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ABSTRACT. In recent years, many useful applications of the polynomial method have emerged in
finite geometry. Indeed, algebraic curves, especially those defined by Rédei-type polynomials, are
powerful in studying blocking sets. In this paper, we reverse the engine and study when blocking sets
can arise from rational points on plane curves over finite fields. We show that irreducible curves of
low degree cannot provide blocking sets and prove more refined results for cubic and quartic curves.
On the other hand, using tools from number theory, we construct smooth plane curves defined over
Fp of degree at most 4p3/4 + 1 whose points form blocking sets.

1. INTRODUCTION

Throughout the paper, p denotes a prime, q denotes a power of p, and Fq denotes the finite field
with q elements. A set of points B ⊆ P2(Fq) is called a blocking set if every Fq-line L intersects
B. It is clear that taking q + 1 points on a given Fq-line forms a blocking set, since any two lines
meet in the projective plane; this is known as a trivial blocking set. A blocking set B is said to be
nontrivial if it does not contain all the Fq-points of any Fq-line.

It is known that the size of a nontrivial blocking set must satisfy |B| ≥ q +
√
q + 1 [Bru70].

When q = p is a prime, Blokhuis [Blo94] proved a much stronger lower bound |B| ≥ 3
2
(p + 1).

The main tool used in Blokhuis’ proof and in subsequent developments in this area have been
Rédei-type polynomials which are highly reducible algebraic curves. See the excellent surveys
[Sző97b, SS98] for more details and other applications of algebraic curves in finite geometry.

Let C = {F = 0} ⊂ P2 be an irreducible plane curve of degree d ≥ 2 defined over a finite field
Fq. Let C(Fq) denote the set of Fq-points on C, that is, C(Fq) consists of all [x : y : z] ∈ P2(Fq)
such that F (x, y, z) = 0. We assume that our curve is irreducible so that the curve is “minimal” in
the sense that it has no smaller component. Since smooth curves are important from the algebraic
geometric point of view, we will sometimes further assume that C is smooth. We are interested in
the following problem.

Question 1.1. When does there exist a line L ⊂ P2 defined over Fq such that C ∩ L has no
Fq-points?

One motivation for finding a positive answer to Question 1.1 comes from algebraic geometry.
Suppose C is a curve that parametrizes other algebraic varieties; for instance, C could be a curve
in the parameter space of all degree d hypersurfaces in Pn. This means that a point on C corre-
sponds to a certain hypersurface of degree d. The points in C(Fq) would then correspond to those
hypersurfaces of degree d defined over Fq. If we can find a line L such that C∩L has no Fq-points,
then we have constructed a certain pencil whose Fq-members avoid C. In particular, one can use
this idea to construct a pencil of hypersurfaces whose Fq-members are smooth [AG23].
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Using the language of blocking sets, Question 1.1 is equivalent to determining when C(Fq) is
not a blocking set. We remark that questions of a similar flavor have been studied in the past. In
particular, Hirschfeld and Voloch [HV88] asked when an arc is contained in an irreducible plane
curve, and when an irreducible plane curve gives rise to a complete arc. One special motivation for
constructing such curves lies in its application to coding theory [Bor09]. Recall that a (k, n)-arc in
P2(Fq) is a set of k points where the maximum number of collinear points is n. There is an obvious
relation between arcs and blocking sets: a complement of a (k, n)-arc in the plane is a (multiple)
blocking set where each line meets the point set in at least q + 1 − n points. The case of smooth
conics was first studied by Segre [Seg67]. Moreover, cubic curves, which give rise to (k, 3)-arcs,
were studied in [HV88, Giu02, BMP17]. Some special algebraic constructions were discussed in
[GPTU02, Bor09, BMT14, BM22]. Similar questions have been studied in the setting of caps in
[Seg67, ABGP14, ABPG15].

For simplicity, let us call C a blocking curve if C(Fq) is a blocking set. Furthermore, C is
nontrivially blocking if C(Fq) is a nontrivial blocking set. Constructing such curves is necessarily
subtle, because most plane curves are not blocking [AGY22] from an arithmetic statistics perspec-
tive.

Answering Question 1.1 in full generality seems difficult. Instead, we consider the following:
for a given d and q, does there exist a nontrivially blocking curve C with degree d defined over
Fq? The question is more interesting when C is further assumed to be geometrically irreducible
(or even smooth). Note that we are working over Fq; however, it makes more sense to talk about
geometric properties of curves over the algebraic closure Fq. When d is large compared to q, one
can study the proportion of smooth blocking curves [AGY22]. Thus, it makes sense to fix q, and
ask for the minimum degree d of a smooth blocking curve over Fq.

Motivated by the past work on arcs arising from plane curves, we begin our study with the
curves of low degree with respect to the cardinality of the field. Our first main result shows that an
irreducible curve of low degree cannot be blocking.

Theorem 1.2. Let C ⊂ P2 be an irreducible curve of degree d ≥ 4. If q ≥ (d− 1)2(d− 2)4, then
C is not blocking.

We improve the bound O(d6) to O(d4) for the case q = pn with n ≤ 4 in Theorem 3.3.
When d = 2, it is straightforward to see that an irreducible conic can never be a blocking set.

For cubic curves, we have a more refined result:

Theorem 1.3. Let C ⊂ P2 be an irreducible cubic curve. If q ≥ 5, then C is not blocking.

Moreover, Theorem 1.3 is sharp in the sense that there exist smooth cubic curves over Fq which
are blocking when q = 2, 3, 4. See Example 3.5. We also establish a refined bound for smooth
quartic curves.

Theorem 1.4. Suppose C is a smooth plane curve of degree 4 defined over a finite field Fq. If
q ≥ 19, then C is not blocking.

Another aim of our paper is to construct explicit examples of smooth or irreducible blocking
plane curves. When q is a nontrivial prime power, meaning that q = pn with n ≥ 2, then it is easy
to find special curves which are smooth and blocking. For example, when q is a square, we have
the following well-known construction.

Example 1.5. Let q be a square. Consider the Hermitian curve given by the equation

H : x
√
q+1 + y

√
q+1 + z

√
q+1 = 0.
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It is known that every Fq-line meets H in either 1 or
√
q+1 points [Sző97b, Page 212]. In particular,

H is a smooth curve of degree d =
√
q + 1 such that H(Fq) is a blocking set.

We provide a more general construction using Frobenius nonclassical curves in Section 4. Such
a construction relies on the subfield structure, which is not available in Fq when q is a prime. When
q = p is a prime, it seems more difficult to find explicit examples of blocking curves; we find a
family of examples in Theorem 1.6 and Theorem 1.7.

It is natural to ask for the minimum degree of an irreducible curve passing through a specific
blocking set. We analyze this question for the projective triangle in Section 5. Recall that the
projective triangle (first mentioned in [Hir79]) is the blocking set given by,

∆ = {[0 : 1 : −s2], [1 : −s2 : 0], [−s2 : 0 : 1] | s ∈ Fq}

with cardinality 3(q + 1)/2. We construct a smooth curve with degree q+3
2

passing through ∆

in Theorem 5.1 when q ≡ 3 (mod 4). Indeed, such a curve would have degree at least q+3
2

by
Bézout’s theorem (see Remark 5.2), so our construction is optimal.

Note that, when p is an odd prime, the projective triangle ∆ is of particular interest, since it
serves as an example of a nontrivial blocking set of size 3

2
(p+1) over Fp, which is the smallest pos-

sible size by Blokhuis [Blo94]. However, this does not imply that the smallest degree irreducible
blocking curve C must necessarily pass through the projective triangle (the smallest blocking set)
or its image under a projective transformation. Indeed, we find geometrically irreducible blocking
curves with smaller degree d = p−1

r
+1 in Theorem 6.2 for a fixed r, provided that p ≡ 1 (mod r)

and p > r4. Using tools from analytic number theory, we can prove something even stronger.

Theorem 1.6. There are infinitely many primes p such that for each d ≥ 4p3/4 + 1, there is a
geometrically irreducible nontrivially blocking curve over Fp with degree d.

In view of Theorem 1.6, one can ask for the smallest degree of an irreducible blocking curve
over Fp for p prime. According to Theorem 3.3, the optimal degree for a blocking curve satisfies
d ≥ C0p

1/4 for some constant C0, while Theorem 1.6 tells us that the optimal degree must satisfy
d ≤ C1p

3/4 for some constant C1. Let us briefly explain why the optimal exponent of degree is
likely to be near 1/2. We expect that for any ε > 0, there are many blocking sets of size at most
λεp

1+ε where λε is a constant. Since the vector space V of degree d homogeneous polynomials
defining plane curves has dimension

(
d+2
2

)
, we obtain many blocking curves provided that

(
d+2
2

)
>

λεp
1+ε. Indeed, passing through any specific point imposes at most one linear condition on V .

While this furnishes numerous blocking curves of degree d ≤ Cεp
1/2+ε, this is only a heuristic

because we cannot demonstrate irreducibility of any such curve in this abstract setting.
Constructing smooth blocking curves appears to be much more difficult. One difficulty in ap-

plying the heuristic above is the following: we want the smooth curve to pass through a blocking
set with relatively large size, while we expect that the number of Fp-points of most smooth curves
is close to p+ 1. Nonetheless, we prove a version of Theorem 1.6 for smooth blocking curves:

Theorem 1.7. Let 0 < θ ≤ 1/4. Let A be a fixed positive number, with A ≤ 1/2 if θ = 1/4. There
are infinitely many primes p such that for some d ∈ [p1−θ/2A+1, 2p1−θ/A+1], there is a smooth
nontrivially blocking curve over Fp with degree d.

