Friable values of polynomials

How often do the values of a polynomial have only small prime factors?

Greg Martin
University of British Columbia

April 14, 2006
University of South Carolina Number Theory Seminar

notes to be placed on web page:
www.math.ubc.ca/~gerg/talks.html
Friable values of polynomials

Greg Martin

Outline

1. Introduction
2. Bounds for friable values of polynomials
3. Conjecture for prime values of polynomials
4. Conjecture for friable values of polynomials
Friable values of polynomials

Greg Martin

1. Introduction
 - Friable integers
 - Friable numbers among values of polynomials

2. Bounds for friable values of polynomials

3. Conjecture for prime values of polynomials

4. Conjecture for friable values of polynomials

Summary
Friable integers

Definition

\[\psi(x, y) \] is the number of integers up to \(x \) whose prime factors are all at most \(y \):

\[
\psi(x, y) = \#\{n \leq x : p \mid n \implies p \leq y\}
\]

Asymptotics: For a large range of \(x \) and \(y \),

\[
\psi(x, y) \sim x \rho \left(\frac{\log x}{\log y} \right),
\]

where \(\rho(u) \) is the “Dickman–de Bruijn rho-function”.

Interpretation: A “randomly chosen” integer of size \(X \) has probability \(\rho(u) \) of being \(X^{1/u} \)-friable.

In this talk: Think of \(u = \log x / \log y \) as being bounded above, that is, \(y \geq x^\varepsilon \) for some \(\varepsilon > 0 \).
Friable integers

Definition

\(\Psi(x, y) \) is the number of integers up to \(x \) whose prime factors are all at most \(y \):

\[
\Psi(x, y) = \# \{ n \leq x : p | n \implies p \leq y \}
\]

Asymptotics: For a large range of \(x \) and \(y \),

\[
\Psi(x, y) \sim x \rho \left(\frac{\log x}{\log y} \right),
\]

where \(\rho(u) \) is the “Dickman–de Bruijn rho-function”.

Interpretation: A “randomly chosen” integer of size \(X \) has probability \(\rho(u) \) of being \(X^{1/u} \)-friable.

In this talk: Think of \(u = \log x / \log y \) as being bounded above, that is, \(y \geq x^\varepsilon \) for some \(\varepsilon > 0 \).
Friable integers

Definition

\[\psi(x, y) \text{ is the number of integers up to } x \text{ whose prime factors are all at most } y: \]

\[\psi(x, y) = \# \{ n \leq x : p | n \implies p \leq y \} \]

Asymptotics: For a large range of \(x \) and \(y \),

\[\psi(x, y) \sim x \rho \left(\frac{\log x}{\log y} \right), \]

where \(\rho(u) \) is the “Dickman–de Bruijn rho-function”.

Interpretation: A “randomly chosen” integer of size \(X \) has probability \(\rho(u) \) of being \(X^{1/u} \)-friable.

In this talk: Think of \(u = \log x / \log y \) as being bounded above, that is, \(y \geq x^\varepsilon \) for some \(\varepsilon > 0 \).
The Dickman–de Bruijn \(\rho \)-function

Definition

\(\rho(u) \) is the unique continuous solution of the differential-difference equation \(u\rho'(u) = -\rho(u - 1) \) for \(u \geq 1 \) that satisfies the initial condition \(\rho(u) = 1 \) for \(0 \leq u \leq 1 \).

Example

For \(1 \leq u \leq 2 \),

\[
\rho'(u) = -\frac{\rho(u - 1)}{u} = -\frac{1}{u} \quad \implies \quad \rho(u) = C - \log u.
\]

Since \(\rho(u) = 1 \), we have \(\rho(u) = 1 - \log u \) for \(1 \leq u \leq 2 \).

Consequence: Note that \(\rho(u) = \frac{1}{2} \) when \(u = \sqrt{e} \). Therefore the “median size” of the largest prime factor of \(n \) is \(n^{1/\sqrt{e}} \).
Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials

Bounds for friable values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?

Conjecture for prime values of polynomials

Schinzel’s “Hypothesis H”
(Bateman–Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable values of polynomials

Statement of the conjecture
Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Summary

The Dickman–de Bruijn ρ-function

Definition

$\rho(u)$ is the unique continuous solution of the differential-difference equation $u \rho'(u) = -\rho(u - 1)$ for $u \geq 1$ that satisfies the initial condition $\rho(u) = 1$ for $0 \leq u \leq 1$.

Example

For $1 \leq u \leq 2$,

$$\rho'(u) = -\frac{\rho(u - 1)}{u} = -\frac{1}{u} \implies \rho(u) = C - \log u.$$

Since $\rho(u) = 1$, we have $\rho(u) = 1 - \log u$ for $1 \leq u \leq 2$.

Consequence:

Note that $\rho(u) = \frac{1}{2}$ when $u = \sqrt{e}$. Therefore the “median size” of the largest prime factor of n is $n^{1/\sqrt{e}}$.
The Dickman–de Bruijn ρ-function

Definition

$\rho(u)$ is the unique continuous solution of the differential-difference equation \(u\rho'(u) = -\rho(u - 1) \) for \(u \geq 1 \) that satisfies the initial condition \(\rho(u) = 1 \) for \(0 \leq u \leq 1 \).

Example

For \(1 \leq u \leq 2 \),

\[
\rho'(u) = -\frac{\rho(u - 1)}{u} = -\frac{1}{u} \implies \rho(u) = C - \log u.
\]

Since \(\rho(u) = 1 \), we have \(\rho(u) = 1 - \log u \) for \(1 \leq u \leq 2 \).

Consequence: Note that \(\rho(u) = \frac{1}{2} \) when \(u = \sqrt{e} \). Therefore the “median size” of the largest prime factor of \(n \) is \(n^{1/\sqrt{e}} \).
Friable numbers among values of polynomials

Definition

\[\Psi(F; x, y) \] is the number of integers \(n \) up to \(x \) such that all the prime factors of \(F(n) \) are all at most \(y \):

\[\Psi(F; x, y) = \# \{ 1 \leq n \leq x : p | F(n) \implies p \leq y \} \]

- When \(F(x) \) is a linear polynomial (friable numbers in arithmetic progressions), we have the same asymptotic \(\Psi(F; x, y) \sim \rho \left(\frac{\log x}{\log y} \right) \).

- Knowing the size of \(\Psi(F; x, y) \) has applications to analyzing the running time of modern factoring algorithms (quadratic sieve, number field sieve).

- A basic sort of question in number theory: are two arithmetic properties (in this case, friability and being the value of a polynomial) independent?
Friable numbers among values of polynomials

Definition

\(\Psi(F; x, y) \) is the number of integers \(n \) up to \(x \) such that all the prime factors of \(F(n) \) are all at most \(y \):

\[
\Psi(F; x, y) = \# \{1 \leq n \leq x : p \mid F(n) \implies p \leq y\}
\]

- When \(F(x) \) is a linear polynomial (friable numbers in arithmetic progressions), we have the same asymptotic \(\Psi(F; x, y) \sim \rho \left(\frac{\log x}{\log y} \right) \).

- Knowing the size of \(\Psi(F; x, y) \) has applications to analyzing the running time of modern factoring algorithms (quadratic sieve, number field sieve).

- A basic sort of question in number theory: are two arithmetic properties (in this case, friability and being the value of a polynomial) independent?
Friable numbers among values of polynomials

Definition

\[\psi(F; x, y) = \#\{1 \leq n \leq x : p | F(n) \Rightarrow p \leq y\} \]

- When \(F(x) \) is a linear polynomial (friable numbers in arithmetic progressions), we have the same asymptotic \(\psi(F; x, y) \sim \rho \left(\frac{\log x}{\log y} \right) \).

- Knowing the size of \(\psi(F; x, y) \) has applications to analyzing the running time of modern factoring algorithms (quadratic sieve, number field sieve).

- A basic sort of question in number theory: are two arithmetic properties (in this case, friability and being the value of a polynomial) independent?
Introduction

1. Friable values of polynomials
 - Greg Martin

2. Introduction
 - Friable integers
 - Friable values of polynomials

3. Bounds for friable values of polynomials
 - How friable can values of special polynomials be?
 - How friable can values of general polynomials be?
 - Can we have lots of friable values?

4. Conjecture for prime values of polynomials

5. Conjecture for friable values of polynomials

 A uniform version of Hypothesis H
 (Bateman–Horn conjecture)
 Schinzel’s “Hypothesis H”
 Conjecture for friable values of polynomials

 Statement of the conjecture
 Reduction to convenient polynomials
 Translation into prime values of polynomials
 Shepherding the local factors
 Sums of multiplicative functions

Summary
How friable can values of special polynomials be?

For binomials, there’s a nice trick which yields:

Theorem (Schinzel, 1967)

For any nonzero integers A and B, any positive integer d, and any $\varepsilon > 0$, there are infinitely many numbers n for which $An^d + B$ is n^ε-friable.

Balog and Wooley (1998), building on an idea of Eggleton and Selfridge, extended this result to products of binomials

$$\prod_{j=1}^{L} (A_j n^{d_j} + B_j).$$
How friable can values of special polynomials be?

- For binomials, there’s a nice trick which yields:

Theorem (Schinzel, 1967)

For any nonzero integers A and B, any positive integer d, and any $\varepsilon > 0$, there are infinitely many numbers n for which $An^d + B$ is n^ε-friable.

- Balog and Wooley (1998), building on an idea of Eggleton and Selfridge, extended this result to products of binomials

$$\prod_{j=1}^{L} (A_j n^{d_j} + B_j).$$
Proof for an explicit binomial

Example

For any \(\varepsilon > 0 \), there are infinitely many numbers \(n \) for which \(F(n) = 3n^5 + 7 \) is \(n^\varepsilon \)-friable.

Define \(n_k = 3^{8k-1}2^{2k} \). Then

\[
F(n_k) = 3^{5(8k-1)+1}7^{5(2k)} + 7 = -7((-3^47)^{10k-1} - 1)
\]

factors into values of cyclotomic polynomials:

\[
F(n_k) = -7 \prod_{m|(10k-1)} \Phi_m(-3^47).
\]

\(\Phi_m(x) = \prod_{1 \leq r \leq m} (x - e^{2\pi ir/m}) \)

\(\Phi_m \) has integer coefficients and degree \(\phi(m) \)
Proof for an explicit binomial

Example

For any $\varepsilon > 0$, there are infinitely many numbers n for which $F(n) = 3n^5 + 7$ is n^ε-friable.

Define $n_k = 3^{8k-1}7^{2k}$. Then

$$F(n_k) = 3^{5(8k-1)+1}7^{5(2k)} + 7 = -7((-3^47)^{10k-1} - 1)$$

factors into values of cyclotomic polynomials:

$$F(n_k) = -7 \prod_{m|(10k-1)} \Phi_m(-3^47).$$

- $\Phi_m(x) = \prod_{\substack{1 \leq r \leq m \\ (r,m)=1}} (x - e^{2\pi ir/m})$
- Φ_m has integer coefficients and degree $\phi(m)$
Proof for an explicit binomial

Example

For any \(\varepsilon > 0 \), there are infinitely many numbers \(n \) for which
\(F(n) = 3n^5 + 7 \) is \(n^{\varepsilon} \)-friable.

Define \(n_k = 3^{8k-1}7^{2k} \). Then

\[
F(n_k) = 3^{5(8k-1)+1}7^{5(2k)} + 7 = -7((-3^47)^{10k-1} - 1)
\]

factors into values of cyclotomic polynomials:

\[
F(n_k) = -7 \prod_{m|(10k-1)} \Phi_m(-3^47).
\]

\[\Phi_m(x) = \prod_{1 \leq r \leq m; (r,m)=1} \left(x - e^{2\pi ir/m}\right)\]

\(\Phi_m \) has integer coefficients and degree \(\phi(m) \)
Proof for an explicit binomial

Example

For any \(\varepsilon > 0 \), there are infinitely many numbers \(n \) for which \(F(n) = 3n^5 + 7 \) is \(n^\varepsilon \)-friable.

Define \(n_k = 3^{8k-1}7^{2k} \). Then

\[
F(n_k) = 3^{5(8k-1)+1}7^{5(2k)} + 7 = -7((-3^47)^{10k-1} - 1)
\]

factors into values of cyclotomic polynomials:

\[
F(n_k) = -7 \prod_{m|(10k-1)} \Phi_m(-3^47).
\]

- \(\Phi_m(x) = \prod_{1 \leq r \leq m, (r,m)=1} (x - e^{2\pi i r/m}) \)
- \(\Phi_m \) has integer coefficients and degree \(\phi(m) \)
Proof for an explicit binomial

Example

For any $\varepsilon > 0$, there are infinitely many numbers n for which $F(n) = 3n^5 + 7$ is n^ε-friable.

