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Abstract. We provide a direct proof of a Bogomolov-type statement
for affine varieties V defined over function fields K of finite transcen-
dence degree over an arbitrary field k, generalizing a previous result
(obtained through a different approach) of the first author in the special
case when K is a function field of transcendence degree 1. Furthermore,
we obtain sharp lower bounds for the Weil height of the points in V (K),
which are not contained in the largest subvariety W ⊆ V defined over
the constant field k.

1. Introduction

1.1. Notation. Given an arbitrary field k and a function field K of tran-
scendence degree m ≥ 1 over k, we let h : AN (K) −→ Q≥0 represent the
Weil height for the points of the corresponding affine space (for any given
N ≥ 1); we refer the reader to the classical geometric construction of the
Weil height for points on affine spaces defined over function fields as pre-
sented in Serre’s book [Ser97], but we will also sketch briefly in Section 2 an
algebraic construction of the Weil height.

1.2. Statement of our main results. Some of the most important the-
orems in arithmetic geometry in the past 30 years have been the proofs of
the Bogomolov conjecture both for powers of the multiplicative group (see
[Zha95, Bil97]) and also for abelian varieties (see [Zha98, Ull98]) defined over
Q. In both cases, the fundamental principle has been that when G is either
GN
m or an abelian variety defined over Q, then the accumulating subvarieties

of G for points of small canonical height are the torsion translates of alge-
braic subgroups of G; in other words, if V ⊆ G is an irreducible subvariety
with the property that for any ε > 0, we have that the set{

P ∈ V (Q) : ĥ(P ) < ε
}

is Zariski dense in V , then V = Q+W , where Q ∈ Gtor and W is a connected
algebraic subgroup of G.

Motivated by the above classical results, the first author studied in [Ghi09,
Ghi14] a variant of the Bogomolov conjecture for points on affine varieties
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defined over function fields (alternatively, this could be interpreted as a
variant of the Bogomolov conjecture for GN

m defined over a function field).
So, given a function fieldK/k, the accumulating subvarieties of AN for points
of small Weil height (with respect to the places of the function field K/k; see
also Section 2 for the definition of the Weil height in this context) should be
the subvarieties defined over k (the algebraic closure of the constant field)
since they are the subvarieties containing a Zariski dense set of points from
AN (k) (which all have Weil height 0).

In other words, given an affine subvariety V ⊆ AN , one considers W ⊆ V
be its largest subvariety defined over k, which is simply the Zariski closure of
the subset V (k); then one expects to find some positive real number ε with
the property that for each point P ∈ V (K), if the Weil height of the point
P satisfies the inequality h(P ) < ε, then we must have that P ∈ W (K).
The first author proved in [Ghi09] that this expectation is indeed met in
the case when k is a finite field and then, later in [Ghi14], generalized his
result to all function fields K/k of transcendence degree 1. In this paper,
we prove the following result, which covers all function fields (of arbitrary
finite transcendence degree).

Theorem 1.1. Let k be a field and let K be a function field of transcendence
degree m ≥ 1 over k. We let h : AN (K) −→ Q≥0 be the Weil height
associated to the function field K/k. Let V ⊆ AN be an affine subvariety
defined over K and let W ⊆ V be the Zariski closure of all points of V whose
coordinates live in k. Then there exists a positive real number c0 with the
property that for each P ∈ (V \W )(K), we have that h(P ) ≥ c0.

Remark 1.2. The constant c0 from the conclusion of Theorem 1.1 depends
in an explicit way of the data defining the variety V . Indeed, as shown
in the proof of Theorem 1.1, c0 depends only on the total degrees of the
polynomials from a finite set of generators for the vanishing ideal of V and
on the degree of K over a rational function field K0 (of transcendence degree
m over k) used in the definition of the Weil height h(·) (for more details, see
Section 2).

