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Abstract. We formulate a variant in characteristic p of the Zariski
dense orbit conjecture previously posed by Zhang, Medvedev-Scanlon
and Amerik-Campana for rational self-maps of varieties defined over
fields of characteristic 0. So, in our setting, let K be an algebraically
closed field, which has transcendence degree d ≥ 1 over Fp. Let X be
a variety defined over K, endowed with a dominant rational self-map
Φ. We expect that either there exists a variety Y defined over a finite
subfield Fq of Fp of dimension at least d+1 and a dominant rational map
τ : X 99K Y such that τ ◦Φm = F r◦τ for some positive integers m and r,
where F is the Frobenius endomorphism of Y corresponding to the field
Fq, or either there exists α ∈ X(K) whose orbit under Φ is well-defined
and Zariski dense in X, or there exists a non-constant f : X 99K P1 such
that f ◦ Φ = f . We explain why the new condition in our conjecture is
necessary due to the presence of the Frobenius endomorphism in case X
is isotrivial. Then we prove our conjecture for all regular self-maps on
GNm.

1. Introduction

1.1. Notation. We let N0 := N∪{0} denote the set of nonnegative integers.
For any self-map Φ on a variety X and for any integer n ≥ 0, we let Φn be
the n-th iterate of Φ (where Φ0 is the identity map id := idX , by definition).
For a point x ∈ X with the property that each point Φn(x) avoids the
indeterminacy locus of Φ, we denote by OΦ(x) the orbit of x under Φ, i.e.,
the set of all Φn(x) for n ≥ 0.

1.2. The classical Zariski dense orbit conjecture. The following con-
jecture was motivated by a similar question raised by Zhang [Zha06] and was
formulated by Medvedev and Scanlon [MS14] and by Amerik and Campana
[AC08].

Conjecture 1.1. Let X be a quasiprojective variety defined over an alge-
braically closed field K of characteristic 0 and let Φ : X 99K X be a dominant
rational self-map. Then either there exists α ∈ X(K) whose orbit under Φ is
well-defined and Zariski dense in X, or there exists a non-constant rational
function f : X 99K P1 such that f ◦ Φ = f .
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One sees immediately that if there exists a non-constant rational function
f : X 99K P1 such that f ◦ Φ = f , then no orbit OΦ(α) can be Zariski
dense in X. So, the entire difficulty in Conjecture 1.1 is proving that when
there is no non-constant rational function f invariant under Φ, then one
may indeed find a point α with a Zariski dense orbit. Conjecture 1.1 was
proven (see [AC08, BGR17]) in the case K is uncountable. However, if K is
countable, then Conjecture 1.1 is very difficult and only a few special cases
are known (see [BGRS17, GH18, GS17, GS21, GS19, GX18, MS14, Xie19]).
The main difficulty comes from the fact (as proven in [AC08, BGR17]) that,
from a strictly geometric point of view, there exist countably many proper
subvarieties of X one needs to avoid in order to find a point with a Zariski
dense orbit; thus, when K is countable, one needs to exploit the arithmetic
dynamics of the setting from Conjecture 1.1 in order to find a point whose
orbit is Zariski dense.

1.3. A variant of the conjecture in positive characteristic. The pic-
ture in characteristic p is very much different due to the presence of the
Frobenius endomorphism for any variety X defined over a finite field (see
[BGR17, Example 6.2] and also the next Remark).

Remark 1.2. If X is any variety defined over Fp, then there exists no non-
constant rational function f : X 99K P1 invariant under the Frobenius endo-
morphism F : X −→ X (corresponding to the field automorphism x 7→ xp);
however, unless trdegFpK ≥ dim(X), there is no point in X(K) with a

Zariski dense orbit in X (each orbit of a point α ∈ X(K) lives in a sub-
variety Y ⊆ X defined over Fp of dimension dim(Y ) = trdegFpL, where L

is the minimal field extension of Fp for which α ∈ X(L)). Note that the
Frobenius endomorphism is very special in the sense that for most maps one
can expect a dense orbit for a point defined over a field extension of Fp with
a transcendence degree smaller than dim(X).

The discussion from Remark 1.2 motivates the following conjecture.