Define $n_k = 3^{8k-1}7^{2k}$. Then

$$F(n_k) = 3^{5(8k-1)+1}7^{5(2k)} + 7 = -7((-3^47)^{10k-1} - 1)$$

factors into values of cyclotomic polynomials:

$$F(n_k) = -7 \prod_{m|(10k-1)} \Phi_m(-3^47).$$

- $\Phi_m(x) = \prod_{1 \leq r \leq m, (r,m)=1} (x - e^{2\pi i r/m})$
- Φ_m has integer coefficients and degree $\phi(m)$
Friable values of polynomials

Greg Martin

Introduction
Friable integers
Friable values of polynomials

Bounds for friable values of polynomials

How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?

Conjecture for prime values of polynomials
Schinzel’s “Hypothesis H”
(Bateman–Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Summary
From the last slide

- \(F(n) = 3n^5 + 7 \)
- \(F(n_k) = -7 \prod_{m \mid (10k-1)} \Phi_m(-3^47) \)
- \(n_k = 3^{8k-1}7^{2k} \)

- Primes dividing \(F(n_k) \) are \(\leq \max_{m \mid (10k-1)} |\Phi_m(-3^47)| \)
- \(\Phi_m(x) \) is roughly \(x^{\phi(m)} \leq x^{\phi(10k-1)} \)
- \(n_k \) is roughly \((3^47)^{4k} \), but the largest prime factor of \(F(n_k) \) is bounded by roughly \((3^47)^{\phi(10k-1)} \)
- Infinitely many \(k \) with \(\phi(10k-1)/4k < \varepsilon \)

How many such friable values? \(\gg_{F,\varepsilon} \log x \), for \(n \leq x \)

\(\varepsilon \) can be made quantitative \(n^{c_F}/\log\log\log n \)-friable values
Friable values of polynomials

Greg Martin

Introduction
Friable integers
Friable values of polynomials

Bounds for friable values of polynomials

How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?

Conjecture for prime values of polynomials
Schinzel’s “Hypothesis H”
(Bateman–Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Summary

From the last slide

- $F(n) = 3n^5 + 7$
- $F(n_k) = -7 \prod_{m | (10k-1)} \Phi_m(-3^47)$
- $n_k = 3^{8k-1}7^{2k}$

- Primes dividing $F(n_k)$ are $\leq \max_{m | (10k-1)} |\Phi_m(-3^47)|$

- $\Phi_m(x)$ is roughly $x^{\phi(m)} \leq x^{\phi(10k-1)}$

- n_k is roughly $(3^47)^{4k}$, but the largest prime factor of $F(n_k)$ is bounded by roughly $(3^47)^{\phi(10k-1)}$

- Infinitely many k with $\phi(10k-1)/4k < \varepsilon$

How many such friable values? $\gg_{F,\varepsilon} \log x$, for $n \leq x$

ε can be made quantitative $n^{c_F/\log \log \log n}$-friable values
Friable values of polynomials

Greg Martin

Introduction
Friable integers
Friable values of polynomials

Bounds for friable values of polynomials

How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?

Conjecture for prime values of polynomials
Schinzel’s “Hypothesis H”
(Bateman–Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Summary

From the last slide

- $F(n) = 3n^5 + 7$
- $F(n_k) = -7 \prod_{m | (10k-1)} \Phi_m(-3^4 7)$
- $n_k = 3^{8k-1} 7^{2k}$

- Primes dividing $F(n_k)$ are $\leq \max_{m | (10k-1)} |\Phi_m(-3^4 7)|$
- $\Phi_m(x)$ is roughly $x^{\phi(m)} \leq x^{\phi(10k-1)}$
- n_k is roughly $(3^4 7)^{4k}$, but the largest prime factor of $F(n_k)$ is bounded by roughly $(3^4 7)^{\phi(10k-1)}$
- Infinitely many k with $\phi(10k - 1)/4k < \varepsilon$

How many such friable values? $\gg_{F, \varepsilon} \log x$, for $n \leq x$

ε can be made quantitative $n^{c_F}/\log \log \log n$-friable values
Friable values of polynomials

Greg Martin

Introduction
Friable integers
Friable values of polynomials

Bounds for friable values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?

Conjecture for prime values of polynomials
Schinzel’s “Hypothesis H”
(Bateman–Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Summary

From the last slide

- \(F(n) = 3n^5 + 7 \)
- \(F(n_k) = -7 \prod_{m|(10k-1)} \Phi_m(-3^4 7) \)
- \(n_k = 3^{8k-1} 7^{2k} \)

- Primes dividing \(F(n_k) \) are \(\leq \max_{m|(10k-1)} |\Phi_m(-3^4 7)| \)
- \(\Phi_m(x) \) is roughly \(x^{\phi(m)} \leq x^{\phi(10k-1)} \)
- \(n_k \) is roughly \((3^4 7)^{4k} \), but the largest prime factor of \(F(n_k) \) is bounded by roughly \((3^4 7)^{\phi(10k-1)} \)
- Infinitely many \(k \) with \(\phi(10k-1)/4k < \varepsilon \)

How many such friable values? \(\gg_F,\varepsilon \log x \), for \(n \leq x \)

\(\varepsilon \) can be made quantitative \(n^{c_F}/\log \log \log n \)-friable values
Polynomial factorizations

Example

The polynomial $F(x + F(x))$ is always divisible by $F(x)$. In particular, if $\deg F = d$, then $F(x + F(x))$ is roughly x^{d^2} yet is automatically roughly $x^{d^2 - d}$-friable.

Mnemonic

\[x + F(x) \equiv x \pmod{F(x)} \]

Special case:

- If $F(x)$ is quadratic with lead coefficient a, then

\[F(x + F(x)) = F(x) \cdot aF \left(x + \frac{1}{a} \right). \]

- In particular, if $F(x) = x^2 + bx + c$, then

\[F(x + F(x)) = F(x)F(x + 1). \]
Polynomial factorizations

Example
The polynomial $F(x + F(x))$ is always divisible by $F(x)$. In particular, if $\deg F = d$, then $F(x + F(x))$ is roughly x^{d^2} yet is automatically roughly x^{d^2-d}-friable.

Mnemonic
$x + F(x) \equiv x \pmod{F(x)}$

Special case:
- If $F(x)$ is quadratic with lead coefficient a, then

 $F(x + F(x)) = F(x) \cdot aF(x + \frac{1}{a})$.

- In particular, if $F(x) = x^2 + bx + c$, then

 $F(x + F(x)) = F(x)F(x + 1)$.
A refinement of Schinzel

- Idea: use the reciprocal polynomial $x^d F(1/x)$.
- Restrict to $F(x) = x^d + a_2 x^{d-2} + \ldots$ for simplicity.

Proposition

Let $h(x)$ be a polynomial such that $xh(x) - 1$ is divisible by $x^d F(1/x)$. Then $F(h(x))$ is divisible by $x^d F(1/x)$. In particular, we can take $\deg h = d - 1$, in which case $F(h(x))$ is roughly x^{d^2-d} yet is automatically roughly x^{d^2-2d}-friable.

Mnemonic

$h(x) \equiv 1/x \pmod{F(1/x)}$

Note: The proposition isn’t true for $d = 2$, since the leftover “factor” of degree $2^2 - 2 \cdot 2 = 0$ is a constant.
A refinement of Schinzel

- Idea: use the reciprocal polynomial \(x^d F(1/x) \).
- Restrict to \(F(x) = x^d + a_2 x^{d-2} + \ldots \) for simplicity.

Proposition

Let \(h(x) \) be a polynomial such that \(xh(x) - 1 \) is divisible by \(x^d F(1/x) \). Then \(F(h(x)) \) is divisible by \(x^d F(1/x) \). In particular, we can take \(\deg h = d - 1 \), in which case \(F(h(x)) \) is roughly \(x^{d^2 - d} \) yet is automatically roughly \(x^{d^2 - 2d} \)-friable.

Mnemonic

\[
h(x) \equiv 1/x \pmod{F(1/x)}
\]

Note: The proposition isn’t true for \(d = 2 \), since the leftover “factor” of degree \(2^2 - 2 \cdot 2 = 0 \) is a constant.
Recursively use Schinzel’s construction

\(D_m \): an unspecified polynomial of degree \(m \)

Example

\[\text{deg} \ F(x) = 4. \text{ Use Schinzel’s construction repeatedly:} \]

\[
\begin{align*}
D_{12} &= F(D_3) = D_4 D_8 \\
D_{84} &= F(D_{21}) = D_{28} D_8 D_{48} \\
D_{3984} &= F(D_{987}) = D_{1316} D_{376} D_{48} D_{2208}
\end{align*}
\]

“score” = 8/3

“score” = 16/7

“score” = 736/329

For \(\text{deg} F = 2 \), begin with \(F(D_4) = D_2 D_2 D_4 \).

Specifically,

\[
F(x + F(x) + F(x + F(x))) = F(x) \cdot aF(x + \frac{1}{a}) \cdot D_4.
\]

For \(\text{deg} F = 3 \), begin with \(F(D_4) = D_3 D_3 D_6 \).
Recursively use Schinzel’s construction

\(D_m: \) an unspecified polynomial of degree \(m\)

Example

\[\text{deg } F(x) = 4. \text{ Use Schinzel’s construction repeatedly:}\]

\[D_{12} = F(D_3) = D_4 D_8\]
\[D_{84} = F(D_{21}) = D_{28} D_8 D_{48}\]
\[D_{3984} = F(D_{987}) = D_{1316} D_{376} D_{48} D_{2208}\]

“score” = 8/3

“score” = 16/7

“score” = 736/329

- For \(\text{deg } F = 2\), begin with \(F(D_4) = D_2 D_2 D_4\).
 Specifically,

 \[F(x + F(x) + F(x + F(x))) = F(x) \cdot aF(x + \frac{1}{a}) \cdot D_4.\]

- For \(\text{deg } F = 3\), begin with \(F(D_4) = D_3 D_3 D_6\).
Recursively use Schinzel’s construction

\(D_m \): an unspecified polynomial of degree \(m \)

Example

\(\text{deg } F(x) = 4 \). Use Schinzel’s construction repeatedly:

\[
\begin{align*}
D_{12} &= F(D_3) = D_4 D_8 \\
D_{84} &= F(D_{21}) = D_{28} D_8 D_{48} \\
D_{3984} &= F(D_{987}) = D_{1316} D_{376} D_{48} D_{2208}
\end{align*}
\]

\(\text{“score” } = 8/3 \)

\(\text{“score” } = 16/7 \)

\(\text{“score” } = 736/329 \)

- For \(\text{deg } F = 2 \), begin with \(F(D_4) = D_2 D_2 D_4 \).
 Specifically,
 \[
 F(x + F(x) + F(x + F(x))) = F(x) \cdot aF(x + \frac{1}{a}) \cdot D_4.
 \]

- For \(\text{deg } F = 3 \), begin with \(F(D_4) = D_3 D_3 D_6 \).
Recursively use Schinzel’s construction

\(D_m\): an unspecified polynomial of degree \(m\)

Example

\(\text{deg } F(x) = 4\). Use Schinzel’s construction repeatedly:

\[
\begin{align*}
D_{12} &= F(D_3) = D_4 D_8 \\
D_{84} &= F(D_{21}) = D_{28} D_8 D_{48} \\
D_{3984} &= F(D_{987}) = D_{1316} D_{376} D_{48} D_{2208}
\end{align*}
\]

"score" = 8/3
"score" = 16/7
"score" = 736/329

- For \(\text{deg } F = 2\), begin with \(F(D_4) = D_2 D_2 D_4\).
 Specifically,

 \[
 F(x + F(x) + F(x + F(x))) = F(x) \cdot aF(x + \frac{1}{a}) \cdot D_4.
 \]

- For \(\text{deg } F = 3\), begin with \(F(D_4) = D_3 D_3 D_6\).
Recursively use Schinzel’s construction

\[D_m: \text{ an unspecified polynomial of degree } m \]

Example

\[
\text{deg } F(x) = 4. \text{ Use Schinzel’s construction repeatedly:}
\]

\[
D_{12} = F(D_3) = D_4D_8 \\
D_{84} = F(D_{21}) = D_{28}D_8D_{48} \\
D_{3984} = F(D_{987}) = D_{1316}D_{376}D_{48}D_{2208}
\]

“For score” = 8/3

“For score” = 16/7

“For score” = 736/329

- For \(\text{deg } F = 2 \), begin with \(F(D_4) = D_2D_2D_4 \).
 Specifically,

\[
F(x + F(x) + F(x + F(x))) = F(x) \cdot aF\left(x + \frac{1}{a}\right) \cdot D_4.
\]

- For \(\text{deg } F = 3 \), begin with \(F(D_4) = D_3D_3D_6 \).
How friable can values of general polynomials be?

- \(d \geq 4 \): define \(s(d) = d \prod_{j=1}^{\infty} \left(1 - \frac{1}{u_j(d)} \right) \), where

 \[
 u_1(d) = d - 1 \quad \text{and} \quad u_{j+1}(d) = u_j(d)^2 - 2
 \]
- \(s(2) = s(4)/4 \) and \(s(3) = s(6)/4 \)

Theorem

(Schinzel, 1967) Given a polynomial \(F(x) \) of degree \(d \geq 2 \), there are infinitely many numbers \(n \) for which \(F(n) \) is \(n^{s(d)} \)-friable.