The strategy of proof from [Ghi14] (which took inspiration from a clever
trick the first author learned from the beautiful paper [BZ95] of Bombieri
and Zannier) presented some natural obstructions to a generalization cov-
ering any function field, as explained in [Ghi14, Remark 2.7]. So, our proof
of Theorem 1.1 (which stemmed from the second author’s attempt of gener-
alizing the results of [Ghi14] to arbitrary function fields) follows a different
strategy than the one employed by the first author in [Ghi14, Ghi09]. In-
deed, we are able to argue in a more direct way to prove the conclusion
from Theorem 1.1 and, as a by-product of our method, we obtain also the
following sharp lower bound for the Weil height of a point not contained on
the largest subvariety of V defined over the constant field.
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Theorem 1.3. Let k be a field, let m ∈ N, and let K := k(t1, . . . , tm) be
a function field of transcendence degree m over k. Let V ⊆ AN be the zero
locus of finitely many polynomials gi in N variables with coefficients in K;
we let D := maxi deg(gi) (where for any polynomial g ∈ K[x1, . . . , xN ], its
degree deg(g) is defined to be its total degree in the variables x1, . . . , xN ).
We let W ⊆ V be the Zariski closure of all points of V whose coordinates
live in k. Then for any point P ∈ V (K), either P ∈W (K), or h(P ) ≥ 1

D .

The key result employed in the proof of Theorem 1.3 is our Proposition 3.1
(proven in Section 3), which is of independent interest and could potentially
be useful for other applications. The lower bound of 1

D for the Weil height

of a point P ∈ (V \W )(K) is the best possible, as shown by the following
example.

1.3. Examples.

Example 1.4. Let D ∈ N and let y = txD be a plane curve V defined
over the function field K = k(t) (for any given field k). Then each point

(a, b) ∈ V (K) where b ∈ k∗ has its Weil height (see Section 2) equal to 1
D ,

which is precisely the lower bound from Theorem 1.3. Furthermore, the only
point on V with both coordinates in k is (0, 0), i.e., with the notation as in
Theorem 1.3, we have that W = {(0, 0)}.

We also note (see our next example) that in the conclusion of either
Theorem 1.1 or 1.3, one does indeed have to exclude the subvariety W ⊆ V ,
which is the largest subvariety defined over k, in order to obtain a positive
lower bound for the Weil height of the remaining points in V (K).

Example 1.5. Consider the plane V ⊂ A3 given by the equation z = tx+ y,
defined over the function field k(t). The largest subvariety of V defined over
k is the line given by the equations: x = 0 and z = y. Clearly, W contains
infinitely many points of arbitrarily small Weil height (not only the ones
defined over k); so, in order to obtain a uniform positive lower bound for
the Weil height of the points on the plane V , one would have to exclude the
entire line W . Furthermore, there exist a Zariski dense set of points in V \W
of Weil height 1 (which is the smallest height predicted by the conclusion of
Theorem 1.3); indeed, any point on V of the form

(a, b, ta+ b) with a, b ∈ k and a 6= 0

would have Weil height precisely equal to 1.

Acknowledgments. We are grateful to the referee for their useful com-
ments and suggestions.

2. Heights in function fields

In this Section we construct the places for arbitrary function fields and
define the corresponding Weil height; we refer the reader also to [Ser97] for
additional details (including for a more geometric approach).
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Let K be a function field of transcendence degree m ≥ 1 over a field
k. We let t1, . . . , tm be algebraically independent (over k) functions in K
and consider the function field K0 := k(t1, . . . , tm). Then the places ΩK0

correspond to irreducible hypersurfaces of the projective space Pmk (whose
function field equals K0). More explicitly, the places of the function field
K0/k correspond:

• either to the irreducible polynomials Q ∈ k[t1, . . . , tm], in which
case we associate an (exponential) valuation, denoted vQ, which is
defined to be

vQ

(
P1

P2

)
= expQ(P1)− expQ(P2),

for any nonzero P1
P2
∈ k(t1, . . . , tm) (where expQ(Pi) simply refers

to the exponent of the irreducible polynomial Q appearing in the
factorization of Pi in prime factors). Also, we let nvQ := deg(Q).
• or to the (negative) total degree function (which itself corresponds

geometrically to the hyperplane at infinity from Pmk ), in which case
we associate a valuation, denoted v∞, which is defined to be

v∞

(
P1

P2

)
= deg(P2)− deg(P1),

for any nonzero P1
P2
∈ k(t1, . . . , tm). Also, we let nv∞ := 1.

