Outline

Week 9: complex numbers; complex exponential and polar form

Course Notes: 5.1, 5.2, 5.3, 5.4

Goals:
Fluency with arithmetic on complex numbers
Using matrices with complex entries: finding determinants and inverses, solving systems, etc.
Visualizing complex numbers in coordinate systems
We use i (as in "imaginary") to denote the number whose square is -1.

\[i^2 = -1 \]
\[i^3 = -i \]
\[i^4 = 1 \]
Complex Arithmetic

We use i (as in "imaginary") to denote the number whose square is -1.

$i^2 = -1$
Complex Arithmetic

We use i (as in "imaginary") to denote the number whose square is -1.

\[i^2 = -1 \quad (-i)^2 = \]
Complex Arithmetic

We use i (as in "imaginary") to denote the number whose square is -1.

$$i^2 = -1 \quad (-i)^2 = -1$$
Complex Arithmetic

We use i (as in “imaginary”) to denote the number whose square is -1.

\[i^2 = -1 \quad (-i)^2 = -1 \quad i^3 = \]
Complex Arithmetic

We use \(i \) (as in "imaginary") to denote the number whose square is \(-1\).

\[
\begin{align*}
i^2 &= -1 \\
(-i)^2 &= -1 \\
i^3 &= -i
\end{align*}
\]
We use i (as in "imaginary") to denote the number whose square is -1.

\[i^2 = -1 \quad (-i)^2 = -1 \quad i^3 = -i \quad i^4 = \]
Complex Arithmetic

i

We use i (as in ”imaginary”) to denote the number whose square is -1.

\[
i^2 = -1 \quad (-i)^2 = -1 \quad i^3 = -i \quad i^4 = 1
\]
Complex Arithmetic

i

We use i (as in "imaginary") to denote the number whose square is -1.

\[
i^2 = -1 \quad (\neg i)^2 = -1 \quad i^3 = -i \quad i^4 = 1
\]

When we talk about "complex numbers," we allow numbers to have real parts and imaginary parts:

\[
2 + 3i \quad -1 \quad 2i
\]
Complex Arithmetic

\[2 + 3i - 1 \]

imaginary

real
Complex Arithmetic

2 + 3i

−1

2i

real

imaginary

2

3

2 + 3i
Complex Arithmetic

2 + 3i

-1

2i

imaginary

3

2 + 3i

real

-1

2
Complex Arithmetic

\[2 + 3i - \frac{1}{2}i \]

Diagram: Points on the complex plane with real and imaginary axes.

- Point at \(2 + 3i \)
- Point at \(-1 \)
- Point at \(2i \)
Complex Arithmetic

Addition happens component-wise, just like with vectors or polynomials.
Complex Arithmetic

Addition happens component-wise, just like with vectors or polynomials.

\[(2 + 3i) + (3 - 4i) = \]

\[
\begin{align*}
\text{imaginary} & \\
\text{real} & \\
2 + 3i & \rightarrow
\end{align*}
\]

\[
\begin{align*}
\text{imaginary} & \\
\text{real} & \\
3 - 4i & \rightarrow
\end{align*}
\]
Complex Arithmetic

Addition happens component-wise, just like with vectors or polynomials.

\[(2 + 3i) + (3 - 4i) = 5 - i\]
Complex Arithmetic

Multiplication is similar to polynomials.
Complex Arithmetic

Multiplication is similar to polynomials.

\[(2 + 3i)(3 - 4i) =\]
Complex Arithmetic

Multiplication is similar to polynomials.

\[(2 + 3i)(3 - 4i) = 2 \cdot 3 + 3i \cdot 3 + (2)(-4i) + (3i)(-4i)\]
Complex Arithmetic

Multiplication is similar to polynomials.

\[(2 + 3i)(3 - 4i) = 2 \cdot 3 + 3i \cdot 3 + (2)(-4i) + (3i)(-4i)\]

\[= 6 + 9i - 8i + 12\]
Complex Arithmetic

Multiplication is similar to polynomials.

\[(2 + 3i)(3 - 4i) = 2 \cdot 3 + 3i \cdot 3 + (2)(-4i) + (3i)(-4i) = 6 + 9i - 8i + 12 = 18 + i\]
Complex Arithmetic

Multiplication is similar to polynomials.

\[(2 + 3i)(3 - 4i) = 2 \cdot 3 + 3i \cdot 3 + (2)(-4i) + (3i)(-4i)\]
\[= 6 + 9i - 8i + 12 = 18 + i\]

A: \((-4 + 3i) + (1 - i)\)

B: \(i(2 + 3i)\)

C: \((i + 1)(i - 1)\)

D: \((2i + 3)(i + 4)\)

I: 0

II: -1

III: -2

IV: 2i + 12

V: -3 + 2i

VI: 3 + 2i

VII: 10 + 11i
Complex Arithmetic

Multiplication is similar to polynomials.

\[(2 + 3i)(3 - 4i) = 2 \cdot 3 + 3i \cdot 3 + (2)(-4i) + (3i)(-4i)\]
\[= 6 + 9i - 8i + 12 = 18 + i\]

A: \((-4 + 3i) + (1 + i)\)

B: \(i(2 + 3i)\)

C: \((i + 1)(i - 1)\)

D: \((2i + 3)(i + 4)\)

I: 0

II: -1

III: -2

IV: 2i + 12

V: -3 + 2i

VI: 3 + 2i

VII: 10 + 11i
Complex Arithmetic

Modulus

The **modulus** of \((x + yi)\) is:

\[
|x + yi| = \sqrt{x^2 + y^2}
\]

like the norm/length/magnitude of a vector.
Complex Arithmetic

Modulus

The **modulus** of \((x + yi)\) is:

\[
|x + yi| = \sqrt{x^2 + y^2}
\]

like the norm/length/magnitude of a vector.