The proof of Theorem 1.7 relies on a general construction of a smooth blocking curve (The-
orem 6.3). In particular, we can construct smooth blocking curves of degree q+1

2
. Note that the

existence of degree d smooth blocking curve does not necessarily imply the existence of degree
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d + 1 smooth blocking curve. Therefore, the next result would not follow from knowing the exis-
tence of smooth blocking curves of degree d = q+1

2
.

Theorem 1.8. Suppose q ≥ 5 with p = char(Fq) > 3. There exists a smooth blocking plane curve
over Fq with degree d = q+3

2
.

Similarly, the existence of degree d smooth blocking curve does not necessarily imply the exis-
tence of degree d − 1 smooth blocking curve. However, we are able to exhibit a smooth blocking
set of degree q−1

2
whenever q ≡ 3 (mod 4).

Theorem 1.9. Suppose q ≥ 11 with q ≡ 3 (mod 4) and p = char(Fq) > 3. There exists a smooth
blocking plane curve over Fq with degree d = q−1

2
.

When q ≡ 1 (mod 4), we expect that there should be examples with degree q−1
2

for q ≥ 13.
See Example 7.4.

Structure of the paper. In Section 2, we present some preliminary definitions, and discuss useful
tools from number theory, algebra, and incidence geometry. In Section 3, we employ point-line
incidence geometry to prove Theorem 1.2, Theorem 1.3 and Theorem 1.4. We turn our attention
to special constructions of blocking curves using Frobenius nonclassical plane curves in Section 4.
In Section 5 we construct smooth curves passing through the projective triangle. Finally, we prove
Theorem 1.6 and Theorem 1.7 in Section 6, and Theorem 1.8 and Theorem 1.9 in Section 7.

2. PRELIMINARIES AND LEMMATA

This section is not meant to be read in isolation, and a reader may skip to Section 3 and refer
back to this section when necessary.

2.1. Basic definitions. The primary geometric object of our study is a plane curve defined over
a finite field. Recall that a plane curve C ⊂ P2 is defined by a homogeneous polynomial F ∈
Fq[x, y, z]. We say that C is irreducible if F is an irreducible polynomial in Fq[x, y, z]. Moreover,
C is geometrically irreducible if F remains irreducible in the larger ring Fq[x, y, z]. A plane curve
C is smooth if for every point P ∈ C, at least one of the partial derivatives Fx, Fy or Fz does not
vanish at P . Note that a smooth plane curve is geometrically irreducible.

Recall that Φ: P2 → P2 is the q-th power Frobenius map defined by Φ[x : y : z] = [xq : yq : zq].
This definition will be especially useful in Section 4 when we discuss Frobenius nonclassical
curves.

2.2. Character sums. Recall that a character χ of the multiplicative group F∗
q of Fq is called a

multiplicative character of Fq. For a multiplicative character χ, its order r is the smallest positive
integer such that χr = χ0, where χ0 is the trivial multiplicative character of Fq. The following
lemma is a classical application of Weil’s bound for complete character sums; see for example
[LN97, Exercise 5.66].

Lemma 2.1. Let r ≥ 2 be a positive integer. Let q ≡ 1 (mod r) be a prime power. Let χ be a
multiplicative character of Fq with order r. Let a1, a2, . . . , ak be k distinct elements of Fq, and let
ϵ1, . . . , ϵk ∈ C be r-th roots of unity. Let N denote the number of x ∈ Fq such that χ(x+ ai) = ϵi
for 1 ≤ i ≤ k. Then

N ≥ q

rk
−
(
k − 1− k

r
+

1

rk

)
√
q − k

r
.
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We apply Lemma 2.1 to deduce two useful corollaries below. They will be used to show that the
curves in Section 6 and Section 7 are blocking.

Corollary 2.2. Let r ≥ 2 be a positive integer. Let q ≡ 1 (mod r) be a prime power such that
q > r4. Let χ be a multiplicative character of Fq with order r, and let ω1, ω2 ∈ C be two r-th
roots of unity. Then for any b, c ∈ F∗

q , there are y, z ∈ Fq such that χ(y) = ω1, χ(z) = ω2 and
by + cz = −1.

Proof. Note that by + cz = −1 is equivalent to z = − b
c
(y + 1

b
). Thus, it suffices to find y ∈ Fq

such that χ(y) = ω1 and χ(y + 1
b
) = w2χ(− c

b
). Using Lemma 2.1 with k = 2, the number of such

y is at least

q

r2
−

(
1− 2

r
+

1

r2

)
√
q − 2

r
=

(
q

r2
−√

q

)
+

(
2

r
− 1

r2

)
√
q − 2

r
>

√
q − 2

r
> 0

since q > r4. Thus, such an element y exists. □

Corollary 2.3. Let q be an odd prime power such that q ≥ 47, and χ be the quadratic character
of Fq. Then for any nonzero α, β ∈ Fq such that α ̸= β, there is x ∈ Fq, such that χ(x), χ(x +
α), χ(x+ β) have the prescribed values (1 or −1).

Proof. For q ≥ 47, we have
q

8
>

5

8

√
q +

3

2
.

The result follows immediately from Lemma 2.1 with k = 3 and r = 2. □

2.3. Irreducibility criterion. In Section 6 we will construct a family of geometrically irreducible
blocking curves. The following lemma provides a useful criterion to check the (absolute) irre-
ducibility of a polynomial.

Lemma 2.4. Let K be a field and let f, g ∈ K[y, z] homogeneous polynomials such that gcd(f, g) =
1. Assume that either f or g has a non-repeated irreducible factor. Then the polynomial

F (x, y, z) = f(y, z)xr + g(y, z)

is irreducible for each r ≥ 1.

Proof. First, suppose h(y, z) is an irreducible polynomial such that h | g but h2 ∤ g. Since
gcd(f, g) = 1, we know that h ∤ f . By Eisenstein’s criterion with the underlying ring K[y, z]
(see for example [Gao01, Page 502]), the polynomial f(y, z)xr + g(y, z) is irreducible in the ring
(K[y, z])[x]. Since gcd(f, g) = 1, the polynomial is also irreducible in K[x, y, z].

Next, suppose that h(y, z) is an irreducible polynomial such that h | f but h2 ∤ f . By applying
the same argument in the first paragraph, the polynomial g(y, z)xr + f(y, z) is irreducible. It
follows that f(y, z)xr + g(y, z) is also irreducible. This is because the two polynomials are related
by the transformation x 7→ 1/x and multiplication by xr. □

2.4. Divisors of p− 1. In this subsection, we show that for any θ < 1/2, there are infinitely many
primes p such that p − 1 has a divisor that is close to pθ. We first recall some standard notations.
For any real number x, let π(x) be the number of primes up to x. For positive integers r and a
such that gcd(r, a) = 1, we use π(x; r, a) to denote the number of primes up to x which are in the
arithmetic progression a + rZ. The prime number theorem for arithmetic progressions states that
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π(x; r, a) is very close to π(x)/ϕ(r) if r is fixed and x is large. For our purposes, r is close to xθ,
so we need deeper tools from analytic number theory.

The following explicit version of the Brun-Titchmarsh inequality is due to Montgomery and
Vaughan [MV73].

Theorem 2.5 (Brun-Titchmarsh inequality). If x > r, then

π(x; r, a) ≤ 2x

ϕ(r) log x
r

.

We also need the following version of the celebrated Bombieri–Vinogradov theorem [Bom65].

Theorem 2.6 (Bombieri–Vinogradov theorem). Let θ < 1/2. There is a constant C, such that∑
r≤xθ

max
gcd(a,r)=1

∣∣∣∣π(x; r, a)− π(x)

ϕ(r)

∣∣∣∣ ≤ Cx

(log x)2
. (1)

Corollary 2.7. Let 0 < θ < 1/2 and 0 < A be fixed constants. There are infinitely many primes p
such that p− 1 has a divisor in [Apθ/2, 2Apθ].

Proof. We prove the statement for the case A = 1; the proof for the general case is similar (but a
bit messier).

Let 0 < α < 1/4 such that α−θ < 2. Let x be sufficiently large so that αx1−θ > x1/2. By
Bombieri–Vinogradov theorem, the inequality (1) holds. In particular, we can find some r0 ∈
[xθ/2, xθ] such that ∣∣∣∣π(x; r0, 1)− π(x)

ϕ(r0)

∣∣∣∣ ≤ 2Cx

xθ(log x)2
<

2Cx

ϕ(r0)(log x)2
.

On the other hand, Brun-Titchmarsh inequality implies that

π(αx; r0, 1) ≤
2αx

ϕ(r0) log
αx
r0

≤ 2αx

ϕ(r0) log(αx1−θ)
≤ 2αx

ϕ(r0) log(x1/2)
=

4αx

ϕ(r0) log x
.

