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Tiling the integers: an introduction



Tiling the integers with a finite set

Let A ⊂ Z be a finite set. We say that A tiles Z by translations
if Z can be covered by a union of disjoint translates of A.
(There is an infinite set T ⊂ Z such that every x ∈ Z can be
uniquely represented as x = a+ t, with a ∈ A, t ∈ T .)

A = {0, 2}

A = {0, 4, 8}

A = {0, 1, 3}

A = {0, 2} and A = {0, 4, 8} tile Z; A = {0, 1, 3} does not.

How to determine whether a given A tiles the integers?
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Periodicity and reductions

• Newman (1977): all tilings of Z by a finite set A are
periodic. Reduces the problem to tilings of finite cyclic
groups A⊕B = ZM with addition mod M .

• We may assume that M has the same prime factors as |A|.
(Coven and Meyerowitz 1998, based on a theorem of
Tijdeman)

• Sands (1979): Let A,B ⊂ ZM . Then A⊕B = ZM if and
only if |A| |B| = M and

Div(A) ∩Div(B) = {M},
where Div(A) = {(a− a′,M) : a, a′ ∈ A}.
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Geometric representation of tilings

Suppose that A⊕B = ZM , with M =
∏K
i=1 p

ni
i , pi distinct

primes, ni ≥ 1. By the Chinese Remainder Theorem, we have

ZM = Zpn11
⊕ · · · ⊕ ZpKnK ,

which we can represent geometrically as a K-dimensional
lattice. Then A⊕B can be interpreted as a tiling of that lattice.

(However, this is more than just a multidimensional tiling. It
will be important that the side lengths in different dimensions
are powers of distinct primes.)



Geometric representation of sets

A = {0,M/pi, 2M/pi, . . . , (pi − 1)M/pi}

︸︷︷︸ M/pi

︸︷︷︸M/pj

︸︷︷︸M/pk

0

A = {x ∈ ZM : M/pipj |x}
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The Coven-Meyerowitz tiling conditions



Polynomial formulation

By translational invariance, we may assume that
A,B ⊂ {0, 1, . . . } and that 0 ∈ A ∩B. The characteristic
polynomials (aka mask polynomials) of A and B are

A(X) =
∑
a∈A

Xa, B(X) =
∑
b∈B

Xb.

Then A⊕B = ZM is equivalent to

A(X)B(X) = 1 +X + · · ·+XM−1 mod (XM − 1).

Now use factorization of polynomials.



Cyclotomic polynomials

The s-th cyclotomic polynomial is the unique monic, irreducible
polynomial Φs(X) whose roots are the primitive s-th roots of
unity. Alternatively, Φs can be defined inductively via

Xn − 1 =
∏
s|n

Φs(X).

Then the tiling condition A(X)B(X) = 1 +X + · · ·+XM−1

mod (XM − 1) is equivalent to

|A||B| = M and Φs(X) | A(X)B(X) for all s|M, s 6= 1.

Since Φs are irreducible, each Φs(X) with s|M , s 6= 1, must
divide at least one of A(X) and B(X).



Tiling equivalences

To summarize, the following are equivalent:

• A⊕B = ZM
• |A||B| = M and Div(A) ∩Div(B) = {M}
• A(X) ·B(X) = 1 +X + . . .+XM−1 mod XM − 1

• A(1) ·B(1) = M and each Φs(X) with s|M , s 6= 1, must
divide at least one of A(X) and B(X)



The Coven-Meyerowitz Theorem (1998)

Let SA = {pα : Φpα(X)|A(X)}. Consider the following
conditions.

(T1) A(1) =
∏
s∈SA Φs(1),

(T2) if s1, . . . , sk ∈ SA are powers of different primes, then
Φs1...sk(X) divides A(X).

Then:

• if A satisfies (T1), (T2), then A tiles Z;

• if A tiles Z then (T1) holds;

• if A tiles Z and |A| has at most two prime factors, then
(T2) holds.



Cyclotomic polynomials and distribution

Divisibility by prime power cyclotomic polynomials Φpαi
can be

interpreted in terms of distribution of the elements of A:

• Φpi |A⇔ A is equidistributed mod pi,

• Φp
ni
i
|A⇔ A is equidistributed mod pnii within residue

classes mod pni−1
i .

︸︷︷︸M/pi

︸︷︷︸M/pi

a0 ∈ A a0

a1

api−1

⇒

a0, a1, a2, . . . , api−1 ∈ A

pni−1
i ‖ aν − aν′
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Alternative formulation of T2
Assume A⊕B = ZM , with M =

∏
i p
ni
i . Let Mi = M/pnii .

