proving (T2) for (A,B)
to proving it to an equivalent but simpler tiling pair. In order to allow for intermediate steps
involving sets that are only partially fibered, we state the definition below for arbitrary sets
A,B ⊂ ZM .

Definition 8.5 (Cofibered structure and cofibered sets). Let A,B ⊂ ZM , and fix
1 ≤ γ ≤ ni. Let PA,PB be two disjoint sets obeying (8.5).

(i) We say that the pair (A,B) has a (PA,PB)-cofibered structure in the pi direction if:

• B is PB-fibered in the pi direction,
• A contains at least one “complementary” PA-fiber chain F ⊂ A in the pi direction,
which we will call a cofiber for this structure. We will say that F is rooted at a ∈ A
if a ∈ F .

(ii) We say that the pair (A,B) is (PA,PB)-cofibered in the pi direction if:

• A is PA-fibered in the pi direction,
• B is PB-fibered in the pi direction.

We emphasize that part (i) of the definition is not symmetric with respect to A and B.
Our convention is that the second set in the pair must be fibered in its entirety. While a
cofibered structure may have more than one cofiber in A, we do not require that the entire
pair (A,B) be cofibered. We will refer to the number γ in Definitions 8.4 and 8.5 as the
depth of, respectively, the cofiber pair or the cofibered structure.

If A and B satisfy the condition of Definition 8.5 (i), then by Lemma 8.3,

(8.6) {M/pαi : α ∈ PA} ⊆ Div(A), {M/pβi : β ∈ PB} ⊆ Div(B),

(8.7)
∏
β∈PB

ΨM/pβi
(X)|B(X),

and if a cofiber F is rooted at some a ∈ A, then

(8.8) Xa
∏
α∈PA

ΨM/pαi
(X)

∣∣∣F (X).
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Remark 8.1. Assume that A,B ⊂ ZM satisfy Div(A)∩Div(B) = {M}, and fix 1 ≤ γ ≤ ni.
Let PA,PB be two disjoint sets obeying (8.5). Assume that

(8.9) {M/pαi : α ∈ PA} ∩Div(B) = ∅.

(In particular, if A⊕B = ZM and A contains a PA-fiber chain in the pi direction, then (8.9)
holds by Lemma 8.3 (iii) and divisor exclusion.) Then, in order to prove that B is PB-fibered
in the pi direction, it suffices to verify that every b ∈ B belongs to a PB-fiber chain F (b) in
the pi direction. Indeed, by Lemma 8.3 (iv), every F (b) is a maximal subset of b∗ (M/pγi )ZM

such that Div(F (b))∩ {M/pαi : α ∈ PA} = ∅. Hence, under the above assumptions, any two
fiber chains F (b) and F (b′) with b, b′ ∈ B must be either identical or disjoint.

8.3. Fiber shifting. Cofibered structures are important for two reasons. On one hand, they
arise naturally from 1-dimensional saturating spaces (see Lemma 8.9 below). On the other
hand, with a cofibered structure in place, Lemma 8.6 allows us to shift the cofibers in A as
indicated while maintaining both the tiling property and the (T2) status of A. Applying
such shifts repeatedly, we are able to reduce many cases to simpler tilings where (T2) is easy
to verify.

Lemma 8.6 (Fiber-Shifting Lemma). Let A ⊕ B = ZM . Assume that the pair (A,B)
has a (PA,PB)-cofibered structure, with a cofiber F ⊂ A. Let A′ be the set obtained from A

by shifting F by M/pβi for any β ∈ PB. Then A′ ⊕B = ZM , and A is T2-equivalent to A′.

Proof. We have

A′(X) = A(X) + (XkM/pβi − 1)F (X)

for some k with (k, pi) = 1.

We must prove that Φs(X)|A′(X)B(X) for all s|M, s ̸= 1. Fix such s, and write it as
s = pni−γ

i s′, where (s, pi) = 1. Consider three cases.

• If γ ≥ β, then Φs(X) | (XkM/pβi − 1), therefore it divides A if and only if it divides
A′.

• If γ < β and γ ∈ PB, then Φs(X) | ΨM/pγi
(X) | B(X).

• If γ < β and γ ∈ PA, then Φs(X) | ΨM/pγi
(X) | F (X), therefore Φs divides A if and

only if it divides A′.

This implies the first part of the lemma.