Combining the above estimates, we have

π(x; r0, 1)− π(αx; r0, 1) ≥
π(x)

ϕ(r0)
− 2Cx

ϕ(r0)(log x)2
− 4αx

ϕ(r0) log x
.

Note that 4α < 1, so the prime number theorem implies that π(x; r0, 1) − π(αx; r0, 1) > 0 holds
for sufficiently large x. In particular, there is a prime p ∈ (αx, x] such that p ≡ 1 (mod r0) with
r0 ∈ [xθ/2, xθ], which implies that r0 ∈ [pθ/2, (p/α)θ] ⊂ [pθ/2, 2pθ]. □

Remark 2.8. Let P (a, r) be the least prime in an arithmetic progression a (mod r), where a
and r are coprime positive integers. Linnik [Lin44a, Lin44b] proved that there exist effectively
computable constants C and L such that P (a, r) ≤ CrL. The constant L is known as Linnik’s
constant. The best-known upper bound for L is 5, due to Xylouris [Xyl11]. Using Linnik’s theorem
with r = 2n and L = 5, one can give a simple proof for Corollary 2.7 when θ < 1/5. However, in
our application, we need the statement to be true for θ ≤ 1/4. We also remark that Corollary 2.7
is trivial if one replaces primes with prime powers.

6



2.5. Point-line incidences. The following lemma collects the three useful identities that will be
repeatedly used in Section 3.

Lemma 2.9. Let C be an irreducible blocking plane curve of degree d defined over a finite field
Fq. Suppose that ti denotes the number of Fq-lines intersecting C(Fq) in exactly i points. Let
N = |C(Fq)|. Then we have t0 = 0 and ti = 0 when i > d. Moreover,

d∑
i=1

ti = q2 + q + 1,

d∑
i=1

iti = (q + 1)N,

d∑
i=2

ti

(
i

2

)
=

(
N

2

)
.

Proof. The proof relies on a standard counting of point-line incidences in two different ways. Note
that the sums run up to i = d, because ti = 0 for i > d by Bézout’s theorem which is applicable as
C is irreducible. For complete details, see for example the proof of [AG23, Proposition 2.1]. □

Remark 2.10. The sequence {ti}, known as the intersection distribution, makes sense for any
point set S in P2(Fq). Such distribution is closely related to many problems in finite geometry
[LP20, Remark 1.4]. In particular, Li and Pott [LP20] studied the sequence {ti} when S is the
graph of a polynomial f ∈ Fq[x], and found connections to permutation polynomials [AGW11].

As an immediate corollary of Lemma 2.9, we have a criterion for showing that a blocking curve
is nontrivially blocking.

Corollary 2.11. If C ⊂ P2 is an irreducible blocking plane curve of degree d < q + 1, then C is
nontrivially blocking.

As another corollary of Lemma 2.9, we obtain the following inequality which relates the degree
and the number of rational points of a blocking curve, and the cardinality of the ground field.

Corollary 2.12. Let C be an irreducible blocking plane curve of degree d over Fq. Using the
notation in Lemma 2.9, the following inequality holds:

N(d(q + 1) + 1−N) ≥ d(q2 + q + 1).

Proof. By Lemma 2.9, we have
d∑

i=1

ti = q2 + q + 1,
d∑

i=1

iti = (q + 1)N,

d∑
i=1

ti

(
i

2

)
=

(
N

2

)
where the third sum starts with i = 1 for convenience. Now, the last two equations imply that

d∑
i=1

i2ti = 2
d∑

i=1

ti

(
i

2

)
+

d∑
i=1

iti = N(N − 1) + (q + 1)N = N(N + q).

Thus,
d∑

i=1

(i− 1)ti = (q + 1)N − (q2 + q + 1),
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which implies that
d∑

i=1

(i− 1)2ti ≤ (d− 1)
d∑

i=1

(i− 1)ti = (d− 1)(q + 1)N − (d− 1)(q2 + q + 1).

On the other hand,
d∑

i=1

(i− 1)2ti =
d∑

i=1

i2ti − 2
d∑

i=1

iti +
d∑

i=1

ti = N(N + q)− 2(q + 1)N + q2 + q + 1.

Combining the two estimates above, we get

(d−1)(q+1)N−(d−1)(q2+q+1) ≥ N(N+q)−2(q+1)N+q2+q+1 = N(N−q−2)+q2+q+1.

Simplifying yields
N(d(q + 1) + 1−N) ≥ d(q2 + q + 1),

as desired. □

3. LOW DEGREE PLANE CURVES ARE NOT BLOCKING

In this section, we prove Theorem 1.2 to establish that curves of low degree can never be block-
ing, and present an improved result in Theorem 3.3 for the case q = pn when n ≤ 4. We also
prove Theorem 1.3 and Theorem 1.4, which provide refined results for cubic and quartic curves,
respectively.

3.1. Proof of Theorem 1.2. Before we proceed with the proof of Theorem 1.2, we present a quick
lemma that allows us to reduce to the case of geometrically irreducible curves.

Lemma 3.1. Let C be an irreducible plane curve of degree d defined over Fq. Suppose that C is
not geometrically irreducible. If q ≥ d2/4, then C is not blocking.

Proof. Under the given hypothesis, it is well-known that |C(Fq)| ≤ d2/4 [AG23, Remark 2.2].
Thus, the total number of Fq-lines passing through some point of C(Fq) is at most

d2

4
· (q + 1) ≤ q(q + 1) < q2 + q2 + 1

and hence there is some Fq-line L which does not meet C(Fq). Thus, C is not blocking. □

Next, we give a proof of Theorem 1.2. We remark that Theorem 1.2 improves [AG23, Proposi-
tion 2.1] by the multiplicative factor given by (1+

√
2

2
)2 ≈ 1.457.

Proof of Theorem 1.2. Suppose, to the contrary, that C is blocking. In view of Lemma 3.1, we may
assume that C is geometrically irreducible.

Let N denote the number of Fq-points of C. Motivated by Corollary 2.12, we are led to consider
the function f(x) := x(d(q + 1) + 1 − x). Note that f(x) increases as a function of x whenever
0 ≤ x < d(q+1)+1

2
.

Let us first show that N must be in the interval
(
0, d(q+1)+1

2

)
. By the Hasse-Weil bound for

geometrically irreducible curves [AP96, Corollary 2.5]:

N ≤ q + 1 + (d− 1)(d− 2)
√
q.
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It suffices to establish q+1+(d−1)(d−2)
√
q < d(q+1)+1

2
. Since d ≥ 4 and q ≥ (d−1)2(d−2)4,

it follows that q ≥ 16(d− 1)2. Therefore,

d(q + 1) + 1

2
− q − 1− (d− 1)(d− 2)

√
q >

(d− 2)(q + 1)

2
− (d− 1)(d− 2)

√
q

> (d− 2)
(q
2
− (d− 1)

√
q
)
≥ 0

as desired. This shows N is in the interval where f(x) is increasing. As a result,

N(d(q + 1) + 1−N) = f(N) ≤ f(q + 1 + (d− 1)(d− 2)
√
q) =

= (d− 1)(q + 1)2 + q + 1 + ((d− 2)(q + 1) + 1)(d− 1)(d− 2)
√
q − (d− 1)2(d− 2)2q.

Thus, Corollary 2.12 implies that

q2 ≤ 2(d− 1)q + (d− 1)(d− 2)2q
√
q + (d− 1)2(d− 2)

√
q − (d− 1)2(d− 2)2q.

Since q ≥ 4(d− 1)2 and d ≥ 4, we have

(d− 1)2(d− 2)2q ≥ 2(d− 1)3(d− 2)2
√
q, (d− 1)2(d− 2)2q ≥ 4(d− 1)q,

thus
(d− 1)2(d− 2)2q ≥ 2(d− 1)q + (d− 1)(d− 2)2

√
q.

We conclude that
q2 ≤ (d− 1)(d− 2)2q

√
q,

that is, q ≤ (d−1)2(d−2)4. Since q is a prime power and (d−1)2(d−2)2 has at least two distinct
prime factors for d ≥ 4, we deduce that q < (d − 1)2(d − 2)4. This is a contradiction, and the
proof is complete. □

Before discussing our next result, we mention a fundamental result on blocking sets. A blocking
set of size less than 3(q + 1)/2 is known as a small blocking set. Szőnyi [Sző97a, Corollary 4.8]
proved that a small blocking set must have a special incidence structure.

Theorem 3.2 ([Sző97a]). If B ⊂ P2(Fq) is a nontrivial blocking set of size less than 3(q + 1)/2,
then each line intersects B in 1 modulo p points.

When q = pn, where n ≤ 4, the O(d6) bound in Theorem 1.2 can be further improved to O(d4).

Theorem 3.3. Let C be an irreducible plane curve of degree d ≥ 4 defined over Fq, where q = pn

such that n ∈ {1, 2, 3, 4}. If q ≥ 4(d− 1)2(d− 2)2, then C is not blocking.

Proof. Suppose to the contrary that C is blocking. In view of Lemma 3.1, we may assume that C
is geometrically irreducible. Using the Hasse-Weil bound and the hypothesis q

4
≥ (d−1)2(d−2)2,

we obtain:

|C(Fq)| ≤ q + 1 + (d− 1)(d− 2)
√
q ≤ q + 1 +

√
q

2

√
q =

3q

2
+ 1 <

3(q + 1)

2
.