<table>
<thead>
<tr>
<th>(F(n))</th>
<th>can be (n^2)-friable</th>
<th>(F(n))</th>
<th>can be (n^2)-friable</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree 1</td>
<td>(\varepsilon)</td>
<td>degree 5</td>
<td>3.46410</td>
</tr>
<tr>
<td>degree 2</td>
<td>0.55902</td>
<td>degree 6</td>
<td>4.58258</td>
</tr>
<tr>
<td>degree 3</td>
<td>1.14564</td>
<td>degree 7</td>
<td>5.65685</td>
</tr>
<tr>
<td>degree 4</td>
<td>2.23607</td>
<td>degree (d)</td>
<td>(\approx d - 1 - 2/d)</td>
</tr>
</tbody>
</table>

\(\varepsilon \) is the multiplicative constant from Schinzel’s Hypothesis H.
How friable can values of general polynomials be?

- $d \geq 4$: define $s(d) = d \prod_{j=1}^{\infty} \left(1 - \frac{1}{u_j(d)}\right)$, where $u_1(d) = d - 1$ and $u_{j+1}(d) = u_j(d)^2 - 2$
- $s(2) = s(4)/4$ and $s(3) = s(6)/4$

Theorem

(Schinzel, 1967) Given a polynomial $F(x)$ of degree $d \geq 2$, there are infinitely many numbers n for which $F(n)$ is $n^{s(d)}$-friable.

<table>
<thead>
<tr>
<th>$F(n)$</th>
<th>can be n^2-friable</th>
<th>$F(n)$</th>
<th>can be n^2-friable</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree 1</td>
<td>ε</td>
<td>degree 5</td>
<td>3.46410</td>
</tr>
<tr>
<td>degree 2</td>
<td>0.55902</td>
<td>degree 6</td>
<td>4.58258</td>
</tr>
<tr>
<td>degree 3</td>
<td>1.14564</td>
<td>degree 7</td>
<td>5.65685</td>
</tr>
<tr>
<td>degree 4</td>
<td>2.23607</td>
<td>degree d</td>
<td>$\approx d - 1 - 2/d$</td>
</tr>
</tbody>
</table>

Summary
How friable can values of general polynomials be?

1. $d \geq 4$: define $s(d) = d \prod_{j=1}^{\infty} \left(1 - \frac{1}{u_j(d)}\right)$, where

$$u_1(d) = d - 1 \quad \text{and} \quad u_{j+1}(d) = u_j(d)^2 - 2$$

2. $s(2) = s(4)/4$ and $s(3) = s(6)/4$

Theorem

(Schinzel, 1967) Given a polynomial $F(x)$ of degree $d \geq 2$, there are infinitely many numbers n for which $F(n)$ is $n^{s(d)}$-friable.

<table>
<thead>
<tr>
<th>$F(n)$</th>
<th>can be n^2-friable</th>
<th>$F(n)$</th>
<th>can be n^2-friable</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree 1</td>
<td>ε</td>
<td>degree 5</td>
<td>3.46410</td>
</tr>
<tr>
<td>degree 2</td>
<td>0.55902</td>
<td>degree 6</td>
<td>4.58258</td>
</tr>
<tr>
<td>degree 3</td>
<td>1.14564</td>
<td>degree 7</td>
<td>5.65685</td>
</tr>
<tr>
<td>degree 4</td>
<td>2.23607</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How friable can values of general polynomials be?

- $d \geq 4$: define $s(d) = d \prod_{j=1}^{\infty} \left(1 - \frac{1}{u_j(d)} \right)$, where $u_1(d) = d - 1$ and $u_{j+1}(d) = u_j(d)^2 - 2$
- $s(2) = s(4)/4$ and $s(3) = s(6)/4$

Theorem

(Schinzel, 1967) Given a polynomial $F(x)$ of degree $d \geq 2$, there are infinitely many numbers n for which $F(n)$ is $n^{s(d)}$-friable.

<table>
<thead>
<tr>
<th>$F(n)$</th>
<th>can be n^2-friable</th>
<th>$F(n)$</th>
<th>can be n^2-friable</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree 1</td>
<td>ε</td>
<td>degree 5</td>
<td>3.46410</td>
</tr>
<tr>
<td>degree 2</td>
<td>0.55902</td>
<td>degree 6</td>
<td>4.58258</td>
</tr>
<tr>
<td>degree 3</td>
<td>1.14564</td>
<td>degree 7</td>
<td>5.65685</td>
</tr>
<tr>
<td>degree 4</td>
<td>2.23607</td>
<td>degree d</td>
<td>$\approx d - 1 - 2/d$</td>
</tr>
</tbody>
</table>
Polynomial substitution yields small lower bounds

Special case

Given a quadratic polynomial $F(x)$, there are infinitely many numbers n for which $F(n)$ is $n^{0.55902}$-friable.

Example

To obtain n for which $F(n)$ is $n^{0.56}$-friable:

$$D_{168} = F(D_{84}) = D_{42}D_{42}D_{28}D_{8}D_{48} \quad \text{“score”} = \frac{4}{7} > 0.56$$

$$D_{7896} = F(D_{3948}) = D_{1974}D_{1974}D_{1316}D_{376}D_{48}D_{2208} \quad \text{“score”} < 0.56$$

The counting function of such n is about $x^{1/3948}$.

“Improvement” Balog, M., Wooley can get $x^{2/3948}$ and an analogous improvement for $\deg F = 3$.
Polynomial substitution yields small lower bounds

Special case

Given a quadratic polynomial $F(x)$, there are infinitely many numbers n for which $F(n)$ is $n^{0.55902}$-friable.

Example

To obtain n for which $F(n)$ is $n^{0.56}$-friable:

$$D_{168} = F(D_{84}) = D_{42}D_{42}D_{28}D_8D_{48}$$

$$D_{7896} = F(D_{3948}) = D_{1974}D_{1974}D_{1316}D_{376}D_{48}D_{2208}$$

“score” $= 4/7 > 0.56$

“score” $= 92/329 < 0.56$

The counting function of such n is about $x^{1/3948}$.

“Improvement” Balog, M., Wooley can get $x^{2/3948}$ and an analogous improvement for deg $F = 3$.
Friable values of polynomials

Greg Martin

Introduction

Friable integers

Friable values of polynomials

Bounds for friable values of polynomials

How friable can values of special polynomials be?

How friable can values of general polynomials be?

Can we have lots of friable values?

Conjecture for prime values of polynomials

Schinzel’s “Hypothesis H”

(Bateman–Horn conjecture)

A uniform version of Hypothesis H

Conjecture for friable values of polynomials

Statement of the conjecture

Reduction to convenient polynomials

Translation into prime values of polynomials

Shepherding the local factors

Sums of multiplicative functions

Summary

Polynomial substitution yields small lower bounds

Special case

Given a quadratic polynomial $F(x)$, there are infinitely many numbers n for which $F(n)$ is $n^{0.55902}$-friable.

Example

To obtain n for which $F(n)$ is $n^{0.56}$-friable:

$D_{168} = F(D_{84}) = D_{42} D_{42} D_{28} D_8 D_{48}$

“score” = $4/7 > 0.56$

$D_{7896} = F(D_{3948})$

$= D_{1974} D_{1974} D_{1316} D_{376} D_{48} D_{2208}$

“score” = $92/329 < 0.56$

The counting function of such n is about $x^{1/3948}$.

"Improvement" Balog, M., Wooley can get $x^{2/3948}$ and an analogous improvement for deg $F = 3.$
Polynomial substitution yields small lower bounds

Special case

Given a quadratic polynomial $F(x)$, there are infinitely many numbers n for which $F(n)$ is $n^{0.55902}$-friable.

Example

To obtain n for which $F(n)$ is $n^{0.56}$-friable:

\[
\begin{align*}
D_{168} &= F(D_{84}) = D_{42}D_{42}D_{28}D_8D_{48} & \text{“score”} &= 4/7 > 0.56 \\
D_{7896} &= F(D_{3948}) = D_{1974}D_{1974}D_{1316}D_{376}D_{48}D_{2208} & \text{“score”} &= 92/329 < 0.56
\end{align*}
\]

The counting function of such n is about $x^{1/3948}$.

“Improvement” Balog, M., Wooley can get $x^{2/3948}$ and an analogous improvement for $\text{deg } F = 3$.
Can we have lots of friable values?

Our expectation

For any $\varepsilon > 0$, a positive proportion of values $F(n)$ are n^ε-friable.

We know this for:

- linear polynomials (arithmetic progressions)
 - Hildebrand, then Balog and Ruzsa: $F(n) = n(an + b)$, values n^ε-friable for any $\varepsilon > 0$
 - Hildebrand: $F(n) = (n + 1) \cdots (n + L)$, values n^β-friable for any $\beta > e^{-1/(L-1)}$

 Note: $\rho(e^{-1/L}) = 1 - \frac{1}{L}$, so $\beta > e^{-1/L}$ is trivial

- Dartyge: $F(n) = n^2 + 1$, values n^β-friable for any $\beta > 149/179$
Can we have lots of friable values?

Our expectation

For any $\varepsilon > 0$, a positive proportion of values $F(n)$ are n^ε-friable.

We know this for:

- linear polynomials (arithmetic progressions)
- Hildebrand, then Balog and Ruzsa: $F(n) = n(an + b)$, values n^ε-friable for any $\varepsilon > 0$
- Hildebrand: $F(n) = (n + 1) \cdots (n + L)$, values $n^{-1}/(L-1)$-friable for any $\beta > e^{-1}/(L-1)$

Note: $\rho(e^{-1}/L) = 1 - \frac{1}{L}$, so $\beta > e^{-1}/L$ is trivial

- Dartyge: $F(n) = n^2 + 1$, values n^β-friable for any $\beta > 149/179$
Can we have lots of friable values?

Our expectation
For any \(\varepsilon > 0 \), a positive proportion of values \(F(n) \) are \(n^\varepsilon \)-friable.

We know this for:

- linear polynomials (arithmetic progressions)
- Hildebrand, then Balog and Ruzsa: \(F(n) = n(an + b) \), values \(n^\varepsilon \)-friable for any \(\varepsilon > 0 \)
- Hildebrand: \(F(n) = (n + 1) \cdots (n + L) \), values \(n^\beta \)-friable for any \(\beta > e^{-1/(L-1)} \)
 - Note: \(\rho(e^{-1}/L) = 1 - \frac{1}{L} \), so \(\beta > e^{-1}/L \) is trivial
- Dartyge: \(F(n) = n^2 + 1 \), values \(n^\beta \)-friable for any \(\beta > 149/179 \)
Theorem (Dartyge, M., Tenenbaum, 2001)

Let $F(x)$ be any polynomial, let d be the highest degree of any irreducible factor of F, and let F have exactly K distinct irreducible factors of degree d. Then for any $\varepsilon > 0$, a positive proportion of values $F(n)$ are $n^{d-1/K+\varepsilon}$-friable.

Remark: for friability of level n^{d-1} or higher, only irreducible factors of degree $\geq d$ matter.

Trivial: n^d-friable

Can remove the ε at the cost of the counting function: the number of $n \leq x$ for which $F(n)$ is $n^{d-1/K}$-friable is

$$\gg \frac{x}{(\log x)^K(\log 4-1+\varepsilon)}.$$
Theorem (Dartyge, M., Tenenbaum, 2001)

Let $F(x)$ be any polynomial, let d be the highest degree of any irreducible factor of F, and let F have exactly K distinct irreducible factors of degree d. Then for any $\varepsilon > 0$, a positive proportion of values $F(n)$ are $n^{d-1/K+\varepsilon}$-friable.