Define the standard tiling set

A[(X) =
∏
i

∏
α:Φpα

i
|A

Φpi

(
XMip

α−1
i

)
.

This has the same prime power cyclotomic divisors as A, but
also has a “lattice structure”.

M/pi

︷ ︸︸ ︷

{

M/pj

M/p2i

{

{

A B

Φp2
i
Φp2

j
|A

ΦpiΦpj |B
Φp2

i
Φpj |A

Φpi
Φp2

j
|B

A = A[, B = B[

M/p2j



Alternative formulation of T2

Assume A⊕B = ZM , with M =
∏
i p
ni
i . Let Mi = M/pnii .

Define the standard tiling set A[ ⊂ ZM via

A[(X) =
∏
i

∏
α:Φpα

i
|A

Φpi

(
XMip

α−1
i

)
.

This has the same prime power cyclotomic divisors as A, but
also has a “lattice structure”.

• C-M used this set to prove T2 ⇒ tiling.

• Converse: B satisfies T2 if and only if

A[ ⊕B = ZM
is also a tiling. (Similar to replacement of factors in the
theory of group factorization (Hajós, Rédei, Szabó, etc.))



Connection to Fuglede’s spectral set conjecture

Conjecture (Fuglede, 1974): A set Ω ⊂ Rn tiles Rn by
translations if and only if L2(Ω) admits an orthogonal basis of
exponential functions.

• False in dimensions n ≥ 3 (Tao, Kolountzakis, Matolcsi,
Farkas, Révész, Móra)

• But true for convex sets in Rn (Iosevich-Katz-Tao for
n = 2; Greenfeld-Lev for n = 3, Lev-Matolcsi for n ≥ 4).

• Also recent work for finite groups (Malikiosis, Shi,
Kolountzakis, Iosevich, Mayeli, Pakianathan, Kiss, Somlai,
Viser)

•  Laba (2001): T2 implies spectrality (finite groups, unions
of finitely many unit intervals in R).
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• But true for convex sets in Rn (Iosevich-Katz-Tao for
n = 2; Greenfeld-Lev for n = 3, Lev-Matolcsi for n ≥ 4).

• Also recent work for finite groups (Malikiosis, Shi,
Kolountzakis, Iosevich, Mayeli, Pakianathan, Kiss, Somlai,
Viser)

•  Laba (2001): T2 implies spectrality (finite groups, unions
of finitely many unit intervals in R).



Connection to Fuglede’s spectral set conjecture

Conjecture (Fuglede, 1974): A set Ω ⊂ Rn tiles Rn by
translations if and only if L2(Ω) admits an orthogonal basis of
exponential functions.

• False in dimensions n ≥ 3 (Tao, Kolountzakis, Matolcsi,
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Main result



Main result ( Laba-Londner 2021)

Theorem. Suppose that A⊕B = ZM , with M =
∏3
i=1 p

2
i .

(This is the simplest case that cannot be reduced to two prime
factors.) Assume that pi 6= 2 for all i. Then A and B satisfy T2.

Additionally:

• The proof essentially provides a classification of all tilings
of period M =

∏3
i=1 p

2
i . (It does not get much more

complicated than Szabó-type examples on next slide.)

• Even case almost done.

• Methods and some intermediate results extend to more
general M .
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Main ingredients of the proof



Cuboids
Let N = pα1

1 . . . pαKK , where p1, . . . , pK are distinct primes. An
N -cuboid in ZN is a weighed set with the mask polynomial

∆(X) = Xa
K∏
i=1

(1−Xdi) mod (XN − 1)

where a ∈ ZN and (di, N) = N/pi.

︸ ︷︷ ︸ ︸ ︷︷ ︸
︸︷︷︸N/pi

N/pj

N/pk

−1weighted

+1weighted



Cuboids and cyclotomic divisibility

For A ⊂ ZM , and ∆(X) = Xa
∏K
i=1(1−Xdi) as above, define

AM [∆] :=
∑

(ε1,...,εK)∈{0,1}K
(−1)

∑
εi1A

(
a+

∑
εidi

)
.

Then ΦM |A if and only if AM [∆] = 0 for every such ∆.

This follows from structure results for vanishing sums of roots
of unity (Rédei, de Bruijn, Schoenberg, Mann, Lam-Leung, ...),
and has been used in the literature on that subject
(Steinberger) and on Fuglede’s conjecture (Malikiosis et al). We
use this on various scales N |M .



Fibering

Let N = pα1
1 . . . pαKK . An N -fiber in the pi direction is a set

{a, a+N/pi, a+ 2N/pi, . . . , a+ (pi − 1)N/pi} ⊂ ZN .

︸︷︷︸M/pi
︸︷︷︸M/pj

︸︷︷︸M/pk

• A set A ⊂ ZN is fibered in the
pi direction if it is a union of
disjoint fibers in that direction.