Since C is irreducible and d < q + 1, it follows that C is nontrivially blocking by Corollary 2.11
(that is, C(Fq) does not contain all the Fq-points of an Fq-line since that would make C(Fq) a
blocking set in a trivial manner). By Theorem 3.2, each line intersects C(Fq) in 1 modulo p points.
Note that p4 ≥ q ≥ 4(d− 1)2(d− 2)2, so p2 ≥ 2(d− 1)(d− 2), which implies that p ≥ d provided

9



that d ≥ 4. This forces t1 = q2+ q+1 and ti = 0 for i > 1 (since p ≥ d) by Lemma 2.9. Applying
Lemma 2.9 again, we obtain the equation,

(q + 1)N =
d∑

i=1

iti = q2 + q + 1

which is impossible since (q + 1) ∤ (q2 + q + 1). □

Remark 3.4. When q = p is a prime, one can obtain a simpler proof of Theorem 3.3 by comparing
the lower bound given by 3

2
(p+ 1) in Blokhuis’ theorem [Blo94] with the Hasse-Weil bound.

3.2. Cubic plane curves. We will next show that a cubic plane curve is almost never blocking.
As a reference, cubic plane curves are discussed in [Hir79, Chapter 11].

Proof of Theorem 1.3. Assume, to the contrary, that C(Fq) is a blocking set. Let N = #C(Fq).
As before, let ti denote the number of Fq-lines intersecting C(Fq) in i points. By Lemma 2.9,

t1 + t2 + t3 = q2 + q + 1,

t1 + 2t2 + 3t3 = N(q + 1),

2t2 + 6t3 = N(N − 1).

Subtracting the first equation from the second, we get t2+2t3 = N(q+1)−(q2+q+1). Combining
this equation with the third displayed equation, we get:

t2 = 3(t2 + 2t3)− (2t2 + 6t3)

= 3N(q + 1)− 3(q2 + q + 1)−N(N − 1).

Since t2 ≥ 0, we obtain:

3N(q + 1)− 3(q2 + q + 1)−N(N − 1) ≥ 0

which is a quadratic inequality in N :

N2 − (3q + 4)N + 3(q2 + q + 1) ≤ 0. (2)

The discriminant is given by:

∆ = (3q + 4)2 − 12(q2 + q + 1) = −(3q2 − 12q − 4) < 0

for q ≥ 5. Indeed, 3q2−12q−4 = 3(q−5)2+18q−79 > 0 for q ≥ 5. Since ∆ < 0, the quadratic
function f(N) = N2 − (3q + 4)N + 3(q2 + q + 1) has no real roots, and therefore should always
be positive. This contradicts the inequality (2), and completes the proof. □

Example 3.5. Consider the following three plane cubic curves:
• C2 : x

3 + y3 + z3 = 0 defined over F2;
• C3 : y

2z − x3 − x2z − xz2 = 0 defined over F3;
• C4 : x

3 + y3 + z3 = 0 defined over F4.
One can show that Ci is a smooth blocking curve for each i = 2, 3, 4. Note C4 is an example
of Hermitian curve mentioned earlier in Example 1.5. Thus, the condition q ≥ 5 required in
Theorem 1.3 is both necessary and sharp.

Remarks 3.6. The irreducibility hypothesis on the cubic curve C is necessary. Indeed, a reducible
cubic curve C over Fq must have a component of degree 1, that is, an Fq-line. But then C(Fq)
would be a trivial blocking set.

10



Remark 3.7. The same proof works for (k, 3)-arcs. More precisely, if A is a (k, 3)-arc in P2(Fq)
with q ≥ 5, then A is not a blocking set.

3.3. Quartic plane curves. Obtaining a more refined result for quartic plane curves is more com-
plicated, and our proof below crucially relies on the smoothness hypothesis.

Proof of Theorem 1.4. Assume, to the contrary, that C(Fq) is a blocking set. By Lemma 2.9,

t1 + t2 + t3 + t4 = q2 + q + 1,

t1 + 2t2 + 3t3 + 4t4 = N(q + 1),

2t2 + 6t3 + 12t4 = N(N − 1).

We subtract the first equation from the second to get:

t2 + 2t3 + 3t4 = N(q + 1)− (q2 + q + 1). (3)

Now,

t2 + 2t3 + 3t4 =
t2 + t3

2
+

2t2 + 6t3 + 12t4
4

≥ t2
2
+

N(N − 1)

4
. (4)

Let P ∈ C(Fq2) \ C(Fq). Consider the Fq-line LP joining P and its Frobenius image Φ(P ). Note
that LP = LΦ(P ). We claim that the number of such lines is exactly

#C(Fq2)−#C(Fq)

2
. (5)

In order to prove the formula (5), it suffices to show that LP = LP ′ if and only if {P,Φ(P )} =
{P ′,Φ(P ′)}. Assuming {P,Φ(P )} ≠ {P ′,Φ(P ′)}, the condition LP = LP ′ would imply that then
LP ∩C has 4 points, namely P,Φ(P ), P ′,Φ(P ′), implying that LP ∩C(Fq) = ∅, contradicting the
assumption that C is blocking. This completes the proof of our claim that the number of distinct
lines LP (joining P and its Frobenius image Φ(P )) is given by the formula (5).

Given P ∈ C(Fq2)\C(Fq), we know that LP ∩C has 4 points over Fq counted with multiplicity.
Moreover, 2 of those 4 points are already accounted by P and Φ(P ), neither of which is an Fq-
point. Thus, either LP contributes to t2 or L is a tangent line to C at some Fq-point, that is, L
meets C at some Fq-point with multiplicity exactly 2. Since C is smooth, the number of tangent
lines is at most N = #C(Fq). Therefore,

t2 ≥
#C(Fq2)−#C(Fq)

2
−N. (6)

Using the Hasse-Weil bound, #C(Fq2) ≥ q2 + 1− 6q. Thus, equation (6) yields that

t2 ≥
q2 + 1− 6q −N

2
−N. (7)

Substituting the lower bound for t2 from equation (7) into the equation (4), we obtain

t2 + 2t3 + 3t4 ≥
q2 + 1− 6q −N

4
− N

2
+

N(N − 1)

4
. (8)

Therefore, equations (3) and (8) yield that

N(q + 1)− (q2 + q + 1) ≥ q2 + 1− 6q −N

4
− N

2
+

N(N − 1)

4
. (9)
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Rearranging inequality (9) into a quadratic equation in N , we obtain:
1

4
N2 − (2 + q)N +

5

4
q2 − 1

2
q +

5

4
≤ 0. (10)

The discriminant of the quadratic from (10) is given by:

∆ = (2 + q)2 −
(
5

4
q2 − 1

2
q +

5

4

)
= −1

4

(
q2 − 18q − 11

)
.

Note that ∆ < 0 for q ≥ 19, which contradicts the earlier inequality 1
4
N2 − (2 + q)N + 5

4
q2 −

1
2
q + 5

4
≤ 0. Thus, the desired conclusion from Theorem 1.4 is proved for q ≥ 19. □

Remarks 3.8. The Hermitian curve from Example 1.5 gives an example of a smooth quartic block-
ing curve when q = 9. We do not know if there exist smooth or irreducible blocking plane curves of
degree 4 over Fq when q ∈ {11, 13, 16, 17}. The brute force method of enumerating all irreducible
quartic plane curves over Fq is infeasible.

4. CONNECTION WITH FROBENIUS NONCLASSICAL PLANE CURVES

In this section, we construct blocking plane curves that arise from Frobenius nonclassical curves.
The concept of Frobenius nonclassical curves first naturally appeared in the work by Stöhr and
Voloch [SV86] in their new proof of the Riemann hypothesis for curves over finite fields. After-
wards, Hefez and Voloch carried out a thorough investigation of these curves, and in particular,
determined the precise number of Fq-points on a nonsingular Frobenius nonclassical plane curve
of degree d [HV90, Theorem 1]. The abundance of points on Frobenius nonclassical plane curves
can be used to construct new complete arcs [GPTU02]. Our approach will be similar to [GPTU02],
except we are interested in using these curves to construct blocking sets instead of arcs.

While Frobenius nonclassical curves can live in a projective space of arbitrary dimension, we
will primarily focus on the case of plane curves. We begin with a fundamental definition.

Definition 4.1. Suppose C = {F = 0} is a plane curve defined over Fq. We say that C is Frobenius
nonclassical if the polynomial xqFx + yqFy + zqFz is divisible by F .

Geometrically, a plane curve C is Frobenius nonclassical if and only if for every non-singular
point P ∈ C, the tangent line TPC contains Φ(P ). Our goal is to prove Theorem 4.3 on the
existence of blocking plane curves of degree d = o(q) where q = pn is a prime power with n ≥ 2;
see Remark 4.4 for more details on the size of the degree. We begin with a general result.

Proposition 4.2. Let C be a smooth plane curve of degree d defined over Fq where p = char(Fq) ≥
3. Suppose that C is Frobenius nonclassical. Then C is blocking.