Then for each nonzero rational function R ∈ k(t1, . . . , tm), we have the prod-
uct formula (or moreover, the sum formula since we work with exponential
valuations)

(2.0.1)
∑

v∈ΩK0

nv · v(R) = 0.

Given a finite extension L of K0, we let ΩL be the set of places of L lying
above the places from ΩK0 . For each place w ∈ ΩL lying above a place
v ∈ ΩK0 , we let e(v | v0) be the ramification index, i.e., normalizing the
exponential valuation v on L so that its value group is Z, then e(v | v0) :=
v(U), where U ∈ K0 is a uniformizer for the valuation v0 (i.e., v0(U) = 1).
Also, we let nv := nv0 · f(v | v0), where f(v | v0) is the degree of the residue
field extension corresponding to the two places. Then once again we have a
product formula:

(2.0.2)
∑
v∈ΩL

nv · v(x) = 0,

for any nonzero x ∈ L.
For any positive integer N we define the Weil height of a point P :=

(a1, . . . , aN ) ∈ AN (L) as follows:

(2.0.3) h(P ) :=
1

[L : K0]

∑
v∈ΩL

nv ·max {0,−v(a1),−v(a2), . . . ,−v(aN )} .
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As proven in [Ser97] (see also [Ghi05, Chapter 4] for a comprehensive discus-
sion regarding valuations on arbitrary function fields and heights for points
on varieties defined over function fields), the Weil height is well-defined and
it is independent of the choice of particular field L which contains the coordi-
nates ai of the point P . Using the geometric definition of the Weil height as
in [Ser97] (see also [Lan83, Proposition 3.2, p. 63]), each point P ∈ PN (K)
corresponds a rational function ψ : X 99K PN , where X ⊂ Pr is a projective
variety defined over k, regular in codimension 1, whose function field is K;
then

(2.0.4) h(P ) := deg(ψ−1(L))

for a generic hyperplane L of PN , where the degree of ψ−1(L) is computed
with respect to the embedding of X into Pr. Also, we note that the nor-
malization in our valuations depend on our initial choice of the functions
t1, . . . , tm, but obviously, once these functions are fixed, the definition of all
valuations and in turn of the corresponding Weil height is uniquely deter-
mined; furthermore, we note that a different choice for the rational functions
ti would lead to another Weil height h2 which will be comparable with re-
spect to the first Weil height, i.e., there would be positive constants c1 and
c2 such that c1h1(P ) ≤ h2(P ) ≤ c2h1(P ) for any point P ∈ AN (K).

3. Proof of our main results

Proposition 3.1. Let k be an arbitrary field, let K be a function field over
k, let K be the algebraic closure of K and k be the algebraic closure of
k inside K. Let d,N,D ≥ 1 be integers, and let fi ∈ k[x1, . . . , xN ] for
i = 0, . . . , d be polynomials of total degree at most D. Let t ∈ K \ k and let
f ∈ k[t][x1, . . . , xN ] be defined as:

(3.1.1) f(x1, . . . , xN ) :=

d∑
i=0

tifi(x1, . . . , xN ).

We let h : AN (K) −→ Q≥0 be the Weil height corresponding to the function
field K/k. Then for any point P ∈ AN (K) for which f(P ) = 0, we have
that

(3.1.2) either h(P ) ≥ h(t)

D
,

(3.1.3) or fi(P ) = 0 for each i = 0, . . . , d.

Proof. First we note that h(t) > 0 since the only elements of K of height
equal to 0 are the elements of k.

Let P := (a1, . . . , aN ) ∈ AN (K) such that f(P ) = 0. Also, we let L :=
K(t, a1, . . . , aN ). As in Section 2, we let ΩL be the set of places of the
function field L/k.
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We assume that (3.1.3) does not hold; in particular, this means that the
set

I := {0 ≤ i ≤ d : fi(P ) 6= 0}
contains at least two such indices. We will prove that h(P ) ≥ h(t)

D , i.e. that
(3.1.2) must hold.

