Math 307, Section 103, Quiz 4

Solutions Name:

Student ID#:

Problem 1. (7 points.) Let u and v be two vectors in \mathbb{C}^2 .

(a) (2 points) Under what conditions do u and v form an orthonormal basis?

11 ull =1 11 11 = 1 (u,v) =0

(b) (2 points) Let $u = \frac{1}{2} \begin{bmatrix} i \\ \sqrt{3} \end{bmatrix}$. Find a vector v so that u and v form an orthonormal

(u, v) = 0 (=> = iv, + 13 v2 = 0 $(=) V_2 = \frac{iV_1}{\sqrt{3}} = V_1 \begin{bmatrix} 1 \\ i\sqrt{3} \end{bmatrix}$

 $|V_{1}|^{2} = (2) |V_{1}|^{2} + |V_{1}|^{2} |V_{3}|^{2} = 1$ (c) (3 points) Find the coefficients c_{1} and c_{2} in the expansion $\begin{bmatrix} 1 \\ 0 \end{bmatrix} = c_{1}u + c_{2}v$.

$$C_1 = \langle u, [1] \rangle = \frac{1}{2} = -\frac{\lambda}{2}$$

 $c_2 = \langle v, [0] \rangle = \frac{\sqrt{3}}{3}$

Check: $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \stackrel{?}{=} -\frac{i}{2} \begin{bmatrix} \frac{i}{2} \\ \frac{i}{3} \end{bmatrix} + \frac{\sqrt{3}}{2} \begin{bmatrix} \frac{\sqrt{3}}{2} \\ \frac{i}{2} \end{bmatrix}$

$$= \begin{bmatrix} 1/4 \\ -\sqrt{13}i \end{bmatrix} + \begin{bmatrix} 3/4 \\ i\sqrt{3}4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \text{ ok.}$$

Problem 2. (9 points) Let A be a 2×2 invertible matrix. Suppose that $v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is an eigenvector of A with eigenvalue $\lambda = 3$.

(a) (4 points) Show that v_1 is also an eigenvector for A^{-1} .

$$A^{-1}(Av) = A^{-1}(3v)$$

$$V = A^{-1}(3v) = 3A^{-1}v$$

$$\angle \Rightarrow A^{-1}v = \frac{1}{3}v.$$

For (b) and (c) let $v_2 = \begin{vmatrix} 1 \\ 1 \end{vmatrix}$ be an eigenvector of A with the same eigenvalue $\lambda = 3$.

(b) (3 points) Show that $\begin{vmatrix} 0 \\ 1 \end{vmatrix}$ is also an eigenvector of A with eigenvalue 3.

$$A[0] = A([1] - [0]) = A[0] - A[0]$$

= $3[1] - 3[0] = 3[0]$.

(c) (2 points) Find A.

$$A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \stackrel{(=)}{(=)} \begin{bmatrix} 2 \\ 0 \end{bmatrix} \stackrel{(=)}{(=)} \stackrel{(=)}$$

$$\begin{bmatrix} a \\ c \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

$$\left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \quad (=) \quad \begin{bmatrix} b \\ d \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} \quad (=) \quad b = 0 \\
 d = 3.$$

$$=\begin{bmatrix}0\\3\end{bmatrix}$$