Proof. Since C is a smooth Frobenius nonclassical plane curve, it follows that C is non-reflexive
[HV90, Proposition 1]. Therefore, d ≡ 1 (mod p) by Pardini’s theorem [Par86, Corollary 2.2].
Applying [ADL22, Corollary 2.3], we obtain that C(Fq) is a blocking set. □

Theorem 4.3. Suppose q = pn where n ≥ 2 and p ≥ 3. Let 1 ≤ n′ < n be a positive divisor of n,
and set q′ = pn

′
. There exists a smooth blocking plane curve defined over Fq with degree d = q−1

q′−1
.

Proof. Consider the curve C ⊂ P2 defined by the equation,

x
q−1
q′−1 + y

q−1
q′−1 + z

q−1
q′−1 = 0.
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The smoothness of the curve C is clear. Moreover, C is Frobenius nonclassical over Fq. Indeed,

xqFx + yqFy + zqFz = x
q−1
q′−1

−1+q
+ y

q−1
q′−1

−1+q
+ z

q−1
q′−1

−1+q

= x
q′(q−1)

q′−1 + y
q′(q−1)

q′−1 + z
q′(q−1)

q′−1 = F q′ .

In particular, xqFx + yqFy + zqFz is divisible by F . We conclude that C = {F = 0} is a smooth
Frobenius nonclassical plane curve of degree d = q−1

q′−1
. The desired result follows immediately

from Proposition 4.2. □

Remark 4.4. As an illustration of Theorem 4.3, we can let n′ = 1. We obtain a smooth blocking
plane curve of degree d = q−1

p−1
over Fq for every q = pn with n ≥ 2. For example, when q = p3

with p an odd prime, this yields a blocking curve of degree d = q−1
p−1

= p2 + p + 1. Note that
d ≈ q2/3, and that the exponent 2/3 is smaller than the exponent 3/4 in Theorem 1.7. For n ≥ 4,
we obtain a smooth blocking plane curve of degree d ≈ q(n−1)/n = q1−1/n that works for every q.
However, Theorem 1.7 has the advantage that it works in the case when q = p is a prime.

Remark 4.5. Let q be a square. The Hermitian curve H given by the equation x
√
q+1 + y

√
q+1 +

z
√
q+1 = 0 from Example 1.5 is an example of Frobenius nonclassical plane curve over Fq. In fact,

d =
√
q + 1 is the smallest possible degree of a geometrically irreducible Frobenius nonclassical

plane curve over Fq. Moreover, every such curve of degree d =
√
q + 1 is Fq-isomorphic to H

[BH17, Corollary 3.2].

5. SMOOTH CURVES PASSING THROUGH THE PROJECTIVE TRIANGLE

Theorem 5.1. Let q ≡ 3 (mod 4) be a prime power with p > 3. There exists a smooth curve C of
degree d = q+3

2
defined over Fq such that C(Fq) is nontrivially blocking, and C(Fq) contains the

projective triangle ∆.

Proof. Consider the plane curve C defined by the equation,

xy(x(q−1)/2 + y(q−1)/2) + yz(y(q−1)/2 + z(q−1)/2) + zx(z(q−1)/2 + x(q−1)/2) = 0.

Note that C passes through [1 : 0 : 0], [0 : 1 : 0], and [0 : 0 : 1]. Moreover, for any s ∈ F∗
q , we have

(−s2)(q−1)/2 = −1 since (q − 1)/2 is odd by hypothesis. As a result, the curve C passes through
each point of the projective triangle

∆ = {[0 : 1 : −s2], [1 : −s2 : 0], [−s2 : 0 : 1] | s ∈ Fq}
and thus C is nontrivially blocking by Corollary 2.11 assuming that C is irreducible. It remains to
show that C is smooth. Note that smooth plane curves are irreducible.

The defining polynomial for C can be rewritten as:

F = x(q+1)/2(y + z) + y(q+1)/2(z + x) + z(q+1)/2(x+ y).

Assume, to the contrary, that C is singular at a point P = [x : y : z]. Then the three partial
derivatives Fx, Fy and Fz must vanish at P . Writing down Fx = Fy = Fz = 0 and multiplying
both sides of each equation by 2 leads to the following:

x(q−1)/2(y + z) + 2y(q+1)/2 + 2z(q+1)/2 = 0,

2x(q+1)/2 + y(q−1)/2(z + x) + 2z(q+1)/2 = 0,

2x(q+1)/2 + 2y(q+1)/2 + z(q−1)/2(x+ y) = 0.
13



Let m = (q−1)/2 for simplicity. We can rewrite the above system of equations in the matrix form
Mv = 0 where

M =

y + z 2y 2z
2x z + x 2z
2x 2y x+ y

 and v =

xm

ym

zm

 .

Since v ̸= 0 by assumption, it follows that det(M) = 0. After expanding the determinant and
dividing both sides by 3 (which is permissible as p > 3), we obtain the relation:

x2y + xy2 + y2z + yz2 + z2x+ zx2 = 6xyz. (11)

The system of equations on the partial derivatives above can also be written as Nw = 0 where

N =

 0 xm + 2ym xm + 2zm

ym + 2xm 0 ym + 2zm

zm + 2xm zm + 2ym 0

 and w =

x
y
z

 .

Since w ̸= 0 by assumption, it follows that det(N) = 0. After expanding the determinant and
factoring, we obtain the relation:

6(xm + ym + zm)(xmym + ymzm + zmxm) = 0 (12)

Since p > 3, we can conclude that either xm + ym + zm = 0 or xmym + ymzm + zmxm = 0.
Case 1. xm + ym + zm = 0.
In this case, we can substitute xm = −ym−zm into the equation xm(y+z)+2ym+1+2zm+1 = 0

given by the vanishing of the partial derivative Fx. We obtain,

− (ym + zm)(y + z) + 2ym+1 + 2zm+1 = (y − z)(ym − zm) = 0. (13)

Equation (13) yields that ym = zm. By symmetry, we can apply the same argument to the equations
given by Fy = 0 and Fz = 0 to get zm = xm, and also, xm = ym. We can then conclude that
xm = ym = zm, and thus xm + ym + zm = 0 implies that 3xm = 0. Since p > 3, we must have
x = y = z = 0, which is a contradiction.

Case 2. xmym + ymzm + zmxm = 0.
We split the analysis into two sub-cases.
Case 2.1. xyz = 0.
Without loss of generality, suppose z = 0. Then the equation Fz = 0 becomes:

2xm+1 + 2ym+1 = 0. (14)

Now, combining z = 0 and xmym + ymzm + zmxm = 0, we must have xmym = 0, that is, either
x = 0 or y = 0. However, both possibilities imply x = y = 0 using (14), which is a contradiction,
since at least one of x, y, z must be non-zero.

Case 2.2. xyz ̸= 0.
We introduce new variables A = 1/x,B = 1/y and C = 1/z. The relation xmym + ymzm +

zmxm = 0 implies
Am +Bm + Cm = 0. (15)

The defining equation for the curve can be expressed as,

B + C

Am+1BC
+

C + A

Bm+1CA
+

A+B

Cm+1AB
= 0.
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After multiplying both sides by ABC, we get

B + C

Am
+

C + A

Bm
+

A+B

Cm
= 0.

The last equation can be rewritten as,

C ·
(

1

Am
+

1

Bm

)
+B ·

(
1

Cm
+

1

Am

)
+ A ·

(
1

Bm
+

1

Cm

)
= 0.

Combining the last relation with (15),

0 = C ·
(
Am +Bm

(AB)m

)
+B ·

(
Cm + Am

(CA)m

)
+ A ·

(
Bm + Cm

(BC)m

)
= C · (−Cm)

(AB)m
+B · (−Bm)

(CA)m
+ A · (−Am)

(BC)m
.

Next, we multiply the last equation by (ABC)m to arrive to,

0 = C2m+1 +B2m+1 + A2m+1.

Recalling that m = q−1
2

, we have 2m+ 1 = q. Thus,

0 = Cq +Bq + Aq = (A+B + C)q

as we are working in characteristic p. We conclude that A + B + C = 0, or equivalently, xy +
yz + zx = 0. In particular, we must have (x+ y + z)(xy + yz + zx) = 0, that is,

x2y + xy2 + y2z + yz2 + z2x+ zx2 + 3xyz = 0. (16)

Finally, combining (11) and (16), we conclude that

6xyz + 3xyz = 0 ⇒ 9xyz = 0 ⇒ xyz = 0

as we are assuming p > 3. This contradicts the assumption that xyz ̸= 0.
We deduce that the curve C is smooth, and the proof is complete. □

Remark 5.2. Note that (q+3)/2 is a lower bound on the degree of an irreducible curve that passes
through all the points of the projective triangle. Indeed, the intersection between such a curve and
the line x = 0 includes the points {[0 : 1 : −s2] | s ∈ F∗

q} ∪ {[0 : 1 : 0], [0 : 0 : 1]}. Since there
are at least (q− 1)/2 + 2 = (q + 3)/2 intersection points, the degree must be at least (q + 3)/2 by
Bézout’s theorem. We have shown that this is tight when q ≡ 3 (mod 4).