Complex Conjugate

The **complex conjugate** of \((x + yi)\) is:

\[
\overline{x + yi} = x - yi
\]

the reflection of the vector over the real \((x)\) axis.
Complex Arithmetic

$$|x + yi| = \sqrt{x^2 + y^2}$$

$$\overline{x + yi} = x - yi$$
Complex Arithmetic

\[|x + yi| = \sqrt{x^2 + y^2} \quad \quad x + yi = x - yi \]

Suppose \(z = x + yi \) and \(w = a + bi \). Calculate the following.

- \(z - \overline{z} \)
- \(z + \overline{z} \)
- \(z\overline{z} - |z|^2 \)
- \(\overline{zw} - (\overline{z})(\overline{w}) \)
Complex Arithmetic

\[|x + yi| = \sqrt{x^2 + y^2} \quad \quad \quad \quad x + yi = x - yi \]

Suppose \(z = x + yi \) and \(w = a + bi \). Calculate the following.

- \(z - \overline{z} = 2yi \) \quad \(y \) is called the imaginary part of \(z \)
- \(z + \overline{z} \)
- \(z\overline{z} - |z|^2 \)
- \(\overline{zw} - (\overline{z})(\overline{w}) \)
Complex Arithmetic

\[|x + yi| = \sqrt{x^2 + y^2} \quad \quad x + yi = x - yi \]

Suppose \(z = x + yi \) and \(w = a + bi \). Calculate the following.

- \(z - \bar{z} = 2yi \) \(y \) is called the imaginary part of \(z \)
- \(z + \bar{z} = 2x \) \(x \) is called the real part of \(z \)
- \(z\bar{z} - |z|^2 \)
- \(\bar{z}w - (\bar{z})(\bar{w}) \)
Complex Arithmetic

\[|x + yi| = \sqrt{x^2 + y^2} \quad \overline{x + yi} = x - yi \]

Suppose \(z = x + yi \) and \(w = a + bi \). Calculate the following.

- \(z - \overline{z} = 2yi \)
 \(y \) is called the imaginary part of \(z \)
- \(z + \overline{z} = 2x \)
 \(x \) is called the real part of \(z \)
- \(z\overline{z} - |z|^2 = 0 \)
 So, \(z\overline{z} = |z|^2 \)
- \(\overline{zw} - (\overline{z})(\overline{w}) \)
Complex Arithmetic

\[|x + yi| = \sqrt{x^2 + y^2} \quad \quad \quad x + yi = x - yi \]

Suppose \(z = x + yi \) and \(w = a + bi \). Calculate the following.

- \(z - \bar{z} = 2yi \) \quad \(y \) is called the imaginary part of \(z \)
- \(z + \bar{z} = 2x \) \quad \(x \) is called the real part of \(z \)
- \(z\bar{z} - |z|^2 = 0 \) \quad So, \(z\bar{z} = |z|^2 \)
- \(\bar{z}w - (\bar{z})(\bar{w}) = 0 \) \quad So, \(\bar{z}w = z \bar{w} \)
Complex Arithmetic

\[|x + yi| = \sqrt{x^2 + y^2} \quad \overline{x + yi} = x - yi \]

Suppose \(z = x + yi \) and \(w = a + bi \). Calculate the following.

- \(z - \overline{z} = 2yi \) \quad y is called the imaginary part of \(z \)
- \(z + \overline{z} = 2x \) \quad x is called the real part of \(z \)
- \(z\overline{z} - |z|^2 = 0 \) \quad So, \(z\overline{z} = |z|^2 \)
- \(\overline{zw} - (\overline{z})(\overline{w}) = 0 \) \quad So, \(\overline{zw} = \overline{z} \overline{w} \)

Division

\[
\frac{z}{w} = \quad \text{Division}
\]
Complex Arithmetic

\[|x + yi| = \sqrt{x^2 + y^2} \quad \overline{x + yi} = x - yi \]

Suppose \(z = x + yi \) and \(w = a + bi \). Calculate the following.

- \(z - \overline{z} = 2yi \) \quad y is called the imaginary part of \(z \)
- \(z + \overline{z} = 2x \) \quad x is called the real part of \(z \)
- \(z\overline{z} - |z|^2 = 0 \) \quad So, \(z\overline{z} = |z|^2 \)
- \(\overline{zw} - (\overline{z})(\overline{w}) = 0 \) \quad So, \(\overline{zw} = \overline{z} \overline{w} \)

Division

\[
\frac{z}{w} = \frac{z}{w} \cdot \frac{\overline{w}}{\overline{w}}
\]
Complex Arithmetic

\[|x + yi| = \sqrt{x^2 + y^2} \quad \overline{x + yi} = x - yi \]

Suppose \(z = x + yi \) and \(w = a + bi \). Calculate the following.