Remark: for friability of level n^{d-1} or higher, only irreducible factors of degree $\geq d$ matter

Trivial: n^d-friable

Can remove the ε at the cost of the counting function: the number of $n \leq x$ for which $F(n)$ is $n^{d-1/K}$-friable is

$$\gg \frac{x}{(\log x)^K(\log 4 - 1 + \varepsilon)}.$$
Introduction

1. Friable values of polynomials
2. Introduction
3. Friable integers
4. Friable values of polynomials
5. Bounds for friable values of polynomials
6. How friable can values of special polynomials be?
7. How friable can values of general polynomials be?
8. Can we have lots of friable values?
9. Conjecture for prime values of polynomials
10. Schinzel’s “Hypothesis H” (Bateman–Horn conjecture)
11. A uniform version of Hypothesis H
12. Conjecture for friable values of polynomials
13. Statement of the conjecture
14. Reduction to convenient polynomials
15. Translation into prime values of polynomials
16. Shepherd the local factors
17. Sums of multiplicative functions
18. Summary
Schinzel’s “Hypothesis H” (Bateman–Horn conjecture)

Definition

\[\pi(F; x) = \# \{ n \leq x : \text{ } f(n) \text{ is prime for each irreducible factor } f \text{ of } F \} \]

Conjecture: \(\pi(F; x) \) is asymptotic to \(H(F) \cdot \text{li}(F; x) \), where:

\[
\begin{align*}
\text{li}(F; x) &= \int_{0}^{x} \frac{dt}{\log |F_1(t)| \cdots \log |F_L(t)|} \quad \text{if } \min\{|F_1(t)|, \ldots, |F_L(t)|\} \geq 2
\\
H(F) &= \prod_{p} \left(1 - \frac{1}{p}\right)^{-L} \left(1 - \frac{\sigma(F; p)}{p}\right)
\end{align*}
\]

- \(L \): the number of distinct irreducible factors of \(F \)
- \(\sigma(F; n) \): the number of solutions of \(F(a) \equiv 0 \pmod{n} \)
Schinzel’s “Hypothesis H” (Bateman–Horn conjecture)

Definition

\[\pi(F; x) = \# \{ n \leq x : \text{f}(n) \text{ is prime for each irreducible factor f of } F \} \]

Conjecture: \(\pi(F; x) \) is asymptotic to \(H(F) \text{li}(F; x) \), where:

- \(\text{li}(F; x) = \int_{0}^{x} \frac{dt}{\log |F_1(t)| \ldots \log |F_L(t)|} \cdot \min\{|F_1(t)|, \ldots, |F_L(t)|\} \geq 2 \)

- \(H(F) = \prod_p \left(1 - \frac{1}{p}\right)^{-L} \left(1 - \frac{\sigma(F; p)}{p}\right) \).

Summary

- \(L \): the number of distinct irreducible factors of \(F \)
- \(\sigma(F; n) \): the number of solutions of \(F(a) \equiv 0 \pmod{n} \)
Schinzel’s “Hypothesis H” (Bateman–Horn conjecture)

Definition

\[\pi(F; x) = \# \{ n \leq x : f(n) \text{ is prime for each irreducible factor } f \text{ of } F \} \]

Conjecture: \(\pi(F; x) \) is asymptotic to \(H(F) \text{li}(F; x) \), where:

- \(\text{li}(F; x) = \int_{0<t<x} \frac{dt}{\log|F_1(t)| \ldots \log|F_L(t)|} \cdot \min\{|F_1(t)|, \ldots, |F_L(t)|\} \geq 2 \)

- \(H(F) = \prod_p \left(1 - \frac{1}{p}\right)^{-L} \left(1 - \frac{\sigma(F; p)}{p}\right) \).

L: the number of distinct irreducible factors of \(F \)

\(\sigma(F; n): \) the number of solutions of \(F(a) \equiv 0 \pmod{n} \)
Schinzel’s “Hypothesis H” (Bateman–Horn conjecture)

Definition

\[\pi(F; x) = \#\{n \leq x : \text{f(n) is prime for each irreducible factor f of F} \} \]

Conjecture: \(\pi(F; x) \) is asymptotic to \(H(F) \text{li}(F; x) \), where:

- \(\text{li}(F; x) = \int_{0 \leq t \leq x} \frac{dt}{\log |F_1(t)| \ldots \log |F_L(t)|} \cdot \min\{|F_1(t)|, \ldots, |F_L(t)|\} \geq 2 \)

- \(H(F) = \prod_p \left(1 - \frac{1}{p} \right)^{-L} \left(1 - \frac{\sigma(F; p)}{p} \right) \)

L: the number of distinct irreducible factors of \(F \)

\(\sigma(F; n) \): the number of solutions of \(F(a) \equiv 0 (\mod n) \)
Friable values of polynomials

Greg Martin

Introduction
Friable integers
Friable values of polynomials

Bounds for friable values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?

Conjecture for prime values of polynomials
Schinzel’s “Hypothesis H”
(Bateman–Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Summary

A uniform version of Hypothesis H

Hypothesis UH

\[\pi(F; t) - H(F) \operatorname{li}(F; t) \ll_{d,B} 1 + \frac{H(F) t}{(\log t)^{L+1}} \]

uniformly for all polynomials \(F \) of degree \(d \) with \(L \) distinct irreducible factors, each of which has coefficients bounded by \(t^B \) in absolute value.

- \(\operatorname{li}(F; t) \) is asymptotic to \(\frac{t}{(\log t)^L} \) for fixed \(F \)
- For \(d = K = 1 \), equivalent to expected number of primes, in an interval of length \(y = x^\varepsilon \) near \(x \), in an arithmetic progression to a modulus \(q \leq y^{1-\varepsilon} \)
- Don’t really need this strong a uniformity, but rather on average over some funny family to be described later
A uniform version of Hypothesis H

Hypothesis UH

\[
\pi(F; t) - H(F) \text{li}(F; t) \ll_{d, B} 1 + \frac{H(F)t}{(\log t)^{L+1}}
\]

uniformly for all polynomials \(F \) of degree \(d \) with \(L \) distinct irreducible factors, each of which has coefficients bounded by \(t^B \) in absolute value.

- \(\text{li}(F; t) \) is asymptotic to \(\frac{t}{(\log t)^L} \) for fixed \(F \)

- For \(d = K = 1 \), equivalent to expected number of primes, in an interval of length \(y = x^\varepsilon \) near \(x \), in an arithmetic progression to a modulus \(q \leq y^{1-\varepsilon} \)

- Don’t really need this strong a uniformity, but rather on average over some funny family to be described later
Friable values of polynomials

Greg Martin

1. Introduction

2. Bounds for friable values of polynomials

3. Conjecture for prime values of polynomials

4. Conjecture for friable values of polynomials
 - Statement of the conjecture
 - Reduction to convenient polynomials
 - Translation into prime values of polynomials
 - Shepherding the local factors
 - Sums of multiplicative functions
What would we expect on probabilistic grounds?

Let $F(x) = f_1(x) \cdots f_L(x)$, where $\deg f_j(x) = d_j$. Let $u > 0$.

- $f_j(n)$ is roughly n^{d_j}, and integers of that size are $n^{1/u}$-friable with probability $\rho(d_j u)$.

- Are the friabilities of the various factors $f_j(n)$ independent? This would lead to a prediction involving

$$x \prod_{j=1}^{L} \rho(d_j u).$$

- What about local densities depending on the arithmetic of F (as in Hypothesis H)?
What would we expect on probabilistic grounds?

Let $F(x) = f_1(x) \cdots f_L(x)$, where $\deg f_j(x) = d_j$. Let $u > 0$.

- $f_j(n)$ is roughly n^{d_j}, and integers of that size are $n^{1/u}$-friable with probability $\rho(d_j u)$.

- Are the friabilities of the various factors $f_j(n)$ independent? This would lead to a prediction involving

$$x \prod_{j=1}^{L} \rho(d_j u).$$

- What about local densities depending on the arithmetic of F (as in Hypothesis H)?
What would we expect on probabilistic grounds?

Let $F(x) = f_1(x) \cdots f_L(x)$, where $\deg f_j(x) = d_j$. Let $u > 0$.

- $f_j(n)$ is roughly n^{d_j}, and integers of that size are $n^{1/u}$-fricable with probability $\rho(d_j u)$.

- Are the friabilities of the various factors $f_j(n)$ independent? This would lead to a prediction involving

$$x \prod_{j=1}^L \rho(d_j u).$$

- What about local densities depending on the arithmetic of F (as in Hypothesis H)?
Conjecture for friable values of polynomials

Let $F(x)$ be any polynomial, let f_1, \ldots, f_L be its distinct irreducible factors, and let d_1, \ldots, d_L be their degrees. Then

$$\psi(F; x, x^{1/u}) = x \prod_{j=1}^{L} \rho(d_j u) + O\left(\frac{x}{\log x}\right)$$

for all $0 < u$.

If F irreducible: $\psi(F; x, x^{1/u}) = x \rho(du) + O(x/\log x)$ for $0 < u$.

Remark: Rather more controversial than Hypothesis H.
Conjecture for friable values of polynomials

Theorem (M., 2002)

Assume Hypothesis UH. Let $F(x)$ be any polynomial, let f_1, \ldots, f_L be its distinct irreducible factors, and let d_1, \ldots, d_L be their degrees. Let $d = \max\{d_1, \ldots, d_L\}$, and let F have exactly K distinct irreducible factors of degree d. Then

$$\psi(F; x, x^{1/u}) = x \prod_{j=1}^{L} \rho(d_j u) + O\left(\frac{x}{\log x}\right)$$

for all $0 < u < 1/(d - 1/K)$.

If F irreducible: $\psi(F; x, x^{1/u}) = x \rho(du) + O(x/\log x)$ for $0 < u < 1/(d - 1)$.

Trivial: $0 < u < 1/d$.

Reason to talk about more general K: There is one part of the argument that causes an additional difficulty when $K > 1$.

Conjecture for friable values of polynomials

Theorem (M., 2002)

Assume Hypothesis UH. Let $F(x)$ be any polynomial, let f_1, \ldots, f_L be its distinct irreducible factors, and let d_1, \ldots, d_L be their degrees. Let $d = \max\{d_1, \ldots, d_L\}$, and let F have exactly K distinct irreducible factors of degree d. Then

$$\Psi(F; x, x^{1/u}) = x \prod_{j=1}^{L} \rho(d_j u) + O\left(\frac{x}{\log x}\right)$$

for all $0 < u < 1/(d - 1/K)$.

If F irreducible: $\Psi(F; x, x^{1/u}) = x \rho(du) + O(x / \log x)$ for $0 < u < 1/(d - 1)$.

Trivial: $0 < u < 1/d$.

Reason to talk about more general K: There is one part of the argument that causes an additional difficulty when $K > 1$.
Reduction to convenient polynomials

Without loss of generality, we may assume:

1. \(F(x) \) is the product of distinct irreducible polynomials \(f_1(x), \ldots, f_K(x) \), all of the same degree \(d \).
2. \(F(x) \) takes at least one nonzero value modulo every prime.
3. No two distinct irreducible factors \(f_i(x), f_j(x) \) of \(F(x) \) have a common zero modulo any prime.

- (1) is acceptable since the friability level exceeds \(x^{d-1} \).
- (2) is not a necessary condition to have friable values (as it is to have prime values). Nevertheless, we can still reduce to this case.
- Both (2) and (3) are achieved by looking at values of \(F(x) \) on suitable arithmetic progressions \(F(Qx + R) \) separately.
Reduction to convenient polynomials

Without loss of generality, we may assume:

1. $F(x)$ is the product of distinct irreducible polynomials $f_1(x), \ldots, f_K(x)$, all of the same degree d.
2. $F(x)$ takes at least one nonzero value modulo every prime.
3. No two distinct irreducible factors $f_i(x), f_j(x)$ of $F(x)$ have a common zero modulo any prime.

(1) is acceptable since the friability level exceeds x^{d-1}.

(2) is not a necessary condition to have friable values (as it is to have prime values). Nevertheless, we can still reduce to this case.

Both (2) and (3) are achieved by looking at values of $F(x)$ on suitable arithmetic progressions $F(Qx + R)$ separately.
Reduction to convenient polynomials

Without loss of generality, we may assume:

1. $F(x)$ is the product of distinct irreducible polynomials $f_1(x), \ldots, f_K(x)$, all of the same degree d.
2. $F(x)$ takes at least one nonzero value modulo every prime.
3. No two distinct irreducible factors $f_i(x), f_j(x)$ of $F(x)$ have a common zero modulo any prime.

(1) is acceptable since the friability level exceeds x^{d-1}.

(2) is *not* a necessary condition to have friable values (as it is to have prime values). Nevertheless, we can still reduce to this case.

Both (2) and (3) are achieved by looking at values of $F(x)$ on suitable arithmetic progressions $F(Qx + R)$ separately.
Reduction to convenient polynomials

Without loss of generality, we may assume:

1. $F(x)$ is the product of distinct irreducible polynomials $f_1(x), \ldots, f_K(x)$, all of the same degree d.
2. $F(x)$ takes at least one nonzero value modulo every prime.
3. No two distinct irreducible factors $f_i(x), f_j(x)$ of $F(x)$ have a common zero modulo any prime.