Note that (p+3)/2 is also a lower bound on the degree of an irreducible curve that passes through
a blocking set of Rédei type over Fp. A blocking set B is of Rédei type if there is a line L such that
|B∩L| = |B|− q. For example, the projective triangle is of Rédei type. Blokhuis [Blo94] showed
each nontrivial blocking set in P2(Fp) has size at least 3(p+ 1)/2, and so a nontrivial blocking set
of Rédei type in P2(Fp) contains a line L with at least 3(p+ 1)/2− p = (p+ 3)/2 points. In fact,
Gács [Gác03] showed that if a blocking set of Rédei type in P2(Fp) is not projectively equivalent
to the projective triangle, then it has size at least p+2(p− 1)/3+1. It follows that any irreducible
plane curve passing through a Rédei type blocking set other than the projective triangle (and its
image under a projective transformation) must have degree at least 2p/3.
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Remark 5.3. Note that our proof relies on the fact that −1 is a non-square in Fq provided that
q ≡ 3 (mod 4). When q ≡ 1 (mod 4), −1 is a square in Fq, and one can instead consider the
curve given by,

xy(x(q−1)/2 − y(q−1)/2) + yz(y(q−1)/2 − z(q−1)/2) + zx(z(q−1)/2 − x(q−1)/2) = 0

which does pass through the points of the projective triangle, and hence is a blocking curve. How-
ever, the curve above is reducible (in fact, contains the lines x = y, y = z and z = x). Nonetheless,
we believe that there is a smooth degree q+3

2
curve that passes through the points of the projective

triangle when q ≡ 1 (mod 4). In fact, for every homogeneous polynomial g(x, y, z) of degree
q−3
2

, any plane curve defined by

xy(x(q−1)/2 − y(q−1)/2) + yz(y(q−1)/2 − z(q−1)/2) + zx(z(q−1)/2 − x(q−1)/2) + xyz · g(x, y, z) = 0

passes through the projective triangle, and thus, is a blocking curve. The subtle point is to find a
suitable g to ensure that the curve is smooth. We believe that already taking g(x, y, z) = x(q−3)/2

would produce a smooth curve, but we were unable to prove this for all q ≡ 1 (mod 4).

6. CONSTRUCTIONS OF IRREDUCIBLE AND SMOOTH BLOCKING CURVES

The fact that the projective triangle is a blocking set relies on nice properties of squares and non-
squares. Inspired by this observation, we provide a systematic approach to constructing blocking
curves using power residues in the following proposition.

Proposition 6.1. Let r ≥ 2 be a positive integer. Let q ≡ 1 (mod r) be a prime power such that
q > r4. Let f, g, h ∈ Fq[x, y, z] be homogeneous polynomials with the same degree, such that
f = −g − h, f(1, 0, 0) = 0, g(0, 1, 0) = 0, and h(0, 0, 1) = 0. Consider the curve C defined by

f(x, y, z)xm + g(x, y, z)ym + h(x, y, z)zm = 0,

where m = (q − 1)/r. Then C is blocking.

Proof. By hypothesis, it is clear that C passes through the points [0 : 0 : 1], [0 : 1 : 0], [1 : 0 : 0].
Moreover, since f = −g − h, the curve C passes through [1 : y : z] whenever y and z are r-th
powers in F∗

q . Thus, it suffices to show that

B = {[0 : 0 : 1], [0 : 1 : 0], [1 : 0 : 0]} ∪ {[1 : y : z] | y and z are r-th powers in F∗
q}

forms a blocking set.
Consider an Fq-line L : ax + by + cz = 0. If abc = 0, then the line L contains a point in

{[0 : 0 : 1], [0 : 1 : 0], [1 : 0 : 0]}. Next assume that abc ̸= 0. We may further assume that a = 1.
To show B ∩ L ̸= ∅, it suffices to show that by + cz = −1 holds for some y and z that are r-th
powers in F∗

q . This is guaranteed by Corollary 2.2. □

Nonetheless, it is not clear which curves in the family given by the previous proposition are
smooth or irreducible. By specializing the choice of f, g, h, we construct a geometrically irre-
ducible blocking curve in every degree starting from d = q−1

r
+ 1.

Theorem 6.2. Let r ≥ 2 be a positive integer. Let q ≡ 1 (mod r) be a prime power such that
q > r4. Let k ∈ F∗

q such that −k is not an r-th power in F∗
q . Let m = q−1

r
. Then the curve C

defined by
−(kyℓ + zℓ)xm + zℓym + kyℓzm = 0

is geometrically irreducible and nontrivially blocking for each ℓ ≥ 1.
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Proof. We first show that gcd(kyℓ + zℓ, zℓym + kyℓzm) = 1. It suffices to show that there are no
y, z ̸= 0 in Fq such that kyℓ + zℓ = 0 and ym−ℓ + kzm−ℓ = 0 hold at the same time. Otherwise, we
would have,

zℓ = −kyℓ, zm−ℓ = (−k)−1ym−ℓ.

This implies that
(−k)m−ℓyℓ(m−ℓ) = zℓ(m−ℓ) = (−k)−ℓyℓ(m−ℓ),

thus (−k)m = 1, which implies that −k is an r-th power in F∗
q , violating the assumption.

Next, we show that C is geometrically irreducible. Since p ∤ m = (q−1)/r, we know that either
p ∤ ℓ or p ∤ (m− ℓ). In either case, we can apply Lemma 2.4 to the polynomial

−(kyℓ + zℓ)xm + (zℓym + kyℓzm)

seen over the field Fq. Indeed, zℓym + kyℓzm has a non-repeated factor if p ∤ (m− ℓ) and kyℓ + zℓ

has a non-repeated factor if p ∤ ℓ.
By Proposition 6.1, C is blocking. Thus, it remains to show that C is nontrivially blocking; note

that since C has potentially large degree, Corollary 2.11 cannot be applied and it may still contain
all the Fq-points of some Fq-line despite being geometrically irreducible. However, observe that
the curve C does not pass through [1 : y : z] where y is an r-th power and z is not an r-th power, for
otherwise −(kyℓ + zℓ) + zℓ + kyℓzm = 0, which implies that y = 0 since zm ̸= 1, a contradiction.

Now, suppose that the equation of a line L is given by ax+ by + cz = 0 where a, b, c ∈ Fq; we
need to show there is an Fq-point on L which is not on C.

If abc ̸= 0, we can assume a = 1. Then any point [1 : y : z] which lies on L satisfies
by + cz = −1. We can apply Corollary 2.2 to find some r-th power y and some non-r-th power z
which satisfies this relation; but such a point does not lie on the curve C by the above discussion.
It remains to analyze the case abc = 0.

When a = 0, b = 0 and c ̸= 0, then the line L is given by z = 0. In this case, L ∩ C only
consists of two points [1 : 0 : 0] and [0 : 1 : 0]. Similarly, when a = 0, c = 0 and b ̸= 0, then
L = {y = 0} and L ∩ C only consists of [1 : 0 : 0] and [0 : 0 : 1].

When a = 0 and bc ̸= 0, the equation of L is given by by + cz = 0, we get y = (−c/b)z. There
are two cases to consider.

Case 1. −c/b is not a r-th power in Fq.
Then L contains the point [1 : 1 : −c/b]. Since 1 is an r-th power and −c/b is a non-r-th power in
Fq, such a point is not contained in C.

Case 2. −c/b is an r-th power in Fq.
Then L contains a point [1 : y0 : z0] with ym0 = zm0 = ω where ω /∈ {0, 1}. We claim that this
Fq-point is not on C. Otherwise,

−(kyℓ0 + zℓ0) + zℓ0y
m
0 + kyℓ0z

m
0 = (ω − 1)(kyℓ0 + zℓ0) = 0.

This forces kyℓ0 + zℓ0 = 0, and also zℓ0y
m
0 + kyℓ0z

m
0 = 0. This contradicts the earlier statement that

gcd(zℓ + kyℓ, zℓym + kyℓzm) = 1.
When a ̸= 0 and b = c = 0, then line L is given by x = 0. Note that the point [0 : 1 : 1] is on

the line x = 0 but not on the curve C, since −k is a non-r-th power implies that k ̸= −1.
Finally we consider the case a ̸= 0, and exactly one of b = 0 or c = 0 holds. Observe that the

curve does not pass through [1 : y : 0] for y ̸= 0 and [1 : 0 : z] for z ̸= 0. If b = 0, then L contains
[1 : 0 : z0] for some nonzero z0 and if c = 0 then L contains [1 : y0 : 0] for some nonzero y0. □
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One can check that when ℓ ≥ 2, the curve in Theorem 6.2 is singular at the points [1 : 0 : 0], [0 :
1 : 0], [0 : 0 : 1]. Next, we will show that when ℓ = 1, the above construction in fact gives a smooth
blocking curve.

Theorem 6.3. Let r ≥ 2 be a positive integer. Let q ≡ 1 (mod r) be a prime power such that
q > r4 and p ∤ (r2 − 1). Let k ∈ F∗

q such that −k is not an r-th power in F∗
q , and set m = q−1

r
.

Then the curve C defined by

F (x, y, z) = −(ky + z)xm + zym + kyzm = 0

is smooth and nontrivially blocking.

Proof. We have shown in Theorem 6.2 that C is nontrivially blocking. It suffices to show that C is
smooth.