Let j be the largest element of I.
We let S∞ be the finite set of places of the function field L/k consisting

of all places v ∈ ΩL with the property that v(t) < 0.
Let v ∈ S∞. Since f(P ) = 0, then there must exist an index i ∈ I \ {j}

(depending on v) such that

(3.1.4) v
(
ti · fi(a1, . . . , aN )

)
≤ v

(
tj · fj(a1, . . . , aN )

)
since otherwise, the ultrametric inequality yields that |f(P )|v =

∣∣tjfj(P )
∣∣
v
6=

0, contradiction. Since i 6= j and j was chosen to be the largest element of
I, then i < j. We let

(3.1.5) cv := v (fj(a1, . . . , aN )) .

Using (3.1.4) and (3.1.5) (along with the fact that j − i ≥ 1 and that
v(t) < 0), we get that

(3.1.6) v (fi(a1, . . . , aN )) ≤ v(t) + cv and thus

(3.1.7) − v (fi(a1, . . . , aN )) ≥ −v(t)− cv.
Since fi is a polynomial of degree at most D in the variables x1, . . . , xN
with coefficients in the constant field k, inequality (3.1.7) yields that for
each v ∈ S∞, we have

(3.1.8) max{0,−v(a1), . . . ,−v(aN )} ≥ 1

D
·max{0,−v(t)− cv}.

But since fj(a1, . . . , aN ) 6= 0, then applying the product formula (2.0.2)
for the nonzero element fj(a1, . . . , aN ) of L, we get that∑
w∈ΩL

nw·max {0,−w (fj(a1, . . . , aN ))} =
∑
w∈ΩL

nw·max {0, w (fj(a1, . . . aN ))}

and so, using (3.1.5), we get

(3.1.9)
∑
w∈ΩL

nw ·max {0,−w (fj(a1, . . . , aN ))} ≥
∑
v∈S∞

nv ·max{0, cv}.

Furthermore, (3.1.5) and (3.1.9) yield
(3.1.10)∑
w∈ΩL\S∞

nw·max {0,−w (fj(a1, . . . , aN ))} ≥
∑
v∈S∞

nv·(max{0, cv} −max{0,−cv}) .

Using the fact that fj ∈ k[x1, . . . , xN ] is a polynomial of degree at most D,
then we have that for each place w ∈ ΩL \ S∞, we have

max{0,−w(a1), . . . ,−w(aN )} ≥ max{0,−w (fj(a1, . . . , aN ))}
D
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and thus inequality (3.1.10) yields
(3.1.11)∑
w∈ΩL\S∞

nw·max {0,−w(a1), . . . ,−w(aN )} ≥ 1

D
·

(∑
v∈S∞

nv · (max{0, cv} −max{0,−cv})

)
.

Using the formula for the Weil height of the point P ∈ AN and also, using
the notation from Section 2 for the rational function field K0 ⊆ K with
respect to which the Weil height is defined, we have the following:

h(P ) =
1

[L : K0]

∑
w∈ΩL

nw ·max{0,−w(a1), . . . ,−w(aN )}.

Then combining inequalities (3.1.8) and (3.1.11), we get that
(3.1.12)

h(P ) ≥ 1

D · [L : K0]
·
∑
v∈S∞

nv·(max{0,−v(t)− cv}+ max{0, cv} −max{0,−cv}) .

Now, using that for any real numbers α and β with α > 0, we have

max{0, α− β}+ max{0, β} −max{0,−β} ≥ α,
then for each v ∈ S∞ we have

(3.1.13) max{0,−v(t)− cv}+ max{0, cv} −max{0,−cv} ≥ −v(t).

Finally, using that

h(t) =
1

[L : K0]
·
∑
v∈S∞

−v(t),

then inequalities (3.1.12) and (3.1.13) deliver the desired inequality from
(3.1.2). This concludes our proof of Proposition 3.1. �

Proof of Theorem 1.3. We let P := (a1, . . . , aN ) ∈ V (K). We assume that

(3.1.14) h(P ) <
1

D

and we will prove that P ∈ W (K), as claimed in the conclusion of Theo-
rem 1.3.