Under (1), we want to prove that

$$\psi(F; x, x^{1/u}) = x\rho(du)^K + O\left(\frac{x}{\log x}\right)$$

for all $0 < u < 1/(d - 1/K)$.
Inclusion-exclusion on irreducible factors

Proposition

Let F be a primitive polynomial, and let F_1, \ldots, F_K denote the distinct irreducible factors of F. Then for $x \geq y \geq 1$,

$$
\Psi(F; x, y) = \lfloor x \rfloor + \sum_{1 \leq k \leq K} (-1)^k \sum_{1 \leq i_1 < \cdots < i_k \leq K} M(F_{i_1} \ldots F_{i_k}; x, y).
$$

Definition

$$
M(f; x, y) = \#\{1 \leq n \leq x : \text{for each irreducible factor } g \text{ of } f, \text{ there exists a prime } p > y \text{ such that } p \mid g(n)\}.
$$
Inclusion-exclusion on irreducible factors

Proposition

Let F be a primitive polynomial, and let F_1, \ldots, F_K denote the distinct irreducible factors of F. Then for $x \geq y \geq 1$,

$$\Psi(F; x, y) = \lfloor x \rfloor + \sum_{1 \leq k \leq K} (-1)^k \sum_{1 \leq i_1 < \cdots < i_k \leq K} M(F_{i_1} \ldots F_{i_k}; x, y).$$

Definition

$$M(f; x, y) = \# \{1 \leq n \leq x : \text{for each irreducible factor } g \text{ of } f, \text{ there exists a prime } p > y \text{ such that } p \mid g(n) \}.$$
Proposition

Let F be a primitive polynomial, and let F_1, \ldots, F_K denote the distinct irreducible factors of F. Then for $x \geq y \geq 1$,

$$\Psi(F; x, y) = \lfloor x \rfloor + \sum_{1 \leq k \leq K} (-1)^k \sum_{1 \leq i_1 < \cdots < i_k \leq K} M(F_{i_1} \cdots F_{i_k}; x, y).$$

If we knew that $M(F_{i_1} \cdots F_{i_k}; x, x^{1/u}) \sim x(\log du)^k$, then

$$\Psi(F; x, x^{1/u}) \sim x + \sum_{1 \leq k \leq K} (-1)^k \sum_{1 \leq i_1 < \cdots < i_k \leq K} x(\log du)^k$$

$$= x \left(1 + \sum_{1 \leq k \leq K} \binom{K}{k} (\log du)^k \right)$$

$$= x(1 - \log du)^K = x \rho(du)^K.$$
Proposition

Let \(F \) be a primitive polynomial, and let \(F_1, \ldots, F_K \) denote the distinct irreducible factors of \(F \). Then for \(x \geq y \geq 1 \),

\[
\Psi(F; x, y) = \lfloor x \rfloor + \sum_{1 \leq k \leq K} (-1)^k \sum_{1 \leq i_1 < \cdots < i_k \leq K} M(F_{i_1} \ldots F_{i_k}; x, y).
\]

If we knew that \(M(F_{i_1} \ldots F_{i_k}; x, x^{1/u}) \sim x(\log du)^k \), then

\[
\Psi(F; x, x^{1/u}) \sim x + \sum_{1 \leq k \leq K} (-1)^k \sum_{1 \leq i_1 < \cdots < i_k \leq K} x(\log du)^k
\]

\[
= x \left(1 + \sum_{1 \leq k \leq K} \binom{K}{k} (-\log du)^k \right)
\]

\[
= x(1 - \log du)^K = x \rho(du)^K.
\]
Proposition

Let F be a primitive polynomial, and let F_1, \ldots, F_K denote the distinct irreducible factors of F. Then for $x \geq y \geq 1$,

$$
\Psi(F; x, y) = \lfloor x \rfloor + \sum_{1 \leq k \leq K} (-1)^k \sum_{1 \leq i_1 < \cdots < i_k \leq K} M(F_{i_1} \ldots F_{i_k}; x, y).
$$

Definition

$$
M(f; x, y) = \#\{1 \leq n \leq x : \text{for each irreducible factor } g \text{ of } f, \text{ there exists a prime } p > y \text{ such that } p \mid g(n)\}.
$$

We want to prove $M(F_{i_1} \ldots F_{i_k}; x, x^{1/u}) \sim x(\log du)^k$. To do this, we sort by the values $n_j = F_{i_j}(n)/p_j$, among those n counted by $M(F_{i_1} \ldots F_{i_k}; x, x^{1/u})$.
Friable values of polynomials

Greg Martin

Introduction
Friable integers
Friable values of polynomials

Bounds for friable values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?

Conjecture for prime values of polynomials
Schinzel’s “Hypothesis H”
(Bateman–Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Summary

Proposition

For \(f = f_1 \ldots f_k \) and \(x \) and \(y \) sufficiently large,

\[
M(f; x, y) = \sum_{n_1 \leq \xi_1/y} \cdots \sum_{n_k \leq \xi_k/y} \sum_{b \in \mathcal{R}(f; n_1, \ldots, n_k)} \left(\frac{x - b}{n_1 \cdots n_k} \right) - \pi\left(f_{n_1 \cdots n_k}, b, \eta n_1, \ldots, n_k \right).
\]
Proposition

For \(f = f_1 \ldots f_k \) and \(x \) and \(y \) sufficiently large,

\[
M(f; x, y) = \sum_{n_1 \leq \xi_1 / y} \cdots \sum_{n_k \leq \xi_k / y} \sum_{b \in \mathcal{R}(f; n_1, \ldots, n_k)} \sum_{(n_i, n_j) = 1 \ (1 \leq i < j \leq k)} \left(\pi \left(f_{n_1 \ldots n_k, b; \ x - b \over n_1 \cdots n_k} \right) - \pi \left(f_{n_1 \ldots n_k, b; \ n_1, \ldots, n_k} \right) \right).
\]

DON’T PANIC
Friable values of polynomials

Greg Martin

Introduction
Friable integers
Friable values of polynomials

Bounds for friable values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?

Conjecture for prime values of polynomials
Schinzel’s “Hypothesis H” (Bateman–Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Summary

Proposition

For \(f = f_1 \ldots f_k \) and \(x \) and \(y \) sufficiently large,

\[
M(f; x, y) = \sum_{n_1 \leq \xi_1/y} \cdots \sum_{n_k \leq \xi_k/y} \sum_{b \in \mathcal{R}(f; n_1, \ldots, n_k)} \prod_{1 \leq i < j \leq k} (n_i, n_j) = 1 \left(\pi\left(f_{n_1 \ldots n_k}, b; \frac{x - b}{n_1 \cdots n_k} \right) - \pi\left(f_{n_1 \ldots n_k}, b; \eta n_1, \ldots, n_k \right) \right).
\]

not important

\[\xi_j = f_j(x) \approx x^d \]
For \(f = f_1 \ldots f_k \) and \(x \) and \(y \) sufficiently large,

\[
M(f; x, y) = \sum_{n_1 \leq \xi_1/y} \cdots \sum_{n_k \leq \xi_k/y} \sum_{b \in \mathcal{R}(f;n_1,\ldots,n_k)} \sum_{(n_i,n_j)=1 \ (1 \leq i < j \leq k)} \left(\pi \left(f_{n_1 \ldots n_k}, b; \frac{x - b}{n_1 \cdots n_k} \right) - \pi \left(f_{n_1 \ldots n_k}, b; \eta n_1,\ldots,n_k \right) \right).
\]

It’s here only because the large primes dividing \(f_j(n) \) had to exceed \(y \). (Later we’ll take \(y = x^{1/u} \).)
Friable values of polynomials

Greg Martin

Introduction
Friable integers
Friable values of polynomials
Bounds for friable values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?

Conjecture for prime values of polynomials
Schinzel’s “Hypothesis H”
(Bateman–Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherd the local factors
Sums of multiplicative functions

Summary

Proposition

For \(f = f_1 \ldots f_k \) and \(x \) and \(y \) sufficiently large,

\[
M(f; x, y) = \sum_{n_1 \leq \xi_1/y} \cdots \sum_{n_k \leq \xi_k/y} \sum_{b \in \mathcal{R}(f; n_1, \ldots, n_k)} \sum_{(n_i, n_j) = 1 \ (1 \leq i < j \leq k)} \left(\frac{x - b}{n_1 \cdots n_k} \right) \pi(f_1 \ldots f_k, b; \pi(n_1 \cdots n_k, b; \pi(n_1 \cdots n_k, b; \eta n_1, \ldots, n_k)) \right).
\]

fairly important

\[
\mathcal{R}(f; n_1, \ldots, n_k) = \{ b \ (\text{mod} \ n_1 \cdots n_k) : n_1 \mid f_1(b), n_2 \mid f_2(b), \ldots, n_k \mid f_k(b) \}.
\]
Friable values of polynomials

Greg Martin

Introduction

Friable integers

Friable values of polynomials

Bounds for friable values of polynomials

How friable can values of special polynomials be?

How friable can values of general polynomials be?

Can we have lots of friable values?

Conjecture for prime values of polynomials

Schinzel’s “Hypothesis H”

(Bateman–Horn conjecture)

A uniform version of Hypothesis H

Conjecture for friable values of polynomials

Statement of the conjecture

Reduction to convenient polynomials

Translation into prime values of polynomials

Shepherding the local factors

Sums of multiplicative functions

Summary

Proposition

For \(f = f_1 \ldots f_k \) and \(x \) and \(y \) sufficiently large,

\[
M(f; x, y) = \sum_{n_1 \leq \xi_1/y} \ldots \sum_{n_k \leq \xi_k/y} \sum_{b \in \mathcal{R}(f; n_1, \ldots, n_k)} \left(\pi \left(f_{n_1 \ldots n_k, b} ; \frac{x - b}{n_1 \cdots n_k} \right) - \pi \left(f_{n_1 \ldots n_k, b} ; \eta n_1, \ldots, n_k \right) \right).
\]

rather important

\[
f_{n_1 \ldots n_k, b}(t) = \frac{f(n_1 \cdots n_k t + b)}{n_1 \cdots n_k} \in \mathbb{Z}[x]
\]

In fact, a good understanding of the family \(f_{n_1 \ldots n_k, b} \) is necessary even to treat error terms. However, we’ll only include the details when treating the main term.
Proposition

For \(f = f_1 \ldots f_k \) and \(x \) and \(y \) sufficiently large,

\[
M(f; x, y) = \sum_{n_1 \leq \xi_1/y} \cdots \sum_{n_k \leq \xi_k/y} \sum_{b \in \mathcal{R}(f; n_1, \ldots, n_k)} \sum_{(n_i, n_j) = 1 \ (1 \leq i < j \leq k)} \left(\pi \left(f_{n_1 \cdots n_k, b} ; \frac{x - b}{n_1 \cdots n_k} \right) - \pi \left(f_{n_1 \cdots n_k, b} ; \eta n_1, \ldots, n_k \right) \right).
\]

rather important

\[
f_{n_1 \cdots n_k, b}(t) = \frac{f(n_1 \cdots n_k t + b)}{n_1 \cdots n_k} \in \mathbb{Z}[x]
\]

In fact, a good understanding of the family \(f_{n_1 \cdots n_k, b} \) is necessary even to treat error terms. However, we’ll only include the details when treating the main term.
Proposition

For \(f = f_1 \ldots f_k \) and \(x \) and \(y \) sufficiently large,

\[
M(f; x, y) = \sum_{n_1 \leq \xi_1 / y} \cdots \sum_{n_k \leq \xi_k / y} \sum_{b \in \mathcal{R}(f; n_1, \ldots, n_k)} \sum_{(n_i, n_j) = 1 \ (1 \leq i < j \leq k)} \left(\pi\left(f_{n_1 \ldots n_k}, b; \frac{x - b}{n_1 \cdots n_k}\right) - \pi\left(f_{n_1 \ldots n_k}, b; \eta n_1, \ldots, n_k\right) \right).
\]

First: concentrate on

\[
\pi\left(f_{n_1 \ldots n_k}, b; \frac{x - b}{n_1 \cdots n_k}\right) - \pi\left(f_{n_1 \ldots n_k}, b; \eta n_1, \ldots, n_k\right)
\]
Understanding $M(f; x, y)$ inside out

- Look at $\pi\left(n_1 \cdots n_k, b; \frac{x - b}{n_1 \cdots n_k} \right) - \pi\left(n_1 \cdots n_k, b; \eta n_1, \ldots, n_k \right)$

- Upper bound sieve (Brun, Selberg):

 $$\pi\left(f_{n_1 \cdots n_k}, \frac{x - b}{n_1 \cdots n_k} \right) + O\left(\frac{H(f_{n_1 \cdots n_k}, b)x}{n_1 \cdots n_k} \frac{(\log x)^{k+1}}{n_1 \cdots n_k} \right)$$

- Main term for $\pi(f; x)$ (we use Hypothesis UH here!):

 $$H(f_{n_1 \cdots n_k}, b) \text{li}\left(f_{n_1 \cdots n_k}, \frac{x - b}{n_1 \cdots n_k} \right) + O\left(\frac{H(f_{n_1 \cdots n_k}, b)x}{n_1 \cdots n_k} (\log x)^{k+1} \right)$$

- li is a pretty smooth function:

 $$\frac{H(f_{n_1 \cdots n_k}, b)x}{n_1 \cdots n_k} \frac{\log(\xi_1 / n_1) \cdots \log(\xi_k / n_k)}{n_1 \cdots n_k} + O\left(\frac{H(f_{n_1 \cdots n_k}, b)x}{n_1 \cdots n_k} (\log x)^{k+1} \right)$$
Friable values of polynomials

Greg Martin

Introduction
Friable integers
Friable values of polynomials

Bounds for friable values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?