Suppose furthermore that Φs is a (T2) cyclotomic polynomial of A, in the sense that
s = s1 . . . sτ , where s1, . . . , sτ are powers of distinct primes such that Φs1 . . .Φsτ |A. In
particular, we must have Φ

p
ni−γ
i

| A, and therefore Φ
p
ni−γ
i

∤ B. By the above analysis applied

to pni−γ
i instead of s, we must have either γ ≥ β or γ ∈ PA. In both cases, we get that Φs

divides A if and only if it divides A′, so that the (T2) property is preserved when we pass
from A to A′. □

8.4. Fibers and 1-dimensional saturating spaces. We now prove that 1-dimensional
saturating sets imply cofibered structures.

Lemma 8.7. Assume that A⊕B = ZM , and let x, y ∈ ZM .
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(i) Let 1 ≤ α, α′ ≤ ni with α ̸= α′. Then

AM/pαi
[x]BM/pαi

[y]AM/pα
′

i
[x]BM/pα

′
i
[y] = 0.

In particular, if Ax,y ⊂ ℓi(x), then the product ⟨A[x],B[y]⟩ is saturated by a single divisor.

(ii) Suppose that Ax ⊂ ℓi(x). Then there exists an α with 0 ≤ α ≤ ni such that

AM/pαi
[x]BM/pαi

[b] = ϕ(pαi ) for all b ∈ B.

Proof. Part (i) is a special case of Lemma 7.8, and part (ii) follows from (7.9). □

Definition 8.8. Let P ⊂ {1, 2, . . . , ni}, and let F ⊂ ZM be a P-fiber chain in the pi direction.

(i) An element x ∈ ZM is at distance m from F if m|M is the maximal divisor such that
(z − x,M) = m for some z ∈ F .

(ii) If 1 ≤ δ ≤ ni, we will write P [δ] = P ∩ {1, 2, . . . , δ}.

If x ∈ ZM and F ⊂ ZM is a P-fiber chain in the pi direction, then for all z ∈ F we have

(z−x,M) = m′p
α(z)
i , where m′|(M/pni

i ) is the same for all z ∈ F . In particular, the distance

from x to F is well defined and is equal to m′p
maxz∈F α(z)
i .

Lemma 8.9 (The structure of 1-dimensional saturating spaces). Assume that A ⊕
B = ZM is a tiling.

(i) Suppose that x, y ∈ ZM satisfy x /∈ A and

(8.10) AM
M/pγi

[x]BM
M/pγi

[y] = ϕ(pγi )

for some 0 < γ ≤ ni. Then there exist two disjoint sets PA,PB with

(8.11) PA ∪ PB = {1, . . . , γ − 1},

(8.12) {M/pαi : α ∈ PA} ⊆ Div(A), {M/pβi : β ∈ PB} ⊆ Div(B),

such that the following holds. Let A0 ⊂ Ax,y be a maximal subset such that for all a, a′ ∈ A0

with a ̸= a′ we have (a − a′,M) = M/pγi , and let B0 be a similar subset of By,x. Then one
of the sets A0 and B0 has cardinality 1, the other has cardinality pi − 1, and furthermore

(8.13) Ax,y =
⋃
a∈A0

F (a), By,x =
⋃
b∈B0

G(b),

where F (a) is a PA-fiber chain in the pi direction rooted at a, and G(b) is a PB-fiber chain
in the pi direction rooted at b.

(ii) Suppose that x ∈ ZM \ A and Ax ⊂ ℓi(x), with

(8.14) AM
M/pγi

[x]BM
M/pγi

[b] = ϕ(pγi ) for all b ∈ B,

where 0 < γ ≤ ni (as follows from Lemma 8.7 (ii)). Then the pair (A,B) has a (PA,PB ∪
{γ})-cofibered structure, with Ax as a PA-cofiber at a distance M/pγi from x.

