Math 307, Section 103, Quiz 4
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Problem 1. (7 points.) Let u and v be two vectors in C?

(a) (2 points) Under what conditions do u and v form an orthonormal basis?
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Problem 2. (9 points) Let A be a 2 x 2 invertible matrix. Suppose that v; = B] is

an eigenvector of A with eigenvalue A\ = 3.

(a) (4 points) Show that v, is also an eigenvector for A~
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For (b) and (c) let vy = [ﬂ be an eigenvector of A with the same eigenvalue A = 3.

(b) (3 points) Show' that {0} is also an eigenvector of A with eigenvalue 3.
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