Conjecture 1.3. Let K be an algebraically closed field of positive transcen-
dence degree over Fp, let X be a quasiprojective variety defined over K, and
let Φ : X 99K X be a dominant rational self-map defined over K as well.
Then at least one of the following three statements must hold:

(A) There exists α ∈ X(K) whose orbit OΦ(α) is Zariski dense in X.
(B) There exists a non-constant rational function f : X 99K P1 such

that f ◦ Φ = f .
(C) There exist positive integers m and r, there exists a variety Y de-

fined over a finite subfield Fq of Fp such that dim(Y ) ≥ trdegFpK+1

and there exists a dominant rational map τ : X 99K Y such that

τ ◦ Φm = F r ◦ τ,
where F is the Frobenius endomorphism of Y corresponding to the
field Fq.
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Remark 1.4. Note that if X is any variety defined over Fp, endowed with

some endomorphism Φ, then each point α ∈ X(Fp) would be preperiodic
under the action of Φ and so, the trichotomy from Theorem 1.3 cannot
hold. Hence, it is necessary to assume that K is transcendental over Fp in
Conjecture 1.3.

We note that in [BGR17, Theorem 1.2], it was proven that if there is
no non-constant rational function f invariant under Φ, then any point
α ∈ X(K) outside a countable union of proper subvarieties of X would
have a Zariski dense orbit. So, in particular, [BGR17, Theorem 1.2] proves
Conjecture 1.3 whenever K is uncountable, which leaves once again the case
when K is countable as the outstanding open case in Conjecture 1.3.

1.4. Our results. We prove our Conjecture 1.3 in the case of regular self-
maps Φ of GN

m.

Theorem 1.5. Let N ∈ N and let K be an algebraically closed field of
characteristic p such that trdegFpK ≥ 1. Let Φ : GN

m −→ GN
m be a dom-

inant regular self-map defined over K. Then at least one of the following
statements must hold.

(A) There exists α ∈ GN
m(K) whose orbit under Φ is Zariski dense in

GN
m.

(B) There exists a non-constant rational function f : GN
m 99K P1 such

that f ◦ Φ = f .
(C) There exist positive integers m and r, a connected algebraic subgroup

Y of GN
m (defined over a finite field Fq) of dimension at least equal

to trdegFpK + 1 and a dominant regular map τ : GN
m −→ Y such

that

(1.5.1) τ ◦ Φm = F r ◦ τ,

where F is the usual Frobenius endomorphism of Y induced by the
field automorphism x 7→ xq.

Remark 1.2 shows that indeed condition (C) is necessary due to the pres-
ence of the Frobenius endomorphism of GN

m; we also illustrate the trichotomy
from the conclusion of our Theorem 1.5 in the next series of examples.

Example 1.6. Let p be an odd prime number, let K be the algebraic closure
of Fp(t), let (β1, β2, β3) ∈ G3

m(K) and let Φ : G3
m −→ G3

m be a regular map
defined over K.

(1) If Φ is the translation map given by (x1, x2, x3) 7→ (β1x1, β2x2, β3x3),
then condition (B) in Theorem 1.5 holds if and only if β1, β2, β3 are
multiplicatively dependent, i.e., there exist integers c1, c2, c3, not all
equal to 0 such that

∏3
i=1 β

ci
i = 1. If the βj ’s are multiplicatively

independent, then conclusion (A) from Theorem 1.5 holds; clearly,
conclusion (C) does not hold in this example.
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(2) If Φ is given by (x1, x2, x3) 7→ (β1x
p
1, β2x

p
2, β3x

2
3), then condition (B)

from Theorem 1.5 does not hold; this can be seen either directly,
or by invoking our Theorem 2.2 since conjugating Φ by a suitable
translation yields the group endomorphism (x1, x2, x3) 7→ (xp1, x

p
2, x

2
3).

Therefore, no non-constant fibration can be invariant under Φ.
However, also conclusion (A) from Theorem 1.5 does not hold for
this example. Indeed, for any point

α := (α1, α2, α3) ∈ G3
m(K),

the orbit of α under Φ is contained in some proper subvariety of
G3
m of the form V ×Gm, where V ⊂ G2

m is a curve. More precisely,

V is the translation by the point
(
β
−1/(p−1)
1 , β

−1/(p−1)
2

)
of a curve

defined over Fp containing the point
(
α1β

1/(p−1)
1 , α2β

1/(p−1)
2

)
.