- \(z - \overline{z} = 2yi \) \(y \) is called the imaginary part of \(z \)
- \(z + \overline{z} = 2x \) \(x \) is called the real part of \(z \)
- \(z\overline{z} - |z|^2 = 0 \) So, \(z\overline{z} = |z|^2 \)
- \(\overline{zw} - (\overline{z})(\overline{w}) = 0 \) So, \(\overline{zw} = \overline{z} \overline{w} \)

Division

\[
\frac{z}{w} = \frac{z}{w} \cdot \frac{\overline{w}}{\overline{w}} = \frac{zw}{|w|^2}
\]
Complex Arithmetic

\[\frac{z}{w} = \frac{zw}{|w|^2} \]
Complex Arithmetic

\[\frac{z}{w} = \frac{zw}{|w|^2} \]

Compute:

- \(\frac{2+3i}{3+4i} \)
- \(\frac{1+3i}{1-3i} \)
- \(\frac{2}{1+i} \)
- \(\frac{5}{i} \)
Complex Arithmetic

\[
\frac{z}{w} = \frac{zw}{|w|^2}
\]

Compute:

\[
\frac{2+3i}{3+4i} = \frac{18}{25} + \frac{1}{25}i
\]

\[
\frac{1+3i}{1-3i}
\]

\[
\frac{2}{1+i}
\]

\[
\frac{5}{i}
\]
Complex Arithmetic

\[
\frac{z}{w} = \frac{zw}{|w|^2}
\]

Compute:

\[
\begin{align*}
\text{• } \frac{2+3i}{3+4i} & = \frac{18}{25} + \frac{1}{25}i \\
\text{• } \frac{1+3i}{1-3i} & = \frac{-4}{5} + \frac{3}{5}i \\
\text{• } \frac{2}{1+i} & \\
\text{• } \frac{5}{i}
\end{align*}
\]
Complex Arithmetic

\[
\frac{z}{w} = \frac{zw}{|w|^2}
\]

Compute:

- \[
\frac{2+3i}{3+4i} = \frac{18}{25} + \frac{1}{25}i
\]
- \[
\frac{1+3i}{1-3i} = \frac{-4}{5} + \frac{3}{5}i
\]
- \[
\frac{2}{1+i} = 1 - i
\]
- \[
\frac{5}{i}
\]
Complex Arithmetic

\[
\frac{z}{w} = \frac{z \overline{w}}{|w|^2}
\]

Compute:

- \[
\frac{2+3i}{3+4i} = \frac{18}{25} + \frac{1}{25}i
\]

- \[
\frac{1+3i}{1-3i} = \frac{-4}{5} + \frac{3}{5}i
\]

- \[
\frac{2}{1+i} = 1 - i
\]

- \[
\frac{5}{i} = -5i \quad \text{(dividing by } i \text{ is the same as multiplying by } -i)\]
Polynomial Factorizations

Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.
Polynomial Factorizations

Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.

Example: \(x^2 + 1 = \)
Polynomial Factorizations

Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.

Example: \(x^2 + 1 = x^2 - (-1) = x^2 - i^2 \)
Polynomial Factorizations

Fundamental Theorem of Algebra
Every polynomial can be factored completely over the complex numbers.

Example: \(x^2 + 1 = x^2 - (-1) = x^2 - i^2 = (x - i)(x + i) \)
Polynomial Factorizations

Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.

Example: \(x^2 + 1 = x^2 - (-1) = x^2 - i^2 = (x - i)(x + i)\)

\(f(x) = x^2 + 1\) has no real roots, but it has two complex roots.
Polynomial Factorizations

Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.

Example: \(x^2 + 1 = x^2 - (-1) = x^2 - i^2 = (x - i)(x + i) \)

\(f(x) = x^2 + 1 \) has no real roots, but it has two complex roots. It is not factorable over \(\mathbb{R} \), but it is factorable over \(\mathbb{C} \)
Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.

Example: \(x^2 + 1 = x^2 - (-1) = x^2 - i^2 = (x - i)(x + i) \)

\(f(x) = x^2 + 1 \) has no real roots, but it has two complex roots. It is not factorable over \(\mathbb{R} \), but it is factorable over \(\mathbb{C} \)

Example: \(x^2 + 2x + 10 = \)
Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.

Example: $x^2 + 1 = x^2 - (-1) = x^2 - i^2 = (x - i)(x + i)$

$f(x) = x^2 + 1$ has no real roots, but it has two complex roots. It is not factorable over \mathbb{R}, but it is factorable over \mathbb{C}

Example: $x^2 + 2x + 10 = (x + 1 + 3i)(x + 1 - 3i)$
Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.

Example: \(x^2 + 1 = x^2 - (-1) = x^2 - i^2 = (x - i)(x + i) \)
\(f(x) = x^2 + 1 \) has no real roots, but it has two complex roots. It is not factorable over \(\mathbb{R} \), but it is factorable over \(\mathbb{C} \)

Example: \(x^2 + 2x + 10 = (x + 1 + 3i)(x + 1 - 3i) \)
If a quadratic equation has roots \(a \) and \(b \), then it can be written as \(c(x - a)(x - b) \)
Polynomial Factorizations

Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.

Example: \(x^2 + 1 = x^2 - (-1) = x^2 - i^2 = (x - i)(x + i) \)

\(f(x) = x^2 + 1 \) has no real roots, but it has two complex roots. It is not factorable over \(\mathbb{R} \), but it is factorable over \(\mathbb{C} \).

Example: \(x^2 + 2x + 10 = (x + 1 + 3i)(x + 1 - 3i) \)

If a quadratic equation has roots \(a \) and \(b \), then it can be written as \(c(x - a)(x - b) \)

Example: \(x^2 + 4x + 5 = \)
Fundamental Theorem of Algebra

Every polynomial can be factored completely over the complex numbers.