Let f ∈ k(t1, . . . , tm)[x1, . . . , xN ] be one of the finitely many generators of
the vanishing ideal of V ; in particular, according to our hypothesis, the total
degree of f as a polynomial in x1, . . . , xN is at most equal to D ≥ 1. At the
expense of multiplying f by a suitable nonzero polynomial in k[t1, . . . , tm],
we may assume from now on that f ∈ k[t1, . . . , tm][x1, . . . , xn]. We write

(3.1.15) f(x1, . . . , xN ) :=

d1∑
i=0

ti1 · fi(x1, . . . , xN ),

where d1 ≥ 0 is an integer and each fi ∈ k[t2, . . . , tm][x1, . . . , xN ]; in other
words, d1 is the largest power of t1 appearing in any coefficient of f (each
such coefficient being itself a polynomial in k[t1, . . . , tm]).
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We let K1 := k(t2, . . . , tm) and let K1 be its algebraic closure inside K.
We let h1 : AN (K) −→ Q≥0 be the Weil height associated to the function
field K/K1. In particular, since h1 counts only the degree in t1 of any
rational function in K (see also (2.0.4)), we have that

(3.1.16) h(Q) ≥ h1(Q) for each Q ∈ AN (K).

Proposition 3.1 applied to the polynomial f from (3.1.15) yields that either
h1(P ) ≥ 1

D (note that h1(t1) = 1) and thus, using (3.1.16), we have

(3.1.17) h(P ) ≥ 1

D
,

or fi(P ) = 0 for each i = 0, . . . , d1. Since we assumed the opposite inequality
for the height of P as in (3.1.14), then it means that indeed, we must have
that fi(P ) = 0 for each i = 0, . . . , d1.

Now, for each i = 0, . . . , d1, we write

(3.1.18) fi(x1, . . . , xN ) :=

d2∑
j=0

tj2 · fi,j(x1, . . . , xN ),

where each polynomial fi,j ∈ k[t3, . . . , tm][x1, . . . , xN ]; furthermore, due to
our original assumption on the total degree of the polynomial f , we also
have that each fi,j has total degree in x1, . . . , xN at most equal to D.

Then we let K2 := k(t3, . . . , tm) and let K2 be its algebraic closure inside
K. We let h2 : AN (K) −→ Q≥0 be the Weil height corresponding to the
function field K/K2; once again, similar to inequality (3.1.16), since the
height h2 picks up the total degree in t1 and t2 of any rational function in
K = k(t1, . . . , tm), as opposed to the total degree in all m variables as it is
the case for the Weil height h : AN (K) −→ Q≥0 which corresponds to the
function field K/k, then we also have that

(3.1.19) h2(Q) ≤ h(Q) for each Q ∈ AN (K).

Now, applying Proposition 3.1 to each polynomial fi from (3.1.18), we con-
clude that either h2(P ) ≥ 1

D (note that h2(t2) = 1), which in turn (due to
inequality (3.1.19)) yields

(3.1.20) h(P ) ≥ 1

D
,

or fi,j(P ) = 0 for each j = 0, . . . , d2. Since we assumed that the opposite
inequality (3.1.14) holds (which contradicts (3.1.20)), then we must have
that indeed, fi,j(P ) = 0 for each i = 0, . . . , d1 and each j = 0, . . . , d2.

We continue the above process, this time applying Proposition 3.1 to each
polynomial fi,j which we write in terms of the powers of t3 appearing in its
coefficients. For example, at step ` in our process (for some ` = 1, . . . ,m),
we deal with polynomials of the form fi1,...,i`−1

∈ k[t`, . . . , tm][x1, . . . , xN ],
for some ij ∈ {0, . . . , dj} for each j = 1, . . . , ` − 1 (where the dj ’s are the
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maximum degrees in tj of the coefficients of the original polynomial f ∈
k[t1, . . . , tm][x1, . . . , xN ]). Then we write each such polynomial as

(3.1.21) fi1,...,i`−1
(x1, . . . , xN ) :=

d∑̀
j=0

tj` · fi1,...,i`−1,j(x1, . . . , xN ),

where each fi1,...,i`−1,j ∈ k[t`+1, . . . , tm][x1, . . . , xN ] has total degree at most

D in the variables x1, . . . , xN . Then letting K` := k(t`+1, . . . , tm) and K`

be its algebraic closure inside K, we let h` : AN (K) −→ Q≥0 be the Weil
height associated to the function field K/K` (with the choice t1, . . . , t` for
the algebraically independent functions generating the function field, as in
Section 2). As before (see inequalities (3.1.16) and (3.1.19)), since h` counts
only the total degree in the variables t1, . . . , t`, then we have that

(3.1.22) h`(Q) ≤ h(Q) for each Q ∈ AN (K).