Suppose P = [x : y : z] is a singular point of C. The conditions Fx(P ) = 0, Fy(P ) = 0 and
Fz(P ) = 0 become, after multiplying both sides by r,

(ky + z)xm−1 = 0,

− rkxm − zym−1 + rkzm = 0,

− rxm + rym − kyzm−1 = 0.

We can rewrite the system of equations in the matrix form Mv = 0 where

M =

ky + z 0 0
−rkx −z rkz
−rx ry −ky

 and v =

xm−1

ym−1

zm−1

 .

Since v ̸= 0 by assumption, it follows that det(M) = 0:

(r2 − 1)k(ky + z)yz = 0.

Also note that Fx = 0 implies that (ky + z)xm−1 = 0.
Case 1: x ̸= 0. Then we must have ky + z = 0. Since F = 0, we have

0 = zym + kyzm = z(ym − zm).

If z = 0, then y = 0 and thus Fy = −rkxm ̸= 0 since p ∤ r, a contradiction. Thus, z ̸= 0 and
y ̸= 0, and we must have

ym = zm = (−ky)m = (−k)mym,

which implies that −k is an r-th power, violating our assumption.
Case 2: x = 0. Since Fy = Fz = 0, we have

rkzm = zym−1, rym = kyzm−1.

Thus, y ̸= 0, z ̸= 0. It follows that ky + z = 0 since det(M) = 0. We can now argue in the same
way as we did in Case 1 to deduce that −k is an r-th power, which is a contradiction.

We conclude that C is a smooth curve. □

We discuss the sharpness of the assumption q > r4 in the statement of Theorem 6.3 for small
values of r below.
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Remark 6.4. When r = 2, the hypothesis requires q > 16. However, one can show that q ≥ 7
is already sufficient by analyzing the cases q ∈ {7, 11, 13} in a computer. On other hand, the
conclusion fails when q = 5, because the degree is d = q−1

r
+ 1 = 3, and an irreducible cubic

curve over F5 cannot be blocking by Theorem 1.3.
When r = 3, the hypothesis requires q > 34 = 81. It turns out that the conclusion fails when

q = 13. However, we checked with a computer that the conclusion of the theorem holds for all
19 ≤ q ≤ 81.

When r = 4, the hypothesis requires q > 44 = 256. One can check that the conclusion of
Theorem 6.3 does not hold when q = 29. On the other hand, the conclusion holds for q = 37. We
believe that the conclusion holds for all q ≥ 37.

When r = 5, the hypothesis requires q > 54 = 625. One can check using a computer that the
conclusion of Theorem 6.3 does not hold when q = 101. On the other hand, the conclusion of
Theorem 6.3 holds for q = 131. We believe that the conclusion holds for all q ≥ 131.

In general, we believe the bound q > r4 is not optimal. However, to the best knowledge of the
authors, relaxing the inequality q > r4 in Corollary 2.2 is out of reach.

We end the section by presenting the proof of Theorem 1.6 and Theorem 1.7.

Proof of Theorem 1.6. Applying Corollary 2.7 with θ = 1/4 and A = 1/2, we can find infinitely
many primes p such that p− 1 has a divisor r such that 1

4
p1/4 ≤ r < p1/4. Note that for each such

a pair (p, r), we have p > r4, p ≡ 1 (mod r), and (p− 1)/r ≤ 4p3/4. For each such a pair (p, r),
Theorem 6.2 implies that there is a geometrically irreducible nontrivially blocking curve over Fp

with degree d for each choice of d ≥ p−1
r

+ 1. Since (p− 1)/r ≤ 4p3/4, we obtain desired curves
in every degree starting with 4p3/4 + 1. □

Proof of Theorem 1.7. The proof is similar to the proof of Theorem 1.6. It follows from Corol-
lary 2.7 and Theorem 6.3. When θ = 1/4, the requirement A ≤ 1/2 is imposed by the bound
q > r4 which appears as a hypothesis in Theorem 6.3. □

7. SMOOTH BLOCKING CURVES WITH DEGREE (q + 3)/2 AND (q − 1)/2

7.1. Proof of Theorem 1.8. When q ≡ 3 (mod 4), we have already proved the existence of such
a curve in Theorem 5.1. So, we can assume q ≡ 1 (mod 4) and p > 3 for the rest of the proof.

Let m = (q − 1)/2. We consider the plane curve C defined by

F (x, y, z) = xy(xm + ym) + (xz + yz)(xm + zm) = 0.

We claim that C is smooth and nontrivially blocking.
When q = 5, 13, one can check C is smooth and nontrivially blocking using a computer. Next,

we assume q ≥ 17 so that Corollary 2.2 can be applied with r = 2. Note that we can write

F (x, y, z) = (xy + xz + yz)xm + xy · ym + (xz + yz)zm,

so C contains the points in

{[0 : 0 : 1], [0 : 1 : 0], [1 : 0 : 0]} ∪ {[1 : y : z]| y and z are non-squares in F∗
q}.

We can argue as in Proposition 6.1 and Corollary 2.11 that C is nontrivially blocking. Thus, it
suffices to show that C is smooth.

19



Suppose P = [x : y : z] is a singular point of C. The conditions Fx(P ) = 0, Fy(P ) = 0 and
Fz(P ) = 0 become, after multiplying both sides by 2,

xmy + 2ym+1 + xmz + 2zm+1 − xm−1yz = 0,

2xm+1 + xym + 2xmz + 2zm+1 = 0,

2xm+1 + xzm + 2xmy + yzm = 0.

We can rewrite the system of equations in the matrix form Mv = 0 where

M =

xy + xz − yz 2y2 2z2

2x2 + 2xz xy 2z2

2x2 + 2xy 0 xz + yz

 and v =

xm−1

ym−1

zm−1

 .

Since v ̸= 0 by assumption, it follows that det(M) = 0. After expanding the determinant and
factoring, we obtain:

det(M) = (−3) · xyz · (x+ y) · (xy + xz − yz) = 0.

Since char(Fq) > 3 by hypothesis, we may ignore the (−3) factor. We will proceed according to
which factor above vanishes.

Case 1. xyz = 0.
We have three subcases to consider.
Case 1.1. z = 0.

In this case, xy(xm + ym) = 0 using the defining equation of the curve. If x = 0, then y ̸= 0
but then Fx ̸= 0, a contradiction. If y = 0, then x ̸= 0 but then Fz ̸= 0, a contradiction.
Thus, xy ̸= 0 which means xm + ym = 0. Now, Fx = 0 gives xmy + 2ym+1 = 0. We obtain
0 = y(−ym) + 2ym+1 = ym+1, which forces y = 0, a contradiction.

Case 1.2. y = 0.
In this case, xz(xm + zm) = 0 using the defining equation of the curve. If z = 0, then we have
handled this in Case 1.1. So, we may assume that z ̸= 0. If x = 0, then Fy ̸= 0, a contradiction.
We must have xz ̸= 0, which means xm + zm = 0. From Fx = 0, we get xmz+2zm+1 = 0. Thus,
0 = xmz + 2zm+1 = z(−zm) + 2zm+1 = zm+1. But then z = 0, which has already been handled
in Case 1.1.

Case 1.3. x = 0.
If x = 0, then Fz = 0 implies that yzm = 0, and so z = 0 or y = 0. We have handled these in

Case 1.1 and Case 1.2, respectively.
Case 2. xyz ̸= 0 and x+ y = 0.
In this case, y = −x and the defining equation for the curve becomes −x2(xm + (−x)m) = 0.

Since m = (q−1)/2 is even by hypothesis, we get −x2 · (2xm) = 0, and so x = 0, a contradiction.
Case 3. xyz ̸= 0, x+ y ̸= 0, and xy + xz − yz = 0.
Looking at the first row of the matrix equation Mv = 0, we obtain 2ym+1 + 2zm+1 = 0, that is,

ym+1 + zm+1 = 0. Let us write F = 0 more explicitly:

xm+1y + xym+1 + xm+1z + xzm+1 + yzxm + yzm+1 = 0

and rearrange to get:

xm+1(y + z) + yzxm︸ ︷︷ ︸
=xm(xy+xz+yz)=xm(2yz)

+x (ym+1 + zm+1)︸ ︷︷ ︸
=0

+yzm+1 = 0.
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We deduce that:
2xmyz + yzm+1 = 0 ⇒ 2xm + zm = 0.

We will now combine the three relations xy + xz = yz, ym+1 + zm+1 = 0, and 2xm + zm = 0.
Since we are working in projective coordinates and xyz ̸= 0, without loss of generality, we can set
z = 1. These three relations become:

xy = y − x,

ym+1 = −1,

2xm = −1.

Since ym+1 = −1, we square both sides to get y2m+2 = 1. But 2m + 1 = q by hypothesis, and
so yq+1 = 1. In particular, yq2−1 = 1 which means y belongs to Fq2 . Since x and y are related by
xy = y − x, this means x is in Fq2 as well, and so xq2−1 = 1 too.

On the other hand, since 2xm = −1, that is, 2x(q−1)/2 = −1, this would imply after squaring
both sides: 4xq−1 = 1, and so 4q+1xq2−1 = 1. Since xq2−1 = 1, this last equation means 4q+1 = 1.
From here, we can use 4q = 4 to get 42 = 1 in Fq, that is, 15 = 0 holds in Fq. Since the
characteristic p is bigger than 3, we conclude p = 5.