Example: \(x^2 + 1 = x^2 - (-1) = x^2 - i^2 = (x - i)(x + i) \)

\(f(x) = x^2 + 1 \) has no real roots, but it has two complex roots.
It is not factorable over \(\mathbb{R} \), but it is factorable over \(\mathbb{C} \)

Example: \(x^2 + 2x + 10 = (x + 1 + 3i)(x + 1 - 3i) \)
If a quadratic equation has roots \(a \) and \(b \), then it can be written as \(c(x - a)(x - b) \)

Example: \(x^2 + 4x + 5 = (x + 2 + i)(x + 2 - i) \)
Calculating Determinants

We calculate the determinant of a matrix with complex entries in the same way we calculate the determinant of a matrix with real entries.

\[\begin{vmatrix} 1 + i & 1 - i \\ i & 2 \end{vmatrix} = (1 + i)(2) - (1 - i)(i) = -3 + 3i \]

\[\begin{vmatrix} 1 & 2 & 3 \\ i & 4 & 3 \\ 1 + i & -i & 5 \end{vmatrix} = 2 - 16i \]
Calculating Determinants

We calculate the determinant of a matrix with complex entries in the same way we calculate the determinant of a matrix with real entries.

\[
\begin{vmatrix}
1 + i & 1 - i \\
2 & i
\end{vmatrix}
\]
Calculating Determinants

We calculate the determinant of a matrix with complex entries in the same way we calculate the determinant of a matrix with real entries.

\[
\det \begin{bmatrix} 1 + i & 1 - i \\ 2 & i \end{bmatrix} = (1 + i)(i) - (1 - i)(2) =
\]
Calculating Determinants

We calculate the determinant of a matrix with complex entries in the same way we calculate the determinant of a matrix with real entries.

\[
\begin{vmatrix}
1 + i & 1 - i \\
2 & i
\end{vmatrix}
= (1 + i)(i) - (1 - i)(2)
= -3 + 3i
\]
Calculating Determinants

We calculate the determinant of a matrix with complex entries in the same way we calculate the determinant of a matrix with real entries.

\[
\begin{vmatrix}
1 + i & 1 - i \\
2 & i
\end{vmatrix} = (1 + i)(i) - (1 - i)(2) = -3 + 3i
\]

\[
\begin{vmatrix}
1 & 2 & 3 \\
i & 4 & 3i \\
1 + i & 2 - i & 5
\end{vmatrix}
\]
Calculating Determinants

We calculate the determinant of a matrix with complex entries in the same way we calculate the determinant of a matrix with real entries.

\[
\det \begin{bmatrix} 1 + i & 1 - i \\ 2 & i \end{bmatrix} = (1 + i)(i) - (1 - i)(2) = -3 + 3i
\]

\[
\det \begin{bmatrix} 1 & 2 & 3 \\ i & 4 & 3i \\ 1 + i & 2 - i & 5 \end{bmatrix} = 2 - 16i
\]
Gaussian Elimination

Give a parametric equation for all solutions to the homogeneous system:

\[\begin{align*}
ix_1 & \quad + \quad x_2 & \quad + \quad 2x_3 & \quad = \quad 0 \\
ix_2 & \quad + \quad 3x_3 & \quad = \quad 0 \\
2ix_1 & \quad + \quad (2 - i)x_2 & \quad + \quad x_3 & \quad = \quad 0
\end{align*} \]
Gaussian Elimination

Give a parametric equation for all solutions to the homogeneous system:

\[\begin{align*}
ix_1 &+ x_2 + 2x_3 = 0 \\
ix_2 &+ 3x_3 = 0 \\
2ix_1 &+ (2 - i)x_2 + x_3 = 0
\end{align*} \]

Solve the following system of equations:

\[\begin{align*}
ix_1 &+ 2x_2 = 9 \\
3x_1 &+ (1 + i)x_2 = 5 + 8i
\end{align*} \]
Give a parametric equation for all solutions to the homogeneous system:

\[\begin{align*}
ix_1 + x_2 + 2x_3 &= 0 \\
i x_2 + 3x_3 &= 0 \\
2ix_1 + (2 - i)x_2 + x_3 &= 0
\end{align*} \]

Solve the following system of equations:

\[\begin{align*}
ix_1 + 2x_2 &= 9 \\
3x_1 + (1 + i)x_2 &= 5 + 8i
\end{align*} \]

Find the inverse of the matrix

\[
\begin{bmatrix}
i & 1 \\2 & 3i
\end{bmatrix}
\]
Gaussian Elimination

Give a parametric equation for all solutions to the homogeneous system:

\[\begin{align*}
ix_1 & + x_2 + 2x_3 = 0 \\
ix_2 & + 3x_3 = 0 \\
2ix_1 & + (2 - i)x_2 + x_3 = 0
\end{align*} \]

\[[x_1, x_2, x_3] = s[-3 + 2i, 3i, 1] \]

Solve the following system of equations:

\[\begin{align*}
ix_1 & + 2x_2 = 9 \\
3x_1 & + (1 + i)x_2 = 5 + 8i
\end{align*} \]

Find the inverse of the matrix

\[\begin{bmatrix} i & 1 \\ 2 & 3i \end{bmatrix} \]
Gaussian Elimination

Give a parametric equation for all solutions to the homogeneous system:

\[
\begin{align*}
ix_1 + x_2 + 2x_3 &= 0 \\
ix_2 + 3x_3 &= 0 \\
2ix_1 + (2 - i)x_2 + x_3 &= 0
\end{align*}
\]

\[
[x_1, x_2, x_3] = s[-3 + 2i, 3i, 1]
\]

