RECURRENCE RELATIONS

ELINA ROBEVA

1. HOMOGENEOUS LINEAR RECURRENCE RELATIONS

A homogeneous linear recurrence relation has the form

for1 = aofn + a1 fno1 + - 4 apfrk,

where aq, ..., a are constants. The aim is to find a closed-form formula for f,.

Problem 1. Consider the relation a,; = 2a,, ag = 1. What is a,?

Problem 2 (The Fibonacci Sequence). The Fibonacci sequence is given by

fo=0, fi=1 fori=/fat foo1,Vn>1

What is fio? How about f5000?7 Find a closed-form formula for f,.

Problem 3. Let a,y1 = b5a, — 6a,_1, ag = 1,a; = 2. Find a closed-form formula for a,,.

Problem 4. Let a,1 = 4a, — 4a,_1, ag = 1,a; = 2. Find a closed-form formula for a,,.

Problem 5. Let a,1 = 2a, — 2a,_1, ag = 1,a; = 2. Find a closed-form formula for a,,.

Problem 6. Let a,.1 = 4a,, — a1 — 6a,_2, ap = 1,a1 = 2,a5 = 3. Find a closed-form

formula for a,,.

Problem 7 (The Gambler’s Ruin Problem). Smith has $n at the beginning of the day, and
starts playing the following gambling game. At each step he tosses a coin, which comes up
Heads with probability %, and Tails with probability % If the coin comes up Heads, Smith
gains $1, and if it comes up Tails, he loses $1. The game ends if either Smith has a total of
$N, where N > n, or if he has no money left. Find the probability ¢, of Smith winning (i.e.

having $N) if he starts the day with $n.

Date: January 23, 2020.
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2. NON-HOMOGENEOUS LINEAR RECURRENCE RELATIONS

A non-homogeneous linear recurrence relation has the form

fn-i—l = aOfn + alfn—l + -+ akfn—k +g(n)a

where ay, . .., a; are constants, and g(n) is a function that depends on n. The aim, again, is
to find a closed-form formula for the n-th term f,,.

The general algorithm for solving such a relation is to first find a particular solution, x,.
Then, the sequence (f,, — z,,) satisfies the homogeneous recurrence relation:

(fn+1 - anrl) = aO(fn - xn) + al(fnfl - $n71> + -+ ak(fnfk - xnfk)a
and, therefore, we can solve it using the tools we learned above.

Problem 8. Solve the recurrence relation

Apy1 = SCLn + 1, ag — 0.

Problem 9. Find all solutions to the recurrence relation

Gni1 = 3y +4a, 1+ 3.

Problem 10 (The Towers of Hanoi). Suppose we have 3 pegs, and there are n disks of
increasing size on one of the pegs. The goal is to move all n disks to one of the other 2 pegs.
We are only allowed to move one disk at a time, and cannot put a larger disk on top of a
smaller one. Let H, be the number of moves it takes to move the n disks. Show that H,
satisfies the recurrence relation

HnZQHn—1+17 H0:07

and then solve this relation.

Problem 11 (The Binary Search Algorithm). Suppose we are given n ordered real numbers
a; < ay < --- < a,, and another real number b. How many times do we have to check
whether b; < a; for some j in order to find the unique i € {0,1,...,n} so that a; < b < a;417?
It might be easier to assume that n is a power of 2.

Problem 12. Find all solutions to the recurrence relation

nt1 = 2a, +n, ap=0.

Now, try solving all of the problems above using the method of generating functions!
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