Proof. We first prove (i). Define A0 and B0 as above. Since A0 ⊂ x ∗ (M/pγi )ZM and each
element of A0∪{x} is contained in a different residue class mod M/pγi , we have |A0| ≤ pi−1,
and similarly for B0. By divisor exclusion, at most one of these sets has cardinality greater
than 1.
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Next, let A1 ⊂ x ∗ (M/pγi )ZM be a maximal subset of Ax,y such that

∀a, a′ ∈ A1 with a ̸= a′, we have (a− a′,M) = M/pγ−1
i ,

and define B1 similarly. Then |A1| ≤ pi|A0|, since for each a ∈ A1 there must be a “parent”
a0 ∈ A0 with M/pγ−1

i | a− a0, and each a0 can have at most pi such “children” a ∈ A1 (we
allow a = a0, so that A0 ⊂ A1). Similarly, |B1| ≤ pi|B0|. Moreover, if |A1| > |A0|, then we
must have M/pγ−1

i ∈ Div(A), and similarly for B, so that at least one of |A1| = |A0| and
|B1| = |B0| must hold. If |A1| > |A0|, we place γ − 1 in PA, otherwise we place it in PB.

We continue by induction, constructing a sequence of sets

A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ Aγ−1 = Ax,y, B0 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ Bγ−1 = By,x,

and two disjoint sets PA,PB obeying (8.11), so that for each l = 1, 2, . . . , γ − 1:

• if l ∈ PA, then |Aγ−l+1| ≤ pi|Aγ−l|, |Bγ−l+1| = |Bγ−l|, and M/pγ−l
i ̸∈ Div(B),

• if l ∈ PB, then the same holds with A and B interchanged.

It follows that

AM
M/pγi

[x]BM
M/pγi

[y] ≤ |A0| |B0| p|PA|
i p

|PB |
i ≤ (pi − 1)pγ−1

i = ϕ(pγi ).

Furthermore, for the equality to hold, one of the sets A0, B0 must have cardinality pi − 1,
for each a ∈ A0 the set F (a) := {a ∈ Ax,y : M/pγ−1

i | a − a0} must be a full PA-fiber chain
in the pi direction rooted at a, and a similar statement must hold for B. This yields the
structure described in part (i).

For part (ii), assume that (8.14) holds, and let B0(b) be the set from (8.12) with y = b for
each b ∈ B. Since M/pγi ∈ Div(B), we must have |A0| = 1 and |B0(b)| = pi − 1, Fix b ∈ B,
so that

Bb,x =
⋃

b′∈B0(b)

G(b′).

Let b′ ∈ B0(b), and apply part (i) of the lemma with y = b′. Since b ∈ Bb′,x, there is a
PB-fiber chain G(b) ⊂ B rooted at b, so that

Bb′,x = G(b) ∪
⋃

b′′∈B0(b),b′′ ̸=b′

G(b′′).

Thus
⋃

b′′∈B0(b)∪{b}G(b′′) is a (PB∪{γ})-fiber chain in B, rooted at b. Applying this argument
to all b ∈ B, and using Remark 8.1, we get the cofibered structure as indicated. □

The following special case will be used frequently in [24].

Corollary 8.10. Assume that A ⊕ B = ZM is a tiling. Suppose that x ∈ ZM \ A, b ∈ B,
M/pi ∈ Div(A), and

(8.15) AM
M/p2i

[x]BM
M/p2i

[b] = ϕ(p2i ).

Then there exists a ({1}, {2})-cofiber pair (F,G) such that F ⊂ A is at distance M/p2i from
x, G ⊂ B is rooted at b, and

(8.16) AM
M/p2i

[x|F ]BM
M/p2i

[b|G] = ϕ(p2i ).

In particular, if M/pi ∈ Div(A) and Ax ⊂ ℓi(x) with M/p2i as the contributing divisor (cf.
Lemma 8.7 (ii)), then the pair (A,B) has a ({1}, {2})-cofibered structure.
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For simplicity, when M is fixed, we will write “(1, 2)-cofiber pair” instead of “({1}, {2})-
cofiber pair”, and similarly for cofibered structures.

8.5. Examples and applications. Let M = pn1
1 . . . pnK

K with K ≥ 3 and p1, . . . , pK ≥ 3.
Assume that A⊕B = ZM and |A| = p1 . . . pK . Let also Λ be a fixed D(M) grid, and assume
that 0 ∈ A ∩ Λ.

Example 1. By Lemma 7.9, we cannot have Λ\A = {x} for a single point x ∈ Λ. Similarly,
we cannot have A ∩ Λ = A0 if A0 is obtained from Λ by deleting a few more points in an
“unstructured” way so that the assumptions of Lemma 7.9 still apply.