Solve the following system of equations:

\[
\begin{align*}
ix_1 + 2x_2 &= 9 \\
3x_1 + (1 + i)x_2 &= 5 + 8i
\end{align*}
\]

\[x_1 = i, \ x_2 = 5\]

Find the inverse of the matrix \[
\begin{bmatrix} i & 1 \\ 2 & 3i \end{bmatrix}
\]
Gaussian Elimination

Give a parametric equation for all solutions to the homogeneous system:

\[ix_1 + x_2 + 2x_3 = 0 \]
\[ix_2 + 3x_3 = 0 \]
\[2ix_1 + (2 - i)x_2 + x_3 = 0 \]

\[[x_1, x_2, x_3] = s[-3 + 2i, 3i, 1] \]

Solve the following system of equations:

\[ix_1 + 2x_2 = 9 \]
\[3x_1 + (1 + i)x_2 = 5 + 8i \]

\[x_1 = i, \quad x_2 = 5 \]

Find the inverse of the matrix

\[
\begin{bmatrix}
i & 1 \\
2 & 3i
\end{bmatrix}
\]
\[
\begin{bmatrix}
\frac{-3i}{5} & \frac{1}{5}i \\
\frac{2}{5} & -\frac{1}{5}i
\end{bmatrix}
\]
Exponentials

What to do when i is the power of a function?
Exponentials

What to do when i is the power of a function?

Maclaurin (Taylor) Series: *(you won't be assessed on this explanation)*

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \cdots$$

We know how to do the operations on the right
What to do when i is the power of a function?

Maclaurin (Taylor) Series: (you won’t be assessed on this explanation)

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \cdots$$

We know how to do the operations on the right

$$e^{ix} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \cdots$$
Exponentials

What to do when \(i \) is the power of a function?
Maclaurin (Taylor) Series: (you won't be assessed on this explanation)

\[
e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \cdots
\]

We know how to do the operations on the right

\[
e^{ix} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \cdots
\]

\[
= 1 + ix - \frac{x^2}{2!} - i \frac{x^3}{3!} + \frac{x^4}{4!} + i \frac{x^5}{5!} - \frac{x^6}{6!} \cdots
\]
What to do when i is the power of a function?

Maclaurin (Taylor) Series: (you won’t be assessed on this explanation)

\[e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \cdots \]

\[e^{ix} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \cdots \]

\[= 1 + ix - \frac{x^2}{2!} - i\frac{x^3}{3!} + \frac{x^4}{4!} + i\frac{x^5}{5!} - \frac{x^6}{6!} \cdots \]

\[= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \right) + i \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots \right) \]
Exponentials

What to do when i is the power of a function?

Maclaurin (Taylor) Series: (you won’t be assessed on this explanation)

\[
e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \cdots
\]

\[
\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots
\]

\[
\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots
\]

\[
e^{ix} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \cdots
\]

\[
= 1 + ix - \frac{x^2}{2!} - i\frac{x^3}{3!} + \frac{x^4}{4!} + i\frac{x^5}{5!} - \frac{x^6}{6!} + \cdots
\]

\[
= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots\right) + i \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots\right)
\]
Exponentials

What to do when i is the power of a function?

Maclaurin (Taylor) Series: (you won’t be assessed on this explanation)

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \frac{x^6}{6!} + \cdots$$

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

$$e^{ix} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \cdots$$

$$= 1 + ix - \frac{x^2}{2!} - i\frac{x^3}{3!} + \frac{x^4}{4!} + i\frac{x^5}{5!} - \frac{x^6}{6!} \cdots$$

$$= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots\right) + i \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots\right)$$

$$= \cos x + isin x$$
Does that even make sense?

\[e^{i\theta} = \cos \theta + i \sin \theta \]
Does that even make sense?

\[e^{ix} = \cos x + i \sin x \]

\[
\frac{d}{dx}[e^{ax}] = a e^{ax};
\]
Does that even make sense?

\[e^{ix} = \cos x + i \sin x \]

\[
\frac{d}{dx}[e^{ax}] = ae^{ax};
\]

\[
\frac{d}{dx}[e^{ix}]
\]
Does that even make sense?

\[e^{ix} = \cos x + i \sin x \]

\[\frac{d}{dx} [e^{ax}] = ae^{ax}; \]
\[\frac{d}{dx} [e^{ix}] = \frac{d}{dx} [\cos x + i \sin x] \]
Does that even make sense?

\[e^{ix} = \cos x + i \sin x \]

\[
\frac{d}{dx}[e^{ax}] = ae^{ax}; \\
\frac{d}{dx}[e^{ix}] = \frac{d}{dx}[\cos x + i \sin x] \\
= -\sin x + i \cos x = i^2 \sin x + i \cos x = i(\cos x + i \sin x) = ie^{ix}
\]
Does that even make sense?

\[e^{ix} = \cos x + i \sin x \]

\[
\frac{d}{dx}[e^{ax}] = ae^{ax}; \\
\frac{d}{dx}[e^{ix}] = \frac{d}{dx}[\cos x + i \sin x] \\
= - \sin x + i \cos x = i^2 \sin x + i \cos x = i(\cos x + i \sin x) = ie^{ix}
\]

\[e^{x+y} = e^x e^y; \]
Does that even make sense?