Conjecture for prime values of polynomials
Schinzel’s “Hypothesis H”
(Bateman–Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Summary

Understanding $M(f; x, y)$ inside out

- Look at $\pi\left(\frac{x - b}{n_1 \cdots n_k}\right) - \pi\left(\frac{x - \eta n_1, \ldots, n_k}{n_1 \cdots n_k}\right)$

- Upper bound sieve (Brun, Selberg):

$$\pi\left(\frac{x - b}{n_1 \cdots n_k}\right) + O\left(\frac{H(f_{n_1 \cdots n_k, b})x}{\log(x)^{k+1}}\right)$$

- Main term for $\pi(f; x)$ (we use Hypothesis UH here!):

$$H(f_{n_1 \cdots n_k, b}) \text{li}\left(\frac{x - b}{n_1 \cdots n_k}\right) + O\left(\frac{H(f_{n_1 \cdots n_k, b})x}{n_1 \cdots n_k \log x^{k+1}}\right)$$

- li is a pretty smooth function:

$$\frac{H(f_{n_1 \cdots n_k, b})x}{\log(\xi_1/n_1) \cdots \log(\xi_k/n_k)} + O\left(\frac{H(f_{n_1 \cdots n_k, b})x}{n_1 \cdots n_k \log x^{k+1}}\right)$$
Understanding $M(f; x, y)$ inside out

- Look at $\pi\left(\frac{x - b}{n_1 \cdots n_k}\right) - \pi\left(\frac{\eta n_1, \ldots, n_k}{f_{n_1 \cdots n_k}, b}\right)$

- Upper bound sieve (Brun, Selberg):

$$\pi\left(\frac{x - b}{n_1 \cdots n_k}\right) + O\left(\frac{H(f_{n_1 \cdots n_k}, b) x}{n_1 \cdots n_k (\log x)^{k+1}}\right)$$

- Main term for $\pi(f; x)$ (we use Hypothesis UH here!):

$$H(f_{n_1 \cdots n_k}, b) \text{li}\left(\frac{x - b}{n_1 \cdots n_k}\right) + O\left(\frac{H(f_{n_1 \cdots n_k}, b) x}{n_1 \cdots n_k (\log x)^{k+1}}\right)$$

- li is a pretty smooth function:

$$\frac{H(f_{n_1 \cdots n_k}, b) x}{\log(\xi_1/n_1) \cdots \log(\xi_k/n_k)} + O\left(\frac{H(f_{n_1 \cdots n_k}, b) x}{n_1 \cdots n_k (\log x)^{k+1}}\right)$$
Understanding $M(f; x, y)$ inside out

- Look at $\pi\left(f_{n_1\cdots n_k}, b; \frac{x - b}{n_1 \cdots n_k}\right) - \pi\left(f_{n_1\cdots n_k}, b; \eta n_1, \ldots, n_k\right)$

- Upper bound sieve (Brun, Selberg):

$$\pi\left(f_{n_1\cdots n_k}, b; \frac{x - b}{n_1 \cdots n_k}\right) + O\left(\frac{H(f_{n_1\cdots n_k}, b)x/n_1 \cdots n_k}{(\log x)^{k+1}}\right)$$

- Main term for $\pi(f; x)$ (we use Hypothesis UH here!):

$$H(f_{n_1\cdots n_k}, b) \text{li}\left(f_{n_1\cdots n_k}, b; \frac{x - b}{n_1 \cdots n_k}\right) + O\left(\frac{H(f_{n_1\cdots n_k}, b)x}{n_1 \cdots n_k(\log x)^{k+1}}\right)$$

- li is a pretty smooth function:

$$\frac{H(f_{n_1\cdots n_k}, b)x/n_1 \cdots n_k}{\log(\xi_1/n_1) \cdots \log(\xi_k/n_k)} + O\left(\frac{H(f_{n_1\cdots n_k}, b)x}{n_1 \cdots n_k(\log x)^{k+1}}\right)$$
Understanding $M(f; x, y)$ inside out

For $f = f_1 \ldots f_k$ and x and y sufficiently large,

\[
M(f; x, y) = \sum_{n_1 \leq \xi_1/y} \ldots \sum_{n_k \leq \xi_k/y} \sum_{b \in \mathcal{R}(f; n_1, \ldots, n_k)} \left(\pi\left(f_{n_1} \ldots f_{n_k}, b; \frac{x - b}{n_1 \ldots n_k} \right) - \pi\left(f_{n_1} \ldots f_{n_k}, b; n_1 \ldots n_k \right) \right) \\
= \sum_{n_1 \leq \xi_1/y} \ldots \sum_{n_k \leq \xi_k/y} \left(\sum_{b \in \mathcal{R}(f; n_1, \ldots, n_k)} H(f_{n_1} \ldots f_{n_k}, b) \right) \\
\times \frac{x}{n_1 \ldots n_k} \cdot \frac{1}{\log(\xi_1/n_1) \ldots \log(\xi_k/n_k)} \left(1 + O\left(\frac{1}{\log x} \right) \right).
\]

Now we have:

\[
\frac{H(f_{n_1} \ldots n_k, b) x}{\log(\xi_1/n_1) \ldots \log(\xi_k/n_k)} + O\left(\frac{H(f_{n_1} \ldots n_k, b) x}{n_1 \ldots n_k (\log x)^{k+1}} \right)
\]
For $f = f_1 \ldots f_k$ and x and y sufficiently large,

$$M(f; x, y) = \sum_{n_1 \leq \xi_1/y} \cdots \sum_{n_k \leq \xi_k/y} \sum_{b \in \mathcal{R}(f; n_1, \ldots, n_k)} \text{suchthat} \quad (n_i, n_j) = 1 \; (1 \leq i < j \leq k)$$

$$\left(\pi \left(\frac{x - b}{n_1 \cdots n_k} \right) - \pi \left(\frac{f_n_1 \cdots n_k, b; \eta n_1, \ldots, n_k}{n_1 \cdots n_k} \right) \right)$$

$$= \sum_{n_1 \leq \xi_1/y} \cdots \sum_{n_k \leq \xi_k/y} \left(\sum_{b \in \mathcal{R}(f; n_1, \ldots, n_k)} H(f_n_1 \cdots n_k, b) \right)$$

$$\times \frac{x/n_1 \cdots n_k}{\log(\xi_1/n_1) \cdots \log(\xi_k/n_k)} \left(1 + O\left(\frac{1}{\log x}\right)\right).$$

Next: concentrate on

$$\sum_{b \in \mathcal{R}(f; n_1, \ldots, n_k)} H(f_n_1 \cdots n_k, b)$$
Friable values of polynomials

Greg Martin

Introduction
Friable integers
Friable values of polynomials

Bounds for friable values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?

Conjecture for prime values of polynomials
Schinzel’s “Hypothesis H” (Bateman–Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Summary

Nice sums over local solutions

\[H(f) = \prod_{p} \left(1 - \frac{1}{p} \right)^{-k} \left(1 - \frac{\sigma(f; p)}{p} \right) \]

Recall

\[\sigma(f; p) = \{ a \pmod{p} : f(a) \equiv 0 \pmod{p} \} \]

Recall

\[\sum_{b \in \mathcal{R}(f; n_1, \ldots, n_k)} H(f_{n_1 \cdots n_k}, b) = H(f)g_1(n_1) \cdots g_k(n_k), \text{ where} \]

\[g_j(n_j) = \prod_{p^\nu || n_j} \left(1 - \frac{\sigma(f; p)}{p} \right)^{-1} \left(\frac{\sigma(f_j; p^\nu)}{p} - \frac{\sigma(f_j; p^{\nu+1})}{p} \right). \]

Proposition
Nice sums over local solutions

Recall

\[H(f) = \prod_p \left(1 - \frac{1}{p}\right)^{-k} \left(1 - \frac{\sigma(f; p)}{p}\right) \]

Recall

\[\sigma(f; p) = \{a \pmod{p} : f(a) \equiv 0 \pmod{p}\} \]

Proposition

\[\sum_{b \in \mathcal{R}(f; n_1, \ldots, n_k)} H(f_{n_1 \cdots n_k, b}) = H(f)g_1(n_1) \cdots g_k(n_k), \text{ where} \]

\[g_j(n_j) = \prod_{p^\nu \mid n_j} \left(1 - \frac{\sigma(f; p)}{p}\right)^{-1} \left(\sigma(f_j; p^\nu) - \frac{\sigma(f_j; p^{\nu+1})}{p}\right). \]
Friable values of polynomials

Introduction

Friable integers
Friable values of polynomials

Bounds for friable values of polynomials

How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?

Conjecture for prime values of polynomials

Schinzel’s “Hypothesis H”
(Bateman–Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable values of polynomials

Statement of the conjecture
Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Summary

Nice sums over local solutions

Recall

\[H(f) = \prod_{p} \left(1 - \frac{1}{p} \right)^{-k} \left(1 - \frac{\sigma(f; p)}{p} \right) \]

Recall

\[\mathcal{R}(f; n_1, \ldots, n_k) = \{ b \pmod{n_1 \cdots n_k} : n_1 \mid f_1(b), n_2 \mid f_2(b), \ldots, n_k \mid f_k(b) \} \]

Proposition

\[
\sum_{b \in \mathcal{R}(f; n_1, \ldots, n_k)} H(f_{n_1 \cdots n_k} b) = H(f) g_1(n_1) \cdots g_k(n_k), \text{ where}
\]

\[
g_j(n) = \prod_{p^\nu \mid n} \left(1 - \frac{\sigma(f; p)}{p} \right)^{-1} \left(\sigma(f_j; p^\nu) - \frac{\sigma(f_j; p^{\nu+1})}{p} \right).
\]
Nice sums over local solutions

Recall

\[H(f) = \prod_p \left(1 - \frac{1}{p}\right)^{-k} \left(1 - \frac{\sigma(f; p)}{p}\right) \]

Recall

\(\mathcal{R}(f; n_1, \ldots, n_k) = \{b \pmod{n_1 \cdots n_k} : n_1 | f_1(b), n_2 | f_2(b), \ldots, n_k | f_k(b)\} \)

Proposition

\[
\sum_{b \in \mathcal{R}(f; n_1, \ldots, n_k)} H(f_{n_1 \cdots n_k}, b) = H(f) g_1(n_1) \cdots g_k(n_k), \\
\text{where} \\
g_j(n_j) = \prod_{p^\nu \mid n_j} \left(1 - \frac{\sigma(f; p)}{p}\right)^{-1} \left(\sigma(f_j; p^\nu) - \frac{\sigma(f_j; p^{\nu+1})}{p}\right).
\]
Friable values of polynomials

Greg Martin

Introduction
Friable integers
Friable values of polynomials

Bounds for friable values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?

Conjecture for prime values of polynomials
Schinzel’s “Hypothesis H”
(Bateman–Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Summary

Nice sums over local solutions

Recall

\[H(f) = \prod_p \left(1 - \frac{1}{p} \right)^{-k} \left(1 - \frac{\sigma(f; p)}{p} \right) \]

Proving this proposition . . .

. . . is fun, actually, involving the Chinese remainder theorem, counting lifts of local solutions (Hensel’s lemma), and so on.

Proposition

\[
\sum_{b \in \mathcal{R}(f; n_1, \ldots, n_k) \atop b \in \mathcal{R}(f; n_1, \ldots, n_k)} H(f_{n_1 \cdots n_k}, b) = H(f) g_1(n_1) \cdots g_k(n_k), \text{ where}
\]

\[
g_j(n_j) = \prod_{p^\nu \mid n_j} \left(1 - \frac{\sigma(f; p)}{p} \right)^{-1} \left(\sigma(f_j; p^\nu) - \frac{\sigma(f_j; p^{\nu+1})}{p} \right).
\]
For $f = f_1 \ldots f_k$ and x and y sufficiently large,

$$M(f; x, y) = \sum_{n_1 \leq \xi_1/y} \cdots \sum_{n_k \leq \xi_k/y} \left(\sum_{b \in \mathcal{R}(f; n_1, \ldots, n_k)} H(f_{n_1} \ldots n_k, b) \right)$$

$$\times \frac{x/n_1 \cdots n_k}{\log(\xi_1/n_1) \cdots \log(\xi_k/n_k)} \left(1 + O\left(\frac{1}{\log x} \right) \right)$$

$$= xH(f) \left(1 + O\left(\frac{1}{\log x} \right) \right)$$

$$\times \sum_{n_1 \leq \xi_1/y} \cdots \sum_{n_k \leq \xi_k/y} \frac{g_1(n_1) \cdots g_k(n_k)/n_1 \cdots n_k}{\log(\xi_1/n_1) \cdots \log(\xi_k/n_k)}. \tag{A}$$