• We use this on various scales
N |M (also for multisets,
restricted to grids, etc).

• We use cuboids to get fibering
results.



Plane bound: example of a counting argument

Let A⊕B = ZM , where M = (pipjpk)
2, |A| = pipjpk, and

pi, pj , pk are distinct primes. Then for every x ∈ ZM we have

|A ∩Π(x, p2
i )| ≤ pjpk,

where Π(x, p2
i ) is the plane {x′ ∈ ZM : p2

i | (x− x′)}.

This follows from the equidistribution property associated with
prime power cyclotomic divisors.
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Box product

For m|M and x ∈ ZM , define

AMm [x] = #{a ∈ A : (x− a,M) = m},
and similarly for B. Define also the box product

〈A[x],B[y]〉 :=
∑
m|M

1

φ(M/m)
AMm [x]BMm [y].

Theorem. A⊕B = ZM if and only if |A||B| = M and

〈A[x],B[y]〉 = 1 ∀x, y ∈ ZM .

(From an unpublished 2001 preprint by Granville- Laba-Wang.)
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Saturating sets

For x ∈ ZM , let

Ax = {a ∈ A : (x− a,M) = (b− b′,M) for some b, b′ ∈ B}
(the elements of A that contribute to 〈A[x],B[b]〉 with b ∈ B).

• If x = a ∈ A, then Aa = {a}. (Divisor exclusion.)

• If x 6∈ A, then (x− a′,M) 6= (a− a′,M) for all a ∈ A and
a′ ∈ Ax. This leads to geometric restrictions on Ax.

︸︷︷︸ M/pi

x Ax ⊂ Π(x, p2i )
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Cofibered structures and fiber shifting

Lemma (special case). Let M = (pipjpk)
2, and assume that

A⊕B = ZM . Suppose that A and B have the following
cofibered structure:

• A contains an M -fiber in the pi direction,

• B is fibered in the pi direction on the scale M/pi.

Let A′ be the set obtained from A by shifting the M -fiber by
M/p2

i in the pi-direction. Then A′ ⊕B = ZM , and A′ satisfies
T2 if and only if A does.

We use this to reduce our original tiling to simpler ones.
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One-dimensional saturating spaces

If there is an x ∈ ZM \A such that Ax is contained in the line
in the pi direction through x, then A,B have a cofibered
structure similar to that in the lemma.

This is implied for example by the following configuration.

︸︷︷︸ M/pi

x

︸︷︷︸M/pj

aj a′jak
a′k

(x− aj,M) = (x− a′j,M) = (aj − a′j,M) = M/pj

(x− ak,M) = (x− a′k,M) = (ak − a′k,M) = M/pk︸︷︷︸M/pk



One-dimensional saturating spaces

If there is an x ∈ ZM \A such that Ax is contained in the line
in the pi direction through x, then A,B have a cofibered
structure similar to that in the lemma.

This is implied for example by the following configuration.

︸︷︷︸ M/pi

x

︸︷︷︸M/pj

aj a′jak
a′k

(x− aj,M) = (x− a′j,M) = (aj − a′j,M) = M/pj

(x− ak,M) = (x− a′k,M) = (ak − a′k,M) = M/pk︸︷︷︸M/pk



Putting it together

Let M = (pipjpk)
2, |A| = |B| = pipjpk. Assume ΦM |A.

• If A is not fibered on a pipjpk-grid Λ, then A∩Λ has one of
the “special structures” we can classify.

”Corner” ”Full Plane” ”Almost Corner”
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• For each special structure, we use saturating spaces and
fiber shifting to reconstruct the rest of the tiling. If we can
reduce to the case where one of the sets is the standard
tiling complement, we are done.

• If A is fibered on all pipjpk-grids, try to go down to a lower
scale and use tiling reductions. (Caution: different grids
may be fibered in different directions.)
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Resolving a special structure: an example

Start with geometric restrictions
on the saturating set at the
indicated point x.

〈A[x],B[b]〉 with b ∈ B could be
saturated by one of two possible
cofiber pairs:

• an M -fiber in A,

• a fiber in B in the same
direction on a lower scale.



Resolving a special structure: an example

By the plane bound, only one of
these M -fibers in A can actually
occur. This implies a cofibered
structure:

• A contains an M fiber in the
pj direction,

• B is M/pj fibered in the pj
direction.



Resolving a special structure: an example

We can shift the cofiber in A (this
preserves both the tiling property
and T2). Now consider saturating
sets at the new indicated points.

Continue the procedure until A is
replaced by the standard set A[.
This implies T2 for both A and B.
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Thank you!