\[e^{ix} = \cos x + i \sin x \]

\[
\frac{d}{dx}[e^{ax}] = ae^{ax}; \\
\frac{d}{dx}[e^{ix}] = \frac{d}{dx} [\cos x + i \sin x] \\
= -\sin x + i \cos x = i^2 \sin x + i \cos x = i(\cos x + i \sin x) = ie^{ix}
\]

\[e^{x+y} = e^x e^y; \]
\[e^{ix+iy} = \]
5.1: Complex Arithmetic
5.2: Complex Matrices and Linear Systems
5.3: Complex Exponential
5.4: Polar Representation

Does that even make sense?

\[e^{ix} = \cos x + i \sin x \]

\[
\frac{d}{dx} [e^{ax}] = ae^{ax};
\]
\[
\frac{d}{dx} [e^{ix}] = \frac{d}{dx} [\cos x + i \sin x]
= -\sin x + i \cos x = i^2 \sin x + i \cos x = i(\cos x + i \sin x) = ie^{ix}
\]

\[e^{x+y} = e^x e^y; \]
\[e^{i(x+y)} = e^{i(x+y)} = \cos(x + y) + i \sin(x + y) \]
Does that even make sense?

\[e^{ix} = \cos x + i \sin x \]

\[
\frac{d}{dx}[e^{ax}] = ae^{ax};
\]
\[
\frac{d}{dx}[e^{ix}] = \frac{d}{dx}[\cos x + i \sin x]
\]

\[= -\sin x + i \cos x = i^2 \sin x + i \cos x = i(\cos x + i \sin x) = ie^{ix} \]

\[e^{x+y} = e^x e^y; \]
\[e^{ix+iy} = e^{i(x+y)} = \cos(x + y) + i \sin(x + y) \]

\[= \cos x \cos y - \sin x \sin y + i[\sin x \cos y + \cos x \sin y] \]
Does that even make sense?

\[e^{ix} = \cos x + i \sin x \]

\[
\frac{d}{dx}[e^{ax}] = ae^{ax}; \\
\frac{d}{dx}[e^{ix}] = \frac{d}{dx}[\cos x + i \sin x] \\
= -\sin x + i \cos x = i^2 \sin x + i \cos x = i(\cos x + i \sin x) = ie^{ix}
\]

\[e^{x+y} = e^x e^y; \]
\[e^{ix+iy} = e^{i(x+y)} = \cos(x + y) + i \sin(x + y) \]
\[= \cos x \cos y - \sin x \sin y + i[\sin x \cos y + \cos x \sin y] \]
\[= (\cos x + i \sin y)(\cos y + i \sin x) = e^{ix} e^{iy} \]

\[e^{ix} = \cos x + i \sin x \]

Evaluate:

\[
e^{\frac{\pi i}{2}}
\]

\[
e^{2+i}
\]

\[
\sqrt{2} e^{\frac{\pi i}{4}}
\]

\[
2^i
\]

\[
e^{\pi i} + 1
\]

\[|e^{xi}|, \text{ where } x \text{ is any real number.} \]
Computation Practice

\[e^{ix} = \cos x + i \sin x \]

Evaluate:

\[e^{\pi i/2} = i \]

\[e^{2 + i} \]

\[\sqrt{2} e^{\pi i/4} \]

\[2^i \]

\[e^{\pi i} + 1 \]

\[|e^{xi}|, \text{ where } x \text{ is any real number.} \]
Computation Practice

\[e^{ix} = \cos x + i \sin x \]

Evaluate:

\[e^{\frac{\pi i}{2}} = i \]

\[e^{2+i} = e^{2} (\cos 1 + i \sin 1) \]

\[\sqrt{2} e^{\frac{\pi i}{4}} \]

\[2^i \]

\[e^{\pi i} + 1 \]

\[|e^{xi}|, \text{ where } x \text{ is any real number.} \]
Computation Practice

\[e^{ix} = \cos x + i \sin x \]

Evaluate:

\[e^{\frac{\pi i}{2}} = i \]

\[e^{2+i} = e^2(\cos 1 + i \sin 1) \]

\[\sqrt{2}e^{\frac{\pi i}{4}} = i + 1 \]

\[2^i \]

\[e^{\pi i} + 1 \]

\[|e^{xi}|, \text{ where } x \text{ is any real number.} \]
Computation Practice

\[e^{ix} = \cos x + i \sin x \]

Evaluate:

\[e^{\frac{\pi i}{2}} = i \]

\[e^{2+i} = e^2(\cos 1 + i \sin 1) \]

\[\sqrt{2}e^{\frac{\pi i}{4}} = i + 1 \]

\[2^i = e^{i \ln 2} = \cos(\ln 2) + i \sin(\ln 2) \]

\[e^{\pi i} + 1 \]

\[|e^{xi}|, \text{ where } x \text{ is any real number.} \]
Computation Practice

\[e^{ix} = \cos x + i \sin x \]

Evaluate:

\[e^{\frac{\pi i}{2}} = i \]

\[e^{2+i} = e^2(\cos 1 + i \sin 1) \]

\[\sqrt{2} e^{\frac{\pi i}{4}} = i + 1 \]

\[2^i = e^{i \ln 2} = \cos(\ln 2) + i \sin(\ln 2) \]

\[e^{\pi i} + 1 = 0 \text{ (Euler’s Identity)} \]

\[|e^{xi}|, \text{ where } x \text{ is any real number.} \]
Computation Practice

\[e^{ix} = \cos x + i \sin x \]

Evaluate:

\[e^{\frac{\pi i}{2}} = i \]

\[e^{2+i} = e^2 (\cos 1 + i \sin 1) \]

\[\sqrt{2} e^{\frac{\pi i}{4}} = i + 1 \]

\[2^i = e^{i \ln 2} = \cos(\ln 2) + i \sin(\ln 2) \]

\[e^{\pi i} + 1 = 0 \text{ (Euler’s Identity)} \]

\[|e^{xi}|, \text{ where } x \text{ is any real number.} = 1 \]
Let x be a real number.
True or False?