Therefore: consider

$$\sum_{n_1 \leq \xi_1/y} \cdots \sum_{n_k \leq \xi_k/y} \frac{g_1(n_1) \cdots g_k(n_k)}{n_1 \cdots n_k}$$

$$(n_i, n_j) = 1 \quad (1 \leq i < j \leq k)$$

(take care of logarithms later, via partial summation)
For \(f = f_1 \ldots f_k \) and \(x \) and \(y \) sufficiently large,

\[
M(f; x, y) = \sum_{n_1 \leq \xi_1/y} \ldots \sum_{n_k \leq \xi_k/y} \left(\sum_{b \in \mathcal{R}(f;n_1,\ldots,n_k)} H(f_{n_1\ldots n_k},b) \right) \times \frac{x/n_1 \ldots n_k}{\log(\xi_1/n_1) \ldots \log(\xi_k/n_k)} \left(1 + O\left(\frac{1}{\log x}\right)\right) \
\times \sum_{n_1 \leq \xi_1/y} \ldots \sum_{n_k \leq \xi_k/y} \frac{g_1(n_1) \ldots g_k(n_k)/n_1 \ldots n_k}{\log(\xi_1/n_1) \ldots \log(\xi_k/n_k)}.
\]

Therefore: consider

\[
\sum_{n_1 \leq \xi_1/y} \ldots \sum_{n_k \leq \xi_k/y} \frac{g_1(n_1) \ldots g_k(n_k)}{n_1 \ldots n_k}
\]

\((n_i,n_j)=1 \ (1 \leq i < j \leq k)\)

(take care of logarithms later, via partial summation)
For $f = f_1 \ldots f_k$ and x and y sufficiently large,

$$M(f; x, y) = \sum_{n_1 \leq \xi_1/y} \ldots \sum_{n_k \leq \xi_k/y} \left(\sum_{b \in \mathcal{R}(f;n_1,\ldots,n_k)} H(f_{n_1} \ldots f_{n_k}, b) \right) \times \frac{x/n_1 \cdots n_k}{\log(\xi_1/n_1) \cdots \log(\xi_k/n_k)} \left(1 + O\left(\frac{1}{\log x} \right) \right)$$

$$= x H(f) \left(1 + O\left(\frac{1}{\log x} \right) \right) \times \sum_{n_1 \leq \xi_1/y} \ldots \sum_{n_k \leq \xi_k/y} \frac{g_1(n_1) \cdots g_k(n_k)/n_1 \cdots n_k}{\log(\xi_1/n_1) \cdots \log(\xi_k/n_k)}.$$

Therefore: consider

$$\sum_{n_1 \leq \xi_1/y} \ldots \sum_{n_k \leq \xi_k/y} \frac{g_1(n_1) \cdots g_k(n_k)}{n_1 \cdots n_k}$$

First: consider more general sums of multiplicative functions.
Multiplicative functions: one-variable sums

Definition
Let’s say a multiplicative function \(g(n) \) is \(\alpha \) on average if it takes nonnegative values and

\[
\sum_{p \leq w} \frac{g(p) \log p}{p} \sim \alpha \log w.
\]

Note: we really need upper bounds on \(g(p^\nu) \) as well . . .

Lemma
If the multiplicative function \(g(n) \) is \(\alpha \) on average, then

\[
\sum_{n \leq t} \frac{g(n)}{n} \sim c(g)(\log t)^\alpha,
\]

where \(c(g) = \prod_p \left(1 - \frac{1}{p}\right)^\alpha \left(1 + \frac{g(p)}{p} + \frac{g(p^2)}{p^2} + \cdots \right). \)
Multiplicative functions: one-variable sums

Definition

Let’s say a multiplicative function $g(n)$ is α on average if it takes nonnegative values and

$$
\sum_{p \leq w} \frac{g(p) \log p}{p} \sim \alpha \log w.
$$

Note: we really need upper bounds on $g(p^\nu)$ as well . . .

Lemma

If the multiplicative function $g(n)$ is α on average, then

$$
\sum_{n \leq t} \frac{g(n)}{n} \sim c(g)(\log t)^\alpha,
$$

where $c(g) = \prod_p \left(1 - \frac{1}{p}\right)^\alpha \left(1 + \frac{g(p)}{p} + \frac{g(p^2)}{p^2} + \cdots \right)$.
Definition

Let’s say a multiplicative function $g(n)$ is α on average if it takes nonnegative values and

$$\sum_{p \leq w} \frac{g(p) \log p}{p} \sim \alpha \log w.$$

Note: we really need upper bounds on $g(p^\nu)$ as well . . .

Lemma

If the multiplicative function $g(n)$ is α on average, then

$$\sum_{n \leq t} \frac{g(n)}{n} \sim c(g)(\log t)^\alpha,$$

where $c(g) = \prod_p \left(1 - \frac{1}{p}\right)^\alpha \left(1 + \frac{g(p)}{p} + \frac{g(p^2)}{p^2} + \cdots \right)$.

Multiplicative functions: one-variable sums

Greg Martin
Multiplicative functions: one-variable sums

Definition

Let’s say a multiplicative function \(g(n) \) is \(\alpha \) on average if it takes nonnegative values and

\[
\sum_{p \leq w} \frac{g(p) \log p}{p} \sim \alpha \log w.
\]

Note: we really need upper bounds on \(g(p^\nu) \) as well . . .

Lemma

If the multiplicative function \(g(n) \) is \(\alpha \) on average, then

\[
\sum_{n \leq t} \frac{g(n)}{n} \sim c(g)(\log t)^\alpha,
\]

where

\[
c(g) = \prod_p \left(1 - \frac{1}{p}\right)^\alpha \left(1 + \frac{g(p)}{p} + \frac{g(p^2)}{p^2} + \cdots \right).
\]
Multiplicative functions: more variables

From previous slide

\[c(g) = \prod_p \left(1 - \frac{1}{p} \right)^{\alpha} \left(1 + \frac{g(p)}{p} + \frac{g(p^2)}{p^2} + \cdots \right) \]

By the lemma on the previous slide, we easily get:

Proposition

If the multiplicative functions \(g_1(n), \ldots, g_k(n) \) are each 1 on average, then

\[
\sum_{n_1 \leq t} \cdots \sum_{n_k \leq t} \frac{g_1(n_1) \cdots g_k(n_k)}{n_1 \cdots n_k} \sim c(g_1) \cdots c(g_k)(\log t)^k.
\]

However, we need the analogous sum with the coprimality condition \((n_i, n_j) = 1\). (This is where \(K > 1 \) makes life harder!)
Multiplicative functions: more variables

From previous slide

\[c(g) = \prod_p \left(1 - \frac{1}{p} \right)^{\alpha} \left(1 + \frac{g(p)}{p} + \frac{g(p^2)}{p^2} + \cdots \right) \]

By the lemma on the previous slide, we easily get:

Proposition

If the multiplicative functions \(g_1(n), \ldots, g_k(n) \) *are each 1 on average, then*

\[
\sum_{n_1 \leq t} \cdots \sum_{n_k \leq t} \frac{g_1(n_1) \cdots g_k(n_k)}{n_1 \cdots n_k} \sim c(g_1) \cdots c(g_k) (\log t)^k.
\]

However, we need the analogous sum with the coprimality condition \((n_i, n_j) = 1 \). (This is where \(K > 1 \) makes life harder!)
Multiplicative functions: more variables

From previous slide

\[c(g) = \prod_p \left(1 - \frac{1}{p} \right)^\alpha \left(1 + \frac{g(p)}{p} + \frac{g(p^2)}{p^2} + \cdots \right) \]

We get:

Proposition

If the multiplicative functions \(g_1(n), \ldots, g_k(n) \) *are each 1 on average, then*

\[
\sum_{n_1 \leq t} \cdots \sum_{n_k \leq t} \frac{g_1(n_1) \cdots g_k(n_k)}{n_1 \cdots n_k} \sim c(g_1 + \cdots + g_k)(\log t)^k.
\]

However, we need the analogous sum with the coprimality condition \((n_i, n_j) = 1\) \((1 \leq i < j \leq k)\). (This is where \(K > 1\) makes life harder!)
Multiplicative functions: more variables

From previous slide

\[c(g) = \prod_p \left(1 - \frac{1}{p}\right)^\alpha \left(1 + \frac{g(p)}{p} + \frac{g(p^2)}{p^2} + \cdots\right) \]

We get:

Proposition

If the multiplicative functions \(g_1(n), \ldots, g_k(n)\) are each 1 on average, then

\[
\sum_{n_1 \leq t} \cdots \sum_{n_k \leq t} \frac{g_1(n_1) \cdots g_k(n_k)}{n_1 \cdots n_k} \sim c(g_1 + \cdots + g_k)(\log t)^k.
\]

However, we need the analogous sum with the coprimality condition \((n_i, n_j) = 1\). (This is where \(K > 1\) makes life harder!)

Never mind that \(g_1 + \cdots + g_k\) isn’t multiplicative!
Partial summation: return of the logs

The proposition on the previous slide:

\[\sum_{n_1 \leq \frac{\xi_1}{y}} \cdots \sum_{n_k \leq \frac{\xi_k}{y}} \frac{g_1(n_1) \cdots g_k(n_k)}{n_1 \cdots n_k} \]

\[\sim c(g_1 + \cdots + g_k) \prod_{j=1}^{k} \log \frac{\xi_j}{y}. \]

For our functions, \(g_j(p) = \left(1 - \frac{\sigma(f; p)}{p}\right)^{-1} \left(\sigma(f_j; p) - \frac{\sigma(f_j; p^2)}{p}\right) \)

\[= \sigma(f_j; p)(1 + O\left(\frac{1}{p}\right)), \] and \(\sigma(f_j; p) \) is indeed 1 on average by the prime ideal theorem.
Partial summation: return of the logs

The proposition on the previous slide . . .
. . . gives, after a k-fold partial summation argument:

Proposition

If the multiplicative functions $g_1(n), \ldots, g_k(n)$ are each 1 on average, then

\[
\sum_{n_1 \leq \xi_1/y} \cdots \sum_{n_k \leq \xi_k/y} \frac{g_1(n_1) \cdot \cdots \cdot g_k(n_k)}{n_1 \cdots n_k \log(\xi_1/n_1) \cdots \log(\xi_k/n_k)} \sim c(g_1 + \cdots + g_k) \prod_{j=1}^{k} \log \frac{\xi_j}{\log y}.
\]

For our functions, $g_j(p) = (1 - \frac{\sigma(f_j; p)}{p})^{-1} (\sigma(f_j; p) - \frac{\sigma(f_j; p^2)}{p}) = \sigma(f_j; p)(1 + O(\frac{1}{p}))$, and $\sigma(f_j; p)$ is indeed 1 on average by the prime ideal theorem.
Partial summation: return of the logs

The proposition on the previous slide . . .
. . . gives, after a k-fold partial summation argument:

Proposition

If the multiplicative functions $g_1(n), \ldots, g_k(n)$ are each 1 on average, then

$$
\sum_{n_1 \leq \xi_1/y} \cdots \sum_{n_k \leq \xi_k/y} \frac{g_1(n_1) \cdots g_k(n_k)}{n_1 \cdots n_k \log(\xi_1/n_1) \cdots \log(\xi_k/n_k)}
$$

$$
\sim c(g_1 + \cdots + g_k) \prod_{j=1}^k \log \frac{\log \xi_j}{\log y}.
$$

For our functions, $g_j(p) = (1 - \frac{\sigma(f;p)}{p})^{-1} (\sigma(f_j; p) - \frac{\sigma(f_j;p^2)}{p})$

$$
= \sigma(f_j; p)(1 + O(\frac{1}{p})), \text{ and } \sigma(f_j; p) \text{ is indeed 1 on average by the prime ideal theorem.}
$$
For \(f = f_1 \ldots f_k \) and \(x \) and \(y \) sufficiently large,

\[
M(f; x, y) = xH(f) \left(1 + O \left(\frac{1}{\log x} \right) \right) \\
\times \sum_{n_1 \leq \xi_1 / y} \cdots \sum_{n_k \leq \xi_k / y} \frac{g_1(n_1) \cdots g_k(n_k)/n_1 \cdots n_k}{\log(\xi_1/n_1) \cdots \log(\xi_k/n_k)}
\]

\[
= H(f)c(g_1 + \cdots + g_k) \\
\times x \left(\prod_{j=1}^{k} \frac{\log \xi_j}{\log y} \right) \left(1 + O \left(\frac{1}{\log x} \right) \right).
\]

Recall: \(\xi_j = f_j(x) \approx x^d \), and we care about \(y = x^{1/u} \). Then \(\log(\log \xi_j / \log y) \sim \log du \).