Suppose, however, that A0 = Λ\ (x∗Fi) for some x ∈ Λ and i ∈ {1, . . . , K}. Then Lemma
7.9 is no longer applicable, and indeed, it is possible to have A ∩ Λ = A0. However, as we
now show, this determines the structure of the entire set A, and, in particular, both A and
B satisfy (T2).

Indeed, we have AM/pj [x] ≥ 2 for all j ̸= i. It follows by (7.9) that Ax ⊂ ℓi(x). By
Proposition 8.9, the pair (A,B) has a (PA,PB)-cofibered structure of depth γ ≥ 2, with
1 ∈ PA since M/pi ∈ Div(A). In particular, A must contain an M -fiber in the pi direction
at distance M/pγi from x. By Lemma 8.6, we can shift that fiber to x, proving that A is
T2-equivalent to Λ. Thus A♭ = Λ, and Corollary 3.6 implies (T2) for both A and B.

We note that the same argument still applies if A∩Λ has several fibers missing (possibly
in different directions). This is the case e.g., in Szabó-type examples in [43], [25].

Example 2. We now consider a more difficult example where saturating sets are not as
obvious. Let M = p2i p

2
jp

2
k with pi, pj, pk ≥ 3, and assume that |A| = pipjpk tiles ZM . Suppose

that there exists an element x ∈ Λ \ A such that

(8.17) AM/pi [x] = ϕ(pi),AM/pjpk [x] = ϕ(pjpk)

and Am[x] = 0 for all m ∈ {D(M)|m|M} \ {M/pi,M/pjpk}. In the terminology of [24], this
is a pi-full plane structure. We prove in [24, Section 7] that, for a broader class of tilings
including this situation, we have A♭ = Λ and the tiling A ⊕ B = ZM is T2-equivalent to
Λ ⊕ B = ZM via fiber shifts. By Corollary 3.6, both A and B satisfy (T2). For expository
purposes, we restrict our attention here to this specific structure.

Figure 5. A pi-full plane structure on a D(M) grid.

Consider the saturating set Ax, with x as above. This time, geometric restrictions alone
are not sufficient to confine Ax to a single line through x. Nonetheless, with an additional
argument we have the following lemma.
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Lemma 8.11. Under the assumptions of Example 2, we have either Ax ⊂ ℓj(x) or Ax ⊂
ℓk(x).

Proof. By (7.9), we have

(8.18) Ax ⊂ ℓj(x) ∪ ℓk(x).

Let b ∈ B. Suppose that Ax,b ∩ ℓj(x) is nonempty. Since M/pj ∈ Div(A), we must have

(8.19) AM/p2j
[x]BM/p2j

[b] > 0.

If we also had Ax,b ∩ ℓk(x) ̸= ∅ for the same b, that would imply that

(8.20) AM/p2k
[x]BM/p2k

[b] > 0;

however, having (8.19) and (8.20) at the same time would contradict Lemma 7.8. Therefore
we must have either Ax,b ⊂ ℓj(x) or Ax,b ⊂ ℓk(x). Notice that in the former case we have

(8.21) AM/p2j
[x]BM/p2j

[b] = ϕ(p2j).

Since M/pj ∈ Div(A), this can only happen if

(8.22) AM/p2j
[x] = pj and BM/p2j

[b] = ϕ(pj).

In other words, the pair (A∩ℓj(x), B∩ℓj(b)) contains a (1, 2)-cofiber pair in the pj direction.
If Ax,b ⊂ ℓk(x), (8.21) and (8.22) hold with j replaced by k.

We claim that either Ax ⊂ ℓj(x) or Ax ⊂ ℓk(x). Indeed, assume for contradiction that
there exist bj, bk ∈ B such that Ax,bj ⊂ ℓj(x) and Ax,b ⊂ ℓk(x). It follows from (8.22) that

|A ∩ Π(x, pni
i )| ≥ AM/p2j

[x] + AM/p2k
[x] + AM/pjpk [x]

= pj + pk + (pj − 1)(pk − 1)

= pjpk + 1.

This, however, contradicts Lemma 2.3. □

Assume, without loss of generality, that Ax ⊂ ℓj(x). By Corollary 8.10, the pair (A,B)
has a (1, 2)-cofibered structure in the pj direction, with a cofiber in A at distance M/p2j from
x. By Lemma 8.6, we may shift the cofiber to x. Let A′ be the set thus obtained, so that
A′ ∩ Λ contains all points of A ∩ Λ plus, additionally, the fiber x ∗ Fj ⊂ A′. Moreover, A′ is
T2-equivalent to A, and A′ ⊕B = ZM .