(3) If Φ is given by (x1, x2, x3) 7→
(
β1x

p
1, β2x

p2

2 , β3x
p3

3

)
, then conclu-

sion (A) from Theorem 1.5 holds (neither conclusions (B) nor (C)
hold for this example) and so, there exists a point in G3

m(K) with
a Zariski dense orbit.

The strategy of our proof for Theorem 1.5 is as follows. Each regular self-
map Φ of GN

m is a composition of a group endomorphism ϕ : GN
m −→ GN

m

with a translation τy (by a point y ∈ GN
m(K)) (see [Iit76, Theorem 2]).

Then for each point α ∈ GN
m(K), the entire orbit OΦ(α) lies in a finitely

generated subgroup Γ of GN
m(K). Assuming OΦ(α) is not Zariski dense in

GN
m, then it means its Zariski closure Z ⊂ GN

m is a proper subvariety. Since
Z(K) ∩ Γ is Zariski dense in Z, then the result of [Hru96, Theorem 1.1]
yields that Z is a finite union of translates of subvarieties defined over Fp.
This property yields some useful information regarding the endomorphism
ϕ in connection with the translation τy. However, in order to obtain even
more precise information (which in turn delivers the desired conclusion in
Theorem 1.5) we employ the F -structure result of Moosa and Scanlon [MS04,
Theorem B] regarding the intersection of a finitely generated subgroup with
a subvariety of GN

m (see Theorem 2.1 and also [CGSZ21, Section 2.2] for a
concise description of the main result from [MS04]).

The same strategy employed in our proof of Theorem 1.5 should extend
with appropriate modification to the general case when we replace GN

m by
a split semiabelian variety G defined over a finite field (for example, one
would need to employ the results of [Ghi08] to describe the intersection
of a subvariety of G with a finitely generated subgroup, plus there exist
additional complications due to the larger, possibly non-commutative ring
of endomorphisms for an abelian variety defined over a finite field). How-
ever, the variant of Theorem 1.5 in the context of isotrivial abelian varieties
defined over a field K of transcendence degree 1 over Fp is already quite
difficult since the proof of one of the main technical ingredients in our proof
of Theorem 1.5 (see Proposition 4.1) does not extend to the abelian case;
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instead, the Diophantine question that arises in the case of abelian varieties
defined over a function field with a positive transcendence degree is chal-
lenging. So, we expect the extension of Theorem 1.5 to the case of isotrivial
abelian varieties defined over a function field of a positive transcendence
degree to be quite difficult. Furthermore, the case of a non-isotrivial abelian
variety defined over a function field of positive characteristic will have addi-
tional complications since even the structure of the intersection between a
subvariety of such an abelian variety with a finitely generated subgroup is
significantly more delicate. Finally, the general case in Conjecture 1.3 when
X is an arbitrary variety is expected to be at least as difficult as the general
case in Conjecture 1.1. As kindly pointed out by the referee, when X is an
algebraic group, one often finds that if there is no Zariski dense orbit under
the action of Φ, then there exists some suitable algebraic group Y endowed
with a dominant map g : X −→ Y with the property that g◦Φ = g; so, when
X is not an algebraic group, then Conjecture 1.3 is significantly harder. The
increased difficulty for the characteristic p variant of our conjecture is not
surprising since quite a few arithmetic conjectures turned out to be very
difficult in characteristic p, even more so than in characteristic 0; for ex-
ample, we mention the variant of the Dynamical Mordell-Lang Conjecture,
which was shown to be very difficult in characteristic p even for the case
of regular self-maps of tori (see [CGSZ21] and the more general discussion
from [BGT16, Chapter 13]).

We sketch briefly the plan for our paper. In Section 2 we state a precise
version of our Theorem 1.5 (see Theorems 2.5 and 2.6 which refine Theo-
rem 1.5). In Section 3, we prove Theorem 3.7 which solves Theorem 1.5 in
the special case Φ is a composition of a translation with a unipotent group
endomorphism. in Section 4, using Theorem 3.7 (along with a general re-
duction provided by our Proposition 3.12 from Section 3.3), we complete
the proof of Theorem 1.5 (along with Theorems 2.5 and 2.6).

Acknowledgments. We thank Tom Scanlon who suggested the more
precise version of condition (C) from our Conjecture 1.3. We are grateful
to the anonymous referee for their useful comments and suggestions, which
improved our presentation.