(1) $e^x = \cos x$

(2) $e^{ix} = e^{i(x+2\pi)}$

(3) $e^{ix} = -e^{i(x+\pi)}$

(4) $e^{ix} + e^{-ix}$ is a real number
Complex exponentiation: \(e^{ix} = \cos x + i \sin x \)

Let \(x \) be a real number.
True or False?

(1) \(e^x = \cos x \) False

Remember these are real numbers: \(e^x \) is unbounded, \(\cos x \) stays between \(-1\) and \(1\).

(2) \(e^{ix} = e^{i(x+2\pi)} \)

(3) \(e^{ix} = -e^{i(x+\pi)} \)

(4) \(e^{ix} + e^{-ix} \) is a real number
Complex exponentiation: $e^{ix} = \cos x + i \sin x$

Let x be a real number.
True or False?

(1) $e^x = \cos x$ \quad False
Remember these are real numbers: e^x is unbounded, $\cos x$ stays between -1 and 1.

(2) $e^{ix} = e^{i(x+2\pi)}$ \quad True
For real numbers, a larger exponent gives a larger e^x; complex numbers, not necessarily: $e^{ix} = a + bi$ where $|a|, |b| \leq 1$.

(3) $e^{ix} = -e^{i(x+\pi)}$

(4) $e^{ix} + e^{-ix}$ is a real number
Complex exponentiation: $e^{ix} = \cos x + i \sin x$

Let x be a real number.
True or False?

(1) $e^x = \cos x$
False
Remember these are real numbers: e^x is unbounded, $\cos x$ stays between -1 and 1.

(2) $e^{ix} = e^{i(x+2\pi)}$
True
For real numbers, a larger exponent gives a larger e^x; complex numbers, not necessarily: $e^{ix} = a + bi$ where $|a|, |b| \leq 1$.

(3) $e^{ix} = -e^{i(x+\pi)}$
True
$\cos x = -\cos(x + \pi)$; $\sin x = -\sin(x + \pi)$

(4) $e^{ix} + e^{-ix}$ is a real number
Complex exponentiation: $e^{ix} = \cos x + i \sin x$

Let x be a real number.
True or False?

(1) $e^x = \cos x$ False
Remember these are real numbers: e^x is unbounded, $\cos x$ stays between -1 and 1.

(2) $e^{ix} = e^{i(x+2\pi)}$ True
For real numbers, a larger exponent gives a larger e^x; complex numbers, not necessarily: $e^{ix} = a + bi$ where $|a|, |b| \leq 1$.

(3) $e^{ix} = -e^{i(x+\pi)}$ True
$\cos x = -\cos(x + \pi)$; $\sin x = -\sin(x + \pi)$

(4) $e^{ix} + e^{-ix}$ is a real number True
using even and odd symmetry of cosine and sine, $e^{ix} + e^{-ix} = 2 \cos x$
Coordinates Revisited

A complex number can be expressed in polar form as:

\[z = r \cos \theta + i r \sin \theta \]

where:
- \(r \) is the magnitude (or absolute value) of the complex number.
- \(\theta \) is the argument (or angle) of the complex number.

This representation allows us to visualize complex numbers on a plane with the real part on the horizontal axis (Real) and the imaginary part on the vertical axis (Im).

[Diagram of the complex plane showing a vector from the origin to a point representing a complex number.]
Coordinates Revisited

Complex number: \(r \cos \theta + i \sin \theta = re^{i\theta} \)
Coordinates Revisited

Complex number: \(r \cos \theta + ir \sin \theta = re^{i \theta} \)
Coordinates Revisited

Complex number: \(r (\cos \theta + i \sin \theta) = re^{i\theta} \)
Coordinates Revisited

Complex number: \[r(\cos \theta + i \sin \theta) = re^{i\theta} \]
\[\sqrt{3} + i = 2 \left(\cos \left(\frac{\pi}{6} \right) + i \sin \left(\frac{\pi}{6} \right) \right) = 2e^{\frac{\pi}{6}i} \]
Coordinates and Exponentials

\[\sqrt{3} + i \]

\[2 \cos\left(\frac{\pi}{6}\right) + i \sin\left(\frac{\pi}{6}\right) = 2e^{i\pi/6} \]
\[\sqrt{3} + i = 2 \left(\cos \left(\frac{\pi}{6} \right) + i \sin \left(\frac{\pi}{6} \right) \right) = 2 e^{\frac{\pi}{6} i} \]
\[
\sqrt{3} + i = 2(\cos(\pi/6) + i \sin(\pi/6)) = 2e^{\pi/6}i
\]
-1 + i
Coordinates and Exponentials

\[-1 + i\]

\[\sqrt{2} \quad \text{Im} \]

\[\text{Real} \quad -1 + i\]

Coordinates and Exponentials

\[-1 + i = \sqrt{2} \cos \left(\frac{3\pi}{4} \right) + i \sin \left(\frac{3\pi}{4} \right) = \sqrt{2} e^{3\pi i / 4} \]
Coordinates and Exponentials

\[-1 + i = \sqrt{2}(\cos(3\pi/4) + i \sin(3\pi/4)) = \sqrt{2}e^{3\pi/4i}\]
Coordinates and Multiplication