In this example, we do not get T2-equivalence to a standard set right away. Instead, the
new set A′ contains a structure we call a pj-corner [24], consisting of two nonintersecting
M -fibers in the pi and pk directions in Λ. We then have to work further with that structure
to prove that, ultimately, A′ (therefore A) is T2-equivalent to Λ.

9. Conjectures and open questions

9.1. Tiling reductions. We first consider the question of whether proving properties such
as (T2), or, more generally, proving structure and classification results for tilings, could be
accomplished by inductive arguments involving reduction to tilings of smaller groups.

Let A ⊕ B = ZM be a tiling, and assume for convenience that 0 ∈ A ∩ B. If M has at
most two distinct prime factors, then Sands’s theorem [37] states that at least one of A, B
must be contained in pZM for some prime p|M . Thus we can always use Theorem 6.1 to
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decompose such a tiling into tilings of residue classes, with at least one of the sets A and B
tiling pZM . This was the route taken in [2].

Suppose now that M =
∏K

i=1 p
ni
i , where pi are distinct primes and K ≥ 3. Sands’s

theorem no longer holds in that setting, with counterexamples given by Szabó [43] (see also
[25]). However, it is conceivable that other inductive arguments, not based on Theorem 6.1,
may still apply. For example, the following question is open.

Question 1. Let A⊕B = ZM with M =
∏K

i=1 p
ni
i .

(i) (Strong version) Suppose that Φp
ni
i
|A for some i ∈ {1, 2, . . . , K}. Is it always true that,

in the notation of Theorem 6.5, we have A′
pi
⊕B = ZM/pi for every translate A′ of A?

(ii) (Weak version) Must there always exist some i ∈ {1, 2, . . . , K} such that either A′
pi
⊕

B = ZM/pi for every translate A′ of A, or A⊕B′
pi
= ZM/pi for every translate B′ of B?

We do not know of any counterexamples to this. Szabó’s examples [43] satisfy the con-
ditions of Theorem 6.5, as do all tilings of period M = p21p

2
2p

2
3, where p1, p2, p3 are all odd

[24].

Assume that Φp
ni
i
|A for some i ∈ {1, 2, . . . , K}. By Proposition 3.4, the property (T2) for

B is equivalent to A♭⊕B = ZM , where A♭ is the corresponding standard tiling complement.
Heuristically, the slab reduction could be thought of as going part of the way in that direction,
with the original tile A replaced by a new tile S which keeps some of the structure of A but,
additionally, is periodic in the pi direction. On the other hand, even if we assume a priori
that both A and B satisfy (T2), this does not appear to imply the slab reduction in any
obvious formal way. We do not know whether it is always possible to start with the original
tiling and reach A♭⊕B = ZM via a sequence of slab reductions or other similar steps. While
it does follow from [24] that all tilings of odd period M = p21p

2
2p

2
3 satisfy the conditions of

Theorem 6.5, this is obtained a posteriori as a consequence of our classification of all such
tilings, with (T2) and the classification results obtained by other means in some cases.

It is worthwhile to describe Szabó-type examples in more detail. (For the purpose of this
paper, we use a modification of Szabó’s original construction in [43], which was set in a
different abelian group but was nonetheless based on the same idea. See also the examples
in [25] and [4].) We start with the standard tiling A♭ ⊕ B♭ = ZM , where M = p21p

2
2p

2
3, A

♭ is
the standard tiling set with Φp2i

|A for all i ∈ {1, 2, 3}, and B♭ is the standard tiling set with

Φpi |B for all i ∈ {1, 2, 3}. We then use fiber shifts (Lemma 8.6) to modify A♭ so that for each
i, oneM -fiber in A♭ in the pi direction is shifted by a distanceM/p2i . ForK = 3, theM -fibers
in all 3 directions can be selected so that all three shifts can be performed independently
without destroying the tiling property. This produces a new tiling A ⊕ B♭ = ZM in which
neither A nor B♭ is contained in a proper subgroup of ZM .

Noting that the pair (A,B♭) in the above construction has a (1, 2)-cofibered structure in
all three directions, one might ask whether one of A and B must in fact be contained in a
proper subgroup if no such obstructions are present. This motivates the following question.