We have the order of magnitude \(x(\log du)^k \) we wanted . . . but what about the local factors \(H(f)c(g_1 + \cdots + g_k) \)?
For \(f = f_1 \ldots f_k \) and \(x \) and \(y \) sufficiently large,

\[
M(f; x, y) = xH(f) \left(1 + O\left(\frac{1}{\log x} \right) \right) \\
\times \sum_{n_1 \leq \xi_1/y} \cdots \sum_{n_k \leq \xi_k/y} \sum_{(n_i, n_j) = 1 \ (1 \leq i < j \leq k)} \frac{g_1(n_1) \cdots g_k(n_k)/n_1 \cdots n_k}{\log(\xi_1/n_1) \cdots \log(\xi_k/n_k)}
\]

\[
= H(f)c(g_1 + \cdots + g_k)
\]

\[
\times x \left((\log du)^k \right) \left(1 + O\left(\frac{1}{\log x} \right) \right).
\]

Recall: \(\xi_j = f_j(x) \approx x^d \), and we care about \(y = x^{1/u} \). Then

\[
\log(\log \xi_j / \log y) \sim \log du.
\]

We have the order of magnitude \(x(\log du)^k \) we wanted . . . but what about the local factors \(H(f)c(g_1 + \cdots + g_k) \)?
For \(f = f_1 \ldots f_k \) and \(x \) and \(y \) sufficiently large,

\[
M(f; x, y) = xH(f) \left(1 + O\left(\frac{1}{\log x} \right) \right)
\times \sum_{n_1 \leq \xi_1 / y} \cdots \sum_{n_k \leq \xi_k / y} \frac{g_1(n_1) \cdots g_k(n_k) / n_1 \cdots n_k}{\log(\xi_1 / n_1) \cdots \log(\xi_k / n_k)}
= H(f)c(g_1 + \cdots + g_k)
\times x \left((\log du)^k \right) \left(1 + O\left(\frac{1}{\log x} \right) \right).
\]

Recall: \(\xi_j = f_j(x) \approx x^d \), and we care about \(y = x^{1/u} \). Then \(\log(\log \xi_j / \log y) \sim \log du \).

We have the order of magnitude \(x(\log du)^k \) we wanted . . .

but what about the local factors \(H(f)c(g_1 + \cdots + g_k) \)?
The magic moment for $H(f)c(g_1 + \cdots + g_k)$

- $H(f) = \prod_p \left(1 - \frac{1}{p}\right)^{-k} \left(1 - \frac{\sigma(f; p)}{p}\right)$
- $c(g) = \prod_p \left(1 - \frac{1}{p}\right)^\alpha \left(1 + \frac{g(p)}{p} + \frac{g(p^2)}{p^2} + \cdots\right)$

We have $g_j(p^\nu) = \left(1 - \frac{\sigma(f; p)}{p}\right)^{-1} \left(\sigma(f_j; p^\nu) - \frac{\sigma(f_j; p^{\nu+1})}{p}\right)$,

and so

\[
\frac{(g_1 + \cdots + g_k)(p^\nu)}{p^\nu} = \frac{1}{p^\nu} \sum_{j=1}^k \left(1 - \frac{\sigma(f; p)}{p}\right)^{-1} \left(\frac{\sigma(f_j; p^\nu)}{p^\nu} - \frac{\sigma(f_j; p^{\nu+1})}{p^{\nu+1}}\right) = \left(1 - \frac{\sigma(f; p)}{p}\right)^{-1} \left(\frac{\sigma(f; p^\nu)}{p^\nu} - \frac{\sigma(f; p^{\nu+1})}{p^{\nu+1}}\right)
\]

since the f_j have no common roots modulo p.
The magic moment for $H(f)c(g_1 + \cdots + g_k)$

- $H(f) = \prod_p \left(1 - \frac{1}{p}\right)^{-k} \left(1 - \frac{\sigma(f; p)}{p}\right)$
- $c(g) = \prod_p \left(1 - \frac{1}{p}\right)^{\alpha} \left(1 + \frac{g(p)}{p} + \frac{g(p^2)}{p^2} + \cdots\right)$

We have $g_j(p^\nu) = \left(1 - \frac{\sigma(f; p)}{p}\right)^{-1} \left(\sigma(f_j; p^\nu) - \frac{\sigma(f_j; p^{\nu+1})}{p}\right)$,

and so $\frac{(g_1 + \cdots + g_k)(p^\nu)}{p^\nu}$

$$= \frac{1}{p^\nu} \sum_{j=1}^k \left(1 - \frac{\sigma(f; p)}{p}\right)^{-1} \left(\frac{\sigma(f_j; p^\nu)}{p^\nu} - \frac{\sigma(f_j; p^{\nu+1})}{p^{\nu+1}}\right)$$

$$= \left(1 - \frac{\sigma(f; p)}{p}\right)^{-1} \left(\frac{\sigma(f; p^\nu)}{p^\nu} - \frac{\sigma(f; p^{\nu+1})}{p^{\nu+1}}\right)$$

since the f_j have no common roots modulo p.

Friable values of polynomials
Greg Martin

Introduction
Friable integers
Friable values of polynomials

Bounds for friable values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?

Conjecture for prime values of polynomials
Schinzel’s “Hypothesis H”
(Bateman–Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Summary
Friable values of polynomials

Greg Martin

Introduction
Friable integers
Friable values of polynomials

Bounds for friable values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?

Conjecture for prime values of polynomials
Schinzel’s "Hypothesis H"
(Bateman–Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Summary

The magic moment for $H(f)c(g_1 + \cdots + g_k)$

- $H(f) = \prod_p \left(1 - \frac{1}{p}\right)^{-k} \left(1 - \frac{\sigma(f; p)}{p}\right)$
- $c(g) = \prod_p \left(1 - \frac{1}{p}\right)^{\alpha} \left(1 + \frac{g(p)}{p} + \frac{g(p^2)}{p^2} + \cdots\right)$

We have $g_j(p^\nu) = \left(1 - \frac{\sigma(f; p)}{p}\right)^{-1} \left(\sigma(f_j; p^\nu) - \frac{\sigma(f_j; p^{\nu+1})}{p}\right)$,
and so $\frac{(g_1 + \cdots + g_k)(p^\nu)}{p^\nu}$

$$= \frac{1}{p^\nu} \sum_{j=1}^{k} \left(1 - \frac{\sigma(f; p)}{p}\right)^{-1} \left(\frac{\sigma(f_j; p^\nu)}{p^\nu} - \frac{\sigma(f_j; p^{\nu+1})}{p^{\nu+1}}\right)$$

$$= \left(1 - \frac{\sigma(f; p)}{p}\right)^{-1} \left(\frac{\sigma(f; p^\nu)}{p^\nu} - \frac{\sigma(f; p^{\nu+1})}{p^{\nu+1}}\right)$$

since the f_j have no common roots modulo p.

We have $g_j(p^\nu) = \left(1 - \frac{\sigma(f; p)}{p}\right)^{-1} \left(\sigma(f_j; p^\nu) - \frac{\sigma(f_j; p^{\nu+1})}{p}\right)$,
The magic moment for $H(f)c(g_1 + \cdots + g_k)$

- $H(f) = \prod_{p} \left(1 - \frac{1}{p}\right)^{-k} \left(1 - \frac{\sigma(f; p)}{p}\right)$
- $c(g) = \prod_{p} \left(1 - \frac{1}{p}\right)^{\alpha} \left(1 + \frac{g(p)}{p} + \frac{g(p^2)}{p^2} + \cdots \right)$

Therefore

$$1 + \sum_{\nu=1}^{\infty} \frac{(g_1 + \cdots + g_k)(p^n)}{p^n}$$

$$= 1 + \sum_{\nu=1}^{\infty} \left(1 - \frac{\sigma(f; p)}{p}\right)^{-1} \left(\frac{\sigma(f; p^{\nu})}{p^{\nu}} - \frac{\sigma(f; p^{\nu+1})}{p^{\nu+1}}\right)$$
Friable values of polynomials

Greg Martin

Introduction
Friable integers
Friable values of polynomials

Bounds for friable values of polynomials

How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?

Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman–Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Summary

The magic moment for $H(f)c(g_1 + \cdots + g_k)$

- $H(f) = \prod_p \left(1 - \frac{1}{p}\right)^{-k} \left(1 - \frac{\sigma(f; p)}{p}\right)$
- $c(g) = \prod_p \left(1 - \frac{1}{p}\right)^\alpha \left(1 + \frac{g(p)}{p} + \frac{g(p^2)}{p^2} + \cdots\right)$

Therefore

$$1 + \sum_{\nu=1}^\infty \frac{(g_1 + \cdots + g_k)(p^\nu)}{p^\nu}$$

$$= 1 + \left(1 - \frac{\sigma(f; p)}{p}\right)^{-1} \sum_{\nu=1}^\infty \left(\frac{\sigma(f; p^\nu)}{p^\nu} - \frac{\sigma(f; p^{\nu+1})}{p^{\nu+1}}\right)$$

This is a telescoping sum . . .
The magic moment for $H(f)c(g_1 + \cdots + g_k)$

- $H(f) = \prod_p \left(1 - \frac{1}{p}\right)^{-k} \left(1 - \frac{\sigma(f; p)}{p}\right)$
- $c(g) = \prod_p \left(1 - \frac{1}{p}\right)^{\alpha} \left(1 + \frac{g(p)}{p} + \frac{g(p^2)}{p^2} + \cdots \right)$

Therefore

$$1 + \sum_{\nu=1}^{\infty} \frac{(g_1 + \cdots + g_k)(p^\nu)}{p^\nu}$$

$$= 1 + \left(1 - \frac{\sigma(f; p)}{p}\right)^{-1} \sum_{\nu=1}^{\infty} \left(\frac{\sigma(f; p^\nu)}{p^\nu} - \frac{\sigma(f; p^{\nu+1})}{p^{\nu+1}}\right)$$

This is a telescoping sum . . .
The magic moment for $H(f)c(g_1 + \cdots + g_k)$

- $H(f) = \prod_p \left(1 - \frac{1}{p}\right)^{-k} \left(1 - \frac{\sigma(f; p)}{p}\right)$
- $c(g) = \prod_p \left(1 - \frac{1}{p}\right)^{\alpha} \left(1 + \frac{g(p)}{p} + \frac{g(p^2)}{p^2} + \cdots\right)$

Therefore

\[
\begin{align*}
1 + \sum_{\nu=1}^{\infty} \frac{(g_1 + \cdots + g_k)(p^\nu)}{p^\nu} &= 1 + \left(1 - \frac{\sigma(f; p)}{p}\right)^{-1} \left(\frac{\sigma(f; p)}{p}\right) \\
\text{This is a telescoping sum . . . tada!}
\end{align*}
\]
The magic moment for $H(f)c(g_1 + \cdots + g_k)$

- $H(f) = \prod_p \left(1 - \frac{1}{p}\right)^{-k} \left(1 - \frac{\sigma(f; p)}{p}\right)$
- $c(g) = \prod_p \left(1 - \frac{1}{p}\right)^\alpha \left(1 + \frac{g(p)}{p} + \frac{g(p^2)}{p^2} + \cdots\right)$

Therefore

$$1 + \sum_{\nu=1}^\infty \frac{(g_1 + \cdots + g_k)(p^\nu)}{p^\nu}$$

$$= 1 + \left(1 - \frac{\sigma(f; p)}{p}\right)^{-1} \left(\frac{\sigma(f; p)}{p}\right) =$$

And this whole expression simplifies . . .
The magic moment for $H(f)c(g_1 + \cdots + g_k)$

- $H(f) = \prod_p \left(1 - \frac{1}{p}\right)^{-k} \left(1 - \frac{\sigma(f; p)}{p}\right)$
- $c(g) = \prod_p \left(1 - \frac{1}{p}\right)^\alpha \left(1 + \frac{g(p)}{p} + \frac{g(p^2)}{p^2} + \cdots\right)$

Therefore

\[
1 + \sum_{\nu=1}^\infty \frac{(g_1 + \cdots + g_k)(p^\nu)}{p^\nu}
\]

\[
= 1 + \left(1 - \frac{\sigma(f; p)}{p}\right)^{-1} \left(\frac{\sigma(f; p)}{p}\right) = \left(1 - \frac{\sigma(f; p)}{p}\right)^{-1}.
\]

And this whole expression simplifies \ldots nicely.
Friable values of polynomials

Introduction
Friable integers
Friable values of polynomials

Bounds for friable values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?

Conjecture for prime values of polynomials
Schinzel’s “Hypothesis H”
(Bateman–Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Summary
The magic moment for $H(f)c(g_1 + \cdots + g_k)$

- $H(f) = \prod_p \left(1 - \frac{1}{p}\right)^{-k} \left(1 - \frac{\sigma(f; p)}{p}\right)$
- $c(g) = \prod_p \left(1 - \frac{1}{p}\right)^{\alpha} \left(1 + \frac{g(p)}{p} + \frac{g(p^2)}{p^2} + \cdots\right)$

We conclude that

$$H(f)c(g_1 + \cdots + g_k)$$

$$= H(f) \prod_p \left(1 - \frac{1}{p}\right)^{k} \left(1 + \sum_{\nu=1}^{\infty} \frac{(g_1 + \cdots + g_k)(p^\nu)}{p^\nu}\right)$$

$$= H(f) \prod_p \left(1 - \frac{1}{p}\right)^{k} \left(1 - \frac{\sigma(f; p)}{p}\right)^{-1} = 1$$

\[\cdots \text{ amazing!}\]
There are **lots of open problems** concerning friable values of polynomials—and many possible improvements from a single clever new idea.

The **asymptotics** for friable values of polynomials depends on the degrees of their irreducible factors—but shouldn’t depend on the polynomial otherwise.

Notes to be placed on web page

www.math.ubc.ca/~gerg/talks.html