Geometric interpretation of multiplication of two complex numbers:
add the angles, multiply the lengths (moduli).
Coordinates and Multiplication

\[re^{i\theta} \cdot se^{i\phi} = (rs)e^{i(\theta+\phi)} \]
Coordinates and Multiplication

Geometric interpretation of multiplication of two complex numbers: add the angles, multiply the lengths (moduli).

\[re^{i\theta} \cdot se^{i\phi} = (rs)e^{i(\theta+\phi)} \]
Coordinates and Multiplication

Geometric interpretation of multiplication of two complex numbers: add the angles, multiply the lengths (moduli).

\[re^{i\theta} \cdot se^{i\phi} = (rs)e^{i(\theta+\phi)} \]
Roots of Unity
Roots of Unity

\[(re^{i\theta})^3 = 1\]
Roots of Unity

$e^{i \frac{2\pi}{3}}$

$e^{i \frac{4\pi}{3}}$

$(re^{i\theta})^3 = 1$
Roots of Unity

\[(re^{i\theta})^5 = 1 \]
Roots of Unity

\[(re^{i\theta})^5 = 1\]
Roots of Unity

\[(re^{i\theta})^{12} = 1 \]
Roots of Unity

\[
\left(re^{i\theta} \right)^{12} = 1
\]
Find all complex numbers z such that $z^3 = 8$.

Find all complex numbers z such that $z^3 = 27e^{i\pi/2}$.

Find all complex numbers z such that $z^4 = 81e^{2i}$.
$z^3 = 8$

$2e^{\frac{2\pi i}{3}}$
$z^3 = 8$
$z^3 = 8$

The diagram shows the complex numbers $2e^{\frac{2\pi i}{3}}$, $4e^{\frac{4\pi i}{3}}$, and $8e^{\frac{6\pi i}{3}}$ in the complex plane, with the real and imaginary axes labeled as Re and Im, respectively.
$z^3 = 8$

Diagram showing a complex number $2e^{\frac{4\pi i}{3}}$ on the complex plane.
$z^3 = 8$
\[z^3 = 8 \]
$z^3 = 8$
$z^3 = 8$
$z^3 = 8$
Roots

Find all complex numbers z such that $z^3 = 8$.
$2, e^{\frac{2\pi i}{3}}, 2e^{\frac{4\pi i}{3}}$

Find all complex numbers z such that $z^3 = 27e^{\frac{i\pi}{2}}$.

Find all complex numbers z such that $z^4 = 81e^{2i}$.
We solve \((re^{i\theta}) = 27e^{\frac{i\pi}{2}}\). That is, \(r^3e^{i3\theta} = 27e^{\frac{i\pi}{2}}\)

- The modulus of our answer is 27; the modulus of \(re^{i\theta}\) is \(r\).
- So, we need \(r^3 = 27\), so \(r = 3\).
- That leaves us with \(e^{3i\theta} = e^{\frac{i\pi}{2}}\).
 - There are going to be three distinct answers (since there are three roots of unity)
 - We write \(e^{\frac{i\pi}{2}}\) three ways: \(e^{\frac{i\pi}{2}} = e^{i\left(\frac{\pi}{2}+2\pi\right)} = e^{i\left(\frac{\pi}{2}+4\pi\right)}\).
 - \(e^{3i\theta} = e^{\frac{i\pi}{2}} \implies 3\theta = \frac{\pi}{2} \implies \theta = \frac{\pi}{6}\)
 - \(e^{3i\theta} = e^{i\left(\frac{\pi}{2}+2\pi\right)} \implies 3\theta = \frac{\pi}{2} + 2\pi \implies \theta = \frac{5\pi}{6}\)
 - \(e^{3i\theta} = e^{i\left(\frac{\pi}{2}+4\pi\right)} \implies 3\theta = \frac{\pi}{2} + 4\pi \implies \theta = \frac{3\pi}{2}\)
- So, our solutions are \(3e^{\frac{\pi i}{6}}, 3e^{\frac{5\pi i}{6}}, 3e^{\frac{3\pi i}{2}}\)
Roots

Find all complex numbers \(z \) such that \(z^3 = 8 \).

\[2, e^{\frac{2\pi i}{3}}, 2e^{\frac{4\pi i}{3}} \]

Find all complex numbers \(z \) such that \(z^3 = 27e^{\frac{i\pi}{2}} \).

\[3e^{\frac{\pi i}{6}}, 3e^{\frac{5\pi i}{6}}, 3e^{\frac{3\pi i}{2}} \]

Find all complex numbers \(z \) such that \(z^4 = 81e^{2i} \).
Find all complex numbers z such that $z^3 = 8$.

$2, e^{\frac{2\pi i}{3}}, 2e^{\frac{4\pi i}{3}}$

Find all complex numbers z such that $z^3 = 27e^{\frac{i\pi}{2}}$.

$3e^{\frac{\pi i}{6}}, 3e^{\frac{5\pi i}{6}}, 3e^{\frac{3\pi i}{2}}$

Find all complex numbers z such that $z^4 = 81e^{2i}$.

$3e^{\frac{i}{2}}, 3e^{\frac{(1+\pi)i}{2}}, 3e^{\frac{(1+2\pi)i}{2}}, 3e^{\frac{(1+3\pi)i}{2}}$