Question 2. Let A ⊕ B = ZM with M =
∏K

i=1 p
ni
i . Suppose that Φp

ni
i
|A for some i ∈

{1, 2, . . . , K}. Is it always true that at least one of the following must hold?

(i) (Subgroup tiling) A ⊂ ZM/pi.
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(ii) (Obstruction) There exists an element x ∈ ZM \A such that Ax ⊂ ℓi(x). Furthermore,
the pair (A,B) has a (PA,PB)-cofibered structure of depth at least 2, with 1 ∈ PA.

It is possible that, at least for K ≥ 4, more complicated obstructions may occur that
cannot be reduced to 1-dimensional saturating spaces. However, the results of [24] show that
the answer is affirmative if M = p21p

2
2p

2
3. It seems reasonable to conjecture the following.

Conjecture 9.1. The answers to Questions 1 (both versions) and 2 are affirmative when
M has at most 3 distinct prime factors.

Proposition 3.4 also relates the (T2) property to divisor sets, in the sense that B satisfies
(T2) if any only if its divisor set Div(B) is disjoint from Div(A♭). The equivalence between
conditions (ii) and (iii) in Theorem 6.5 establishes a more granular result in this direction,
by connecting a smaller family of differences in A to the corresponding family of cyclotomic
polynomials. Specifically, if we write Si := {m : pni

i |m|M} for a fixed i ∈ {1, . . . , K},
then Theorem 6.5 establishes a fundamental connection between the set of differences m ∈
Div(A) ∩ Si and the collection of all cyclotomic polynomials Φd dividing A, for d ∈ Si.
It would be interesting to know whether such relationships exist on the level of individual
differences and cyclotomic polynomials. As an extreme example of a hypothetical result of
this type, we state the following.

Conjecture 9.2. If Φp
ni
i
|A, then M/pi /∈ Div(B).

This conjecture can be stated purely in terms of differences, since Φp
ni
i
|A if and only if

M/pi ∈ Div(A♭). It is obviously necessary in order for (T2) to hold, though not sufficient.
Absent a proof of (T2) in its full generality, this might be an interesting direction to explore.

Our saturating set techniques provide partial support for the conjecture, as follows. Sup-
pose that M/pi ∈ Div(B), with (b− b′,M) = M/pi for some b, b′ ∈ B. Suppose further that
Conjecture 9.2 is true. Then Φp

ni
i

∤ A, so that Φp
ni
i
|B. In particular,

|B ∩ Π(y, pni
i )| = 1

pi
|B ∩ Π(b, pni−1

i )|

for every y ∈ ZM with (y − b,M) = M/pi. We do not know how to prove this, but we
can prove the weaker statement that B ∩ Π(y, pni

i ) ̸= ∅ for each such y. Indeed, if y ∈ B,
this is obvious. If, on the other hand, y ̸∈ B, then by (7.9) we have By ⊂ Π(y, pni

i ), and in
particular B ∩ Π(y, pni

i ) is nonempty.

We note that fibering plays a significant role in all our tiling arguments. For instance, if A
is M -fibered in some direction, this is sufficient to apply the slab reduction (see Remark 6.1).
At the other extreme, if ΦM |A but A fails to be M -fibered on some D(M) grid, our strategy
in [24] is to identify and use cofibered structures, which in particular implies fibering in B
on a lower scale. Motivated by this, we conjecture the following.

Conjecture 9.3. For every i there exists 1 ≤ αi < ni such that either A or B is M/pαi
i -

fibered in the pi direction. In particular, if M has 3 prime factors, ΦM |A, and there exists a
D(M) grid Λ such that A∩Λ is not fibered in any direction, then B is fibered in all directions
on some scale. (This happens e.g., in Szabó’s examples.)



COMBINATORIAL AND HARMONIC-ANALYTIC METHODS FOR INTEGER TILINGS 47

9.2. Saturating sets. We have seen in Lemma 8.9 and Corollary 8.10 that if Ax ⊂ ℓi(x)
for some i ∈ {1, . . . , K} and x ∈ Z \ A, this implies a cofibered structure in (A,B). By
Lemma 8.6, this allows us to shift M -fibers in A in the given direction. We use this in [24]
to reduce A ⊕ B = ZM to T2-equivalent tilings A′ ⊕ B = ZM , where A′ has additional
regularity properties. It would therefore be interesting to either find a structure theorem
(an analogue of Lemma 8.9) for saturating sets contained in higher-dimensional subspaces,
or, alternatively, to find a systematic way of adding geometric constraints on saturating sets
until we find a cofibered structure.