Proposition 3.1 applied to each polynomial fi1,...,i`−1
as in (3.1.21) yields that

either h`(P ) ≥ 1
D (note that h`(t`) = 1), which would actually contradict

inequality (3.1.14) according to (3.1.22), or we must have that

fi1,...,i`−1,j(P ) = 0 for each j = 0, . . . , d`,

which allows us to continue our process. After m steps, we conclude that
we can write the original polynomial f ∈ k[t1, . . . , tm][x1, . . . , xN ] as

f(x1, . . . , xN ) =
∑

0≤ij≤dj
for each
1≤j≤m

 m∏
j=1

t
ij
j

 · fi1,...,im(x1, . . . , xN ),

where each fi1,...,im ∈ k[x1, . . . , xN ] (while dj is the maximum degree of
tj appearing in the coefficients of f , which are themselves polynomials in
k[t1, . . . , tm]). Furthermore, repeated applications of Proposition 3.1 (as
explained above), coupled with our assumption from (3.1.14) yields that

(3.1.23) fi1,...,im(P ) = 0 for each ij = 0, . . . , dj , for each j = 1, . . . ,m.

Equations (3.1.23) yield that indeed P ∈ W (K), where W is the largest
subvariety of V defined over k. This concludes our proof of Theorem 1.3. �

Proof of Theorem 1.1. First of all, at the expense of replacing k by k and
also replacing K by k·K, we may assume from now on, that k is algebraically
closed (and K is a function field over k).

Since K is a function field over k of transcendence degree m, then we
may pick algebraically independent functions t1, . . . , tm in the function field
K/k such that K is algebraic over k(t1, . . . , tm). Furthermore, we assume
the Weil height for the points in AN (K) were constructed with respect to
the places of the function field k(t1, . . . , tm)/k (see Section 2).
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In the case when k has characteristic p > 0, then at the expense of

replacing each ti by t
1/p`

i for a suitable integer ` ≥ 0 (and also adjoin-

ing each t
1/p`

i to K), we may assume that K is actually separable over
k(t1, . . . , tm) (where we prefer to keep the notation for ti rather than for-

mally replacing ti by t
1/p`

i ). Also, note that constructing the Weil height for

the points in AN (K) using the normalization for the places of the function

field k
(
t
1/p`

1 , . . . , t
1/p`

m

)
/k simply introduces a factor of p` (and thus would

change the absolute constant c0 from the conclusion in Theorem 1.1 only by a
factor of 1

p`
). Therefore, from now on, we assume K/k(t1, . . . , tm) is a finite,

separable extension and that the Weil height of the points in AN (K) was
constructed with respect to the places of the function field k(t1, . . . , tm)/k.

We let K0 := k(t1, . . . , tm) and replacing K by a finite extension, we may
as well assume that K/K0 is a Galois extension. Then we let X ⊆ AN be
the union of all Galois conjugates of V over K0, i.e.,

X :=
⋃

σ∈Gal(K/K0)

V σ;

then X is an affine variety defined over K0 = k(t1, . . . , tm). Furthermore,
the subvariety W ⊆ V being defined over k is invariant under Gal(K/K0)
and therefore, W is also the largest subvariety of X defined over k (since
each point in X(k) is actually a point in V (k)). Then Theorem 1.3 yields
that there exists a positive constant c0 (simply depending on the maximum
total degree of the polynomials from a minimal generating set for the van-
ishing ideal of X) such that for each point P ∈ X(K) we have that either
h(P ) ≥ c0 or P ∈W (K). Since V ⊆ X, we obtain the desired conclusion in
Theorem 1.1. �
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