2. Additional results and some technical reductions

2.1. Generalities. As a matter of notation, we use id|X to denote the iden-
tity map on the variety (or more general, the set) X. For N -by-N matrices
we use id := idN to denote the corresponding identity matrix.

For any field K and any finitely generated subgroup Γ ⊂ Gm(K), we say
that x ∈ Gm(K) is multiplicatively independent from Γ if there is no nonzero
integer m such that xm ∈ Γ. Similarly, given γ1, . . . , γr ∈ Gm(K), we say
that x is multiplicatively independent from γ1, . . . , γr if x is multiplicatively
independent with respect to the subgroup of Gm(K) spanned by the γi’s.
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More generally, we say that x1, . . . , xs ∈ Gm(K) are multiplicatively inde-
pendent from γ1, . . . , γr if the subgroup of Gm(K) generated by the xi’s has
trivial intersection with the subgroup generated by the γj ’s.

For any point y ∈ GN
m, we let τy : GN

m −→ GN
m be the translation-by-y

automorphism, i.e., τy(x) := y · x for each x ∈ GN
m. Furthermore, in our

paper we find useful to use vector notation for the points of GN
m, i.e., from

now on, the point x ∈ GN
m will be denoted as ~x := (x1, . . . , xN ).

Since End(GN
m)

∼→MN,N (Z), we have that each dominant endomorphism

ϕ of GN
m is identified by an invertible N -by-N matrix A with integer entries

such that

(2.0.1) ϕ(~x) = ~xA,

i.e., ϕ(x1, . . . , xN ) =
(∏N

i=1 x
a1,i
i , . . . ,

∏N
i=1 x

aN,i
i

)
. We will often identify

the group endomorphism ϕ of GN
m with its corresponding N -by-N matrix A

as in (2.0.1). Furthermore, we recall that any regular self-map of GN
m is a

composition of a translation τ~y with a group endomorphism ϕ.

For a point ~α := (α1, . . . , αN ) ∈ GN
m(K) and some vector ~v := (v1, . . . , vN ) ∈

ZN , we let

(2.0.2) ~α~v :=
N∏
i=1

αvii .

In particular, given a group endomorphism ϕ corresponding to a matrix A
as in (2.0.1), given a point ~α ∈ GN

m(K) and also given a vector ~v with integer
entries, we have

(2.0.3) ϕ (~α)~v = (~α)A
t~v ,

where At represents the transpose of the matrix A. Also, for any ~α ∈ GN
m(K)

and any k ∈ Z, we let ~αk be the k-th power of the point ~α in GN
m(K).

For a regular self-map Φ : GN
m −→ GN

m given by ~x 7→ ~β · ~xA, a simple
computation yields the formula for the n-th iterate:

(2.0.4) Φn(~x) =
(
~β
)∑n−1

j=0 A
j

· (~x)A
n

.

Finally, we state a special case of the Moosa-Scanlon structure theorem
[MS04, Theorem B] which will be used repeatedly in our proofs.

Theorem 2.1. Let K be an algebraically closed field of positive character-
istic p, let N be a positive integer, let V ⊂ GN

m be a subvariety defined over
K and let Γ ⊂ GN

m(K) be a finitely generated subgroup. Then, V (K) ∩ Γ is
a finite union of sets of the form

U := ~γ · S(~η1, . . . , ~ηr; δ1, . . . , δr) ·H,(2.1.1)

where there exists some positive integer m such that

~γm, ~ηm1 , . . . , ~η
m
r ∈ Γ,
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the δj’s are positive integers, H is a subgroup of Γ and

S(~η1, . . . , ~ηr; δ1, . . . , δr) :=


r∏
j=1

(~ηj)
pδjnj : nj ∈ N0 for j = 1, . . . , r

 .

2.2. A more precise statement for Theorem 1.5. Our strategy for
proving Theorem 1.5 is as follows. We will first prove Theorem 1.5 for
group endomorphisms and then use our result to infer the general case in
Theorem 1.5.

The next result is used in deriving a more precise statement for Theorem
1.5 in the case where Φ is a group endomorphism.

Theorem 2.2. Let N ∈ N, let K be an algebraically closed field of charac-
teristic p and let Φ be a dominant group endomorphism of GN

m defined over
K. Then the following statements are equivalent:

(i) For some ` ∈ N, the kernel of Φ` − id is positive dimensional.
(ii) There exists a non-constant rational function f : GN

m 99K P1 such
that f ◦ Φ = f .