In all examples where we have been able to determine saturating sets, we found that they
enjoy pleasant “splitting” properties. For example, suppose that (x−a,M) = M/pi for some
a ∈ A and i ∈ {1, . . . , K}. By (7.9), we have

(9.1) Ax ⊂ Bispan(x, a) = Π(x, pni
i ) ∪ Π(a, pni

i ).

However, what actually tends to happen is that either Ax ⊂ Π(x, pni
i ) or Ax ⊂ Π(a, pni

i ). For
instance, if AM/pi [a] > 0, then AM/pi [x] ≥ 2 and

Ax ⊂ Π(x, pni
i ).

If, however, BM/pi [b] > 0, then

Ax,b ⊂ Π(a, pni
i ).

For an example of a less obvious situation where this happens, see e.g. [24, Lemma 9.18].

Similarly, suppose that K = 3 and let x ∈ ZM . Assume that there are two elements
ai, aj ∈ A such that (x − ai,M) = M/pi and (x − aj,M) = M/pj, with i, j ∈ {1, 2, 3}
distinct. Then, by Lemma 7.9 again,

Ax ⊂ Bispan(x, ai) ∩ Bispan(x, aj) = ℓk(x) ∪ ℓk(ai) ∪ ℓk(aj) ∪ ℓk(xij).

where xij ∈ ZM is the unique point such that (xij−ai,M) = M/pj and (xij−aj,M) = M/pi.
However, in all tiling examples that we have worked out, Ax is in fact contained in just one
of the above lines. An example of this type of situation is provided by [24, Lemma 4.6]. See
also Lemma 8.11 in this paper for a different example where the initial geometric constraints
restrict the saturating set to a union of two lines (8.18), but then additional arguments show
that only one of these lines may participate.

Returning to the “two planes” situation as in (9.1), we can in fact say a little bit more.
By (9.1), we have for any b ∈ B,

1 =
∑
p
ni
i |m

1

ϕ(M/m)
(Am[x]Bm[b] + Am/pi [x]Bm/pi [b]).

Suppose that Bm[b] and Bm/pi [b] are both nonzero for some m with pni
i |m|M . If there were

an a′ ∈ A with (x− a′,M) ∈ {m,m/pi}, then we would also have (a− a′,M) ∈ {m,m/pi},
contradicting divisor exclusion. Moreover, if Bm/pi [b] ̸= 0, then any a′ ∈ A with (x−a′,M) ∈
{m,m/pi} must lie in the plane Π(a, pni

i ). Hence

(9.2) 1 =
∑
p
ni
i |m

1

ϕ(M/m)
(δmAm[x]Bm[b] + (1− δm)Am[a]Bm/pi [b])

where δm ∈ {0, 1} for all pni
i |m.

It appears reasonable to conjecture the following.
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Conjecture 9.4. Let A⊕B = ZM be a tiling, and assume that (x−a,M) = M/pi for some
a ∈ A, x ∈ ZM \ A, and i ∈ {1, . . . , K}. Then either Ax ⊂ Π(x, pni

i ) or Ax ⊂ Π(a, pni
i ).

Furthermore, either δm = 1 for all m, or δm = 0 for all m, depending only on the choice of
a ∈ A and b ∈ B.

A similar reasoning, with only slightly more effort, applies to Ax,y and By,x as in (7.12)
with x ∈ ZM \ A and y ∈ ZM \B.

9.3. Subspace bounds. The special case of Lemma 2.3 with K = 3 and αi = 0 is a simple
but very effective tool in [24]. It would be useful to have similar bounds for lower-dimensional
subspaces, for example lines in the 3-prime case. In this regard, we formulate the following
modest conjecture.

Conjecture 9.5. Suppose that pαi
i ∥ |A| with αi < ni. Then for all x ∈ ZM

(9.3) |A ∩ ℓi(x)| < pni
i .

Conjecture 9.5 is clearly true when:

• pni
i exceeds the plane bounds |A ∩ Π(x, p

nj

j )| for j ̸= i,

• A satisfies (T2) (in this case, A ⊕ B♭ = ZM and there exists βi so that M/pβi

i /∈
Div(A)).
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