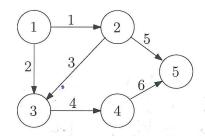
Math 307, Section 103, Quiz 3

Name:

Student ID#:

Problem 1. (9 points.) Consider the graph below



(a) (2 points) Write down the incidence matrix D for this graph.

(b) (2 points) Find the nullspace $\mathcal{N}(D)$ and explain what $\dim(\mathcal{N}(D))$ means in terms of the graph.

$$\mathcal{N}(D) = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$$

$$\mathcal{N}(D) = \text{Span} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$$
 dim $\left(\mathcal{N}(D) \right) = 1 = \# \text{ connected components}.$

(c) (2 points) Find a vector in $\mathcal{N}(D^T)$ and explain what it means in terms of the graph.

Let
$$V = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$$
 v is the loop vector for the loop $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$

(d) (2 points) Write down the Laplacian matrix L for this graph, thought of as a resistor network with all resistances equal to 1.

(e) (1 point) If v_i is the voltage at vertex i, then what is the current Lv for this network?

LV=0 by Kirchaff's law since there are no power sources

Problem 2. (10 points) Let $P = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & 1 \end{bmatrix}$.

(a) (4 points) Prove that P is an orthogonal projection matrix.

 $P^{2} = \begin{cases} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 & 1/2 \\ 0 & 0 & 1/2$ PT = [2 0 2] = P. 27 P is an ortungonal projection matrix.

(b) (1 point) Which subspace S does P project orthogonally to?

P projects outo P(P) = span \[[], []]\].

(c) (3 points) Let Q = (I - P). Find a vector x such that Qx = x.

Qx = x (=) (I-P)x = x (=) X-Px = x (=) Px = 0. If $X = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, then $Px = 0 \Rightarrow Qx = X$.

(d) (2 points) Compute Q^4 .

Q is also an orthogonal projection matrix (from class). Thus, $Q^2 = Q$, and, therefore, $Q^n = Q^2 Q^{n-2} Q^{n-1}$

Thus,
$$Q'' = Q'' = \dots = Q$$
, $\forall n$

$$= Q = I - P = \begin{bmatrix} \frac{1}{2} & 0 & -\frac{1}{2} \\ 0 & 0 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}.$$