In this case, 4xq−1 = 1 implies xq−1 = −1. Now, xy = y − x implies xqyq = yq − xq. Using
xq−1 = −1 and yq+1 = 1, this last equation can be written as −x/y = (1/y) + x or equivalently,
−x = 1+xy. But we know xy = y−x, and so −x = 1+y−x which forces y = −1. Substituting
this back again into xy = y − x, we get −x = −1 − x, which is a contradiction. We deduce that
C is smooth.

Remark 7.1. When q ≡ 3 (mod 4), and p > 3, one can use a similar argument to show that curve
C defined by

F (x, y, z) = −(xy + xz + yz)xm + xy · ym + (xz + yz)zm = 0

is smooth and nontrivially blocking, where m = (q − 1)/2.

7.2. Proof of Theorem 1.9. Let q ≡ 3 (mod 4) such that p > 3 and q ≡ 3 (mod 4). Let
m = (q − 1)/2. Consider the plane curve C defined by

(x+ y + z)m + xm + ym + zm = 0.

We show that C is smooth and nontrivially blocking in a series of two claims. Note that the proof
of Claim 7.2 works for all prime powers q = pr with p > 3.

Claim 7.2. C is smooth.

Proof. Assume, to the contrary, that P = [x : y : z] is a singular point of C. Let F = (x+y+z)m+
xm + ym + zm be the defining polynomial of C. The conditions Fx(P ) = Fy(P ) = Fz(P ) = 0
translate to:

m(x+ y + z)m−1 +mxm−1 = 0,

m(x+ y + z)m−1 +mym−1 = 0,

m(x+ y + z)m−1 +mzm−1 = 0.

Thus, xm−1 = ym−1 = zm−1 = −(x+ y + z)m−1. If xyz = 0, then it is clear that x = y = z = 0
which would be a contradiction. So, we may assume that xyz ̸= 0. The relations tell us that there
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are α, β ∈ Fq such that x = αz and y = βz, where αm−1 = βm−1 = 1. Since m − 1 = q−3
2

, we
get αq−3 = 1. And so αq = α3. Similarly, βq = β3. Using zm−1 = −(x+ y + z)m−1, we obtain

(1 + α + β)m−1 = −1 ⇒ (1 + α + β)q−3 = 1.

Therefore,
1 + αq + βq = (1 + α + β)q = (1 + α + β)3.

Consequently,

1 + αq + βq = 1 + α3 + β3 + 3(αβ + 1)(α + β) + 3(α + β)2. (17)

Using αq = α3 and βq = β3, the equation (17) simplifies to:

3(α + β)(α + 1)(β + 1) = 0.

If α = −1, then x = −z, but then ym−1 = −(x+ y + z)m−1 implies that ym−1 = −ym−1, contra-
dicting xyz ̸= 0. If β = −1, then a similar calculation reaches xm−1 = −xm−1, a contradiction.
If α + β = 0, then α = −β, which means y = −x, and the same reasoning as above shows
zm−1 = −zm−1, which again gives a contradiction. Therefore, C is a smooth curve. □

Claim 7.3. C is nontrivially blocking.

Proof. By Corollary 2.11, it suffices to show that C is blocking. When q = 7, the degree is
d = q−1

2
= 3, and the conclusion fails because an irreducible cubic curve over F7 cannot be

blocking by Theorem 1.3. When 11 ≤ q < 47, it is easy to verify the statement using a computer.
Next, we assume that q ≥ 47 so that we can apply Corollary 2.3.

Let L be an Fq-line ax+ by + cz = 0 in P2. We consider several cases depending on the values
of a, b, c. The convention for numbering different cases follows a tree structure.

Case 0. abc = 0. Since the equation of the curve is symmetric in x, y, z, we may assume c = 0.
We have two subcases to consider.

Case 00. b = 0. In this case, L is given by {x = 0}, and C ∩ L contains the point [0 : 1 : −1].
We have used (−1)m = −1 which holds due to q ≡ 3 (mod 4).

Case 01. a = 0. In this case, L is given by {y = 0}, and C ∩ L contains the point [1 : 0 : −1].
Case 02. ab ̸= 0. We can assume b = 1 for the rest of this case.
Case 020. a = 1. In this case, L is given by x+ y = 0, and L ∩ C contains [1 : −1 : 0].
Case 021. a ̸= 1. The equation for L is y = −ax. Substituting this into the equation of C, we

get:
xm − amxm + zm + ((1− a)x+ z)m = 0.

We will look for a solution with z = 1, in which case the equation above becomes:

xm − amxm + 1 + ((1− a)x+ 1)m = 0. (18)

Case 0210. am = 1. In this case, (18) becomes ((1−a)x+1)m = −1. We can always find x0 ∈
F∗
q such that (1−a)x0+1 is a non-square since a ̸= 1. Such a point satisfies ((1−a)x0+1)m = −1,

and therefore [x0 : −ax0 : 1] ∈ L ∩ C.
Case 0211. am = −1. In this case, (18) becomes 2xm + 1 + ((1 − a)x + 1)m = 0. By

Corollary 2.3, we can find a non-square x0 ∈ Fq such that (1− a)x0 +1 is a nonzero square. Such
a point satisfies xm

0 = −1 and ((1− a)x0 + 1)m = 1. Therefore, [x0 : −ax0 : 1] ∈ L ∩ C.
This concludes the analysis of the case abc = 0. We move on to the next main case.
Case 1. abc ̸= 0.
We work under the assumption now that c = 1. Again, there are several cases to consider.
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Case 10. a = b = 1. In this case, C ∩ L contains the point [1 : −1 : 0].
Again, using the symmetry of the curve, we will proceed according to the following case.
Case 11. b ̸= 1. There are two further sub-cases to consider:
Case 110. a = 1. The equation of L is z = −(x + by). The intersection between L and C is

thus governed by the following relation:

xm + ym − (x+ by)m + ((1− b)y)m = 0. (19)

Case 1100. 1− b is a (nonzero) square. In this case, (19) leads to:

xm + 2ym − (x+ by)m = 0.

By setting y = 1, it suffices to find x0 ∈ Fq such that x0 is a non-square and x0 + b is a nonzero
square. Such x0 exists by Corollary 2.3.

Case 1101. 1− b is a non-square. In this case, (19) leads to:

xm = (x+ by)m.

By setting y = 1, it suffices to find an x0 ∈ Fq such that x0 and x0 + b are both nonzero squares.
Such x0 exists by Corollary 2.3.

Case 111. a ̸= 1 (note that we already know that b ̸= 1). The equation of the line L is
z = −ax− by. Substituting this into the equation of C, the points in L ∩ C are determined by:

xm + ym − (ax+ by)m + ((1− a)x+ (1− b)y)m = 0.

We look for solutions to the above equation when x, y ∈ Fq. Setting y = 1, it suffices to analyze:

xm − (ax+ b)m + ((1− a)x+ 1− b)m = −1. (20)

We proceed according to two subcases, depending on whether a is equal to b.
Case 1110. a = b. In this case, the equation (20) is satisfied when x = −1 because q ≡ 3

(mod 4). Thus, L ∩ C certainly contains Fq-points in this case.
Case 1111. a ̸= b. In this case, in order to satisfy (20), it suffices to find x0 ∈ Fq such that x0 is

a non-square, but ax0+ b and (1−a)x0+1− b are both nonzero squares. After dividing both sides
by a and 1 − a, we need to ensure that x0 is a non-square, x0 +

b
a

and x0 +
1−b
1−a

have prescribed
form (squares or non-squares depending on a and 1− a). Such an x0 exists by Corollary 2.3 since
a ̸= b implies that b

a
̸= 1−b

1−a
.

This concludes the proof that C(Fq) is a blocking set. □

Note that the condition q ≡ 3 (mod 4) was used in the proof of the previous theorem. Indeed,
the given curve will not be blocking when q ≡ 1 (mod 4) and p > 3, because the line x+y+z = 0
is not blocked. We finish the paper by illustrating different examples for the case q ≡ 1 (mod 4).

Example 7.4. Consider the following plane curves of degree d = q−1
2

,
• xd + yd + zd + (x + y + z)d + (x − 3y + 9z)d + (x + 2y + 4z)d = 0 over Fq for
q ∈ {13, 17, 29, 37, 53},

• xd+yd+zd+(x+y+z)d+(x−5y+25z)d+(x+2y+4z)d = 0 over Fq for q ∈ {41, 61}.
Each of these plane curves is smooth and blocking over Fq.

We do not know how to generalize Example 7.4 for every q ≡ 1 (mod 4). Interestingly, the
curve defined by

xd + yd + zd + (x+ y + z)d + (x− 3y + 9z)d + (x+ 2y + 4z)d = 0
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is not a blocking curve over Fq for q ∈ {41, 61}. Moreover, it is not smooth for q = 61. It is
reasonable to conjecture that for q ≡ 1 (mod 4), there exists a smooth blocking curve of the form,

x
q−1
2 + y

q−1
2 + z

q−1
2 + (x+ y + z)

q−1
2 + (x− ay + a2z)

q−1
2 + (x+ by + b2z)

q−1
2 = 0

for suitable choices of a, b ∈ Fq.
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