If the equivalent conditions (i)-(ii) do not hold, and also assuming that
trdegFpK ≥ N , then for any point ~α ∈ GN

m(K) with the property that its

coordinates α1, . . . , αN are algebraically independent over Fp, we have that
any infinite subset of OΦ(~α) is Zariski dense in GN

m.

Remark 2.3. Condition (i) from Theorem 2.2 tells us that for a dominant
group endomorphism Φ of GN

m (defined over an arbitrary algebraically closed
field K), we have that Φ preserves a non-constant fibration (as in condi-
tion (ii) from Theorem 2.2) if and only if the matrix A ∈ MN,N (Z) corre-
sponding to Φ (as in (2.0.1)) has an eigenvalue which is a root of unity.

Remark 2.4. Given a group endomorphism Φ : GN
m −→ GN

m corresponding
to some (invertible) matrix A ∈ MN,N (Z) (see (2.0.1)), we see that condi-
tion (C) from the conclusion of Theorem 1.5 is equivalent with asking that
there are k := trdegFpK + 1 Jordan blocks in the Jordan canonical form for

A corresponding to eigenvalues λ1, . . . , λk with the property that for some
positive integers m and r, we have that

(2.4.1) λm1 = · · · = λmk = pr.

Note that the eigenvalues λ1, . . . , λk may be equal; we are only asking that
they correspond to distinct Jordan blocks for A. This observation will be
used throughout our proof of Theorem 1.5.

Using Remarks 2.3 and 2.4, we see that in the case of group endo-
morphisms, Theorem 1.5 is equivalent with the following result which is
a stronger version of Theorem 2.2.
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Theorem 2.5. Let K be an algebraically closed field of positive transcen-
dence degree over Fp, let N ∈ N and let Φ be a dominant group endomor-
phism of GN

m corresponding to some matrix A ∈ MN,N (Z). Assume the
following two conditions are met:

(1) there is no eigenvalue λ of A which is a root of unity.
(2) there does not exist k := trdegFpK + 1 Jordan blocks in the Jor-

dan canonical form of A corresponding to eigenvalues λ1,. . . , λk
satisfying the equation

(2.5.1) λm1 = · · · = λmk = pr,

for some positive integers m and r.

Then there exists ~α ∈ GN
m(K) whose orbit under Φ is Zariski dense in GN

m.
Furthermore, given any finitely generated subgroup Γ ⊂ Gm(K), one can
choose ~α ∈ GN

m(K) such that

(i) the subgroup spanned by α1, . . . , αN (the coordinates of ~α) has trivial
intersection with Γ; and

(ii) any infinite subset of OΦ(~α) is Zariski dense in GN
m.

The next result provides a more precise form in the conclusion of Theo-
rem 1.5 for a dominant regular self-map of GN

m.

Theorem 2.6. Let N ∈ N, let K be an algebraically closed field of positive

transcendence degree over Fp, let ~β ∈ GN
m(K), let ϕ : GN

m −→ GN
m be a

dominant group endomorphism corresponding to some matrix A ∈MN,N (Z),
and let Φ := τ~β ◦ ϕ. Assume there does not exist k := trdegFpK + 1 Jordan

blocks in the Jordan canonical form of A corresponding to eigenvalues λ1,. . . ,
λk satisfying the equation λm1 = · · · = λmk = pr for some positive integers m
and r.

Then the following statements are equivalent:

(i) There is a non-constant rational function f : GN
m 99K P1 such that

f ◦ Φ = f .
(ii) There is no ~α ∈ GN

m(K) whose orbit OΦ(~α) is Zariski dense in GN
m.

(iii) There exists a positive integer ` and there exists a nonzero vector
~v ∈ ZN such that

(2.6.1) (A`)t · ~v = ~v and ~β(
∑`−1
j=0 A

j)
t·~v = 1.

Remark 2.7. We explain here the relevance of condition (iii) from Theo-
rem 2.6. The existence of a nonzero vector ~v ∈ ZN satisfying (2.6.1) means
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that for each n ∈ N and for each ~α ∈ GN
m(K), we have that (see (2.0.4))

Φn`(~α)~v = ~β(
∑n`−1
j=0 Aj)

t·~v · ~α(An`)
t·~v

= ~β(
∑`−1
j=0 A

j)
t·(
∑n−1
i=0 A

i`)
t
~v · ~α~v (by condition (iii))

= ~β(
∑`−1
j=0 A

j)
t·(n~v) · ~α~v (by condition (iii))

= ~α~v (by condition (iii)).

Therefore, OΦ`(~α) is contained in a coset of the proper algebraic subgroup
H ⊂ GN

m given by the (nontrivial) equation ~x~v = 1 (actually, H is invari-
ant under Φ` according to the above computation). Thus OΦ(α) must be
contained in a proper subvariety of GN

m (which is a finite union of cosets of
H) and so, it can never be Zariski dense in GN

m. Furthermore, one can find
the non-constant rational function f : GN

m 99K P1 which is invariant under
Φ arguing identically as in the proof of [GS21, Theorem 1.2] where a similar
condition (iii) was given in the general case of split semiabelian varieties
defined over a field of characteristic 0.

So, the implications (i)⇒(ii) and (iii)⇒(i) from Theorem 2.6 hold with
identical proof for regular self-maps of tori regardless of the characteristic
of the field. The interesting features of Theorem 2.6 is that one can prove
the implication (ii)⇒(iii) in positive characteristic as well. In characteristic
0, the proof of (ii)⇒(iii) from [GS21, Theorem 1.2] employed the classical
Mordell-Lang theorems for semiabelian varieties (as established by [Lau84,
Fal94, Voj96]) and it was incomparably much easier than the proof of our
Theorem 2.6. Indeed, in characteristic p, since the classical Mordell-Lang
theorems do not hold (see [Hru96]), one needs to employ a significantly more
complicated approach in order to establish the same equivalence as the one
stated in our Theorem 2.6.

3. Useful reductions for the general case and the proof of a
special case

3.1. General strategy for our proofs. We first describe the general ap-
proach to proving our results. So, we write Φ : GN

m −→ GN
m as τ~β ◦ϕ for some

point ~β ∈ GN
m and some group endomorphism ϕ of GN

m, which corresponds
to some (invertible) N -by-N matrix A with integer entries.

Using [BGRS17, Lemma 2.1], in order to prove our results, we can always
replace Φ by a suitable iterate, i.e., for any given ` ∈ N,

• there exists a Zariski dense orbit under the action of Φ if and only
if there exists a Zariski dense orbit under the action of Φ`; and
• Φ leaves invariant a non-constant rational function if and only if Φ`

leaves invariant a non-constant rational function.

When we replace Φ by Φ`, the group endomorphism ϕ is replaced by ϕ`

(and thus, the matrix A is replaced by A`), while the point ~β is replaced by
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~β
∑`−1
j=0 A

j

(see (2.0.4)). The advantage in our approach is that now we can
assume the following: for each eigenvalue λ of A, we have that either λ = 1,
or λ is not a root of unity.

We prove our results separately in the two cases outlined above, i.e., we
deal separately with the case when A is a unipotent matrix, and with the
case when A has no eigenvalue root of unity. In the latter case, the advantage
is that no matter what is the translation τ~β appearing in Φ, then we can

conjugate Φ by another suitable translation τ~γ so that

(3.0.1) Ψ := τ−1
~γ ◦ Φ ◦ τ~γ

is actually a group endomorphism of GN
m. Indeed, we choose ~γ such that

~γid−A = ~β

(note that id − A is an ivertible N -by-N matrix since we assume in this
case that A does not have eigenvalues which are roots of unity) and then
we see that Ψ defined as in (3.0.1) is indeed a group endomorphism. Since
our results are invariant if we replace the self-map Φ by a conjugate of
itself with an automorphism of GN

m (see [GS19, Lemma 3.1]), the case when
A has no eigenvalue root of unity reduces to proving our result for group
endomorphisms (i.e., we are left to proving Theorem 2.5).

The case when Φ : GN
m −→ GN

m is given by a composition of a translation
τ~β with a group endomorphism ϕ corresponding to a unipotent N -by-N

matrix A is treated in the next section.

3.2. The case of unipotent maps. We start by defining the main prop-
erty we are investigating in this paper.

Definition 3.1. Let Φ : GN
m −→ GN

m be a dominant regular self-map defined
over an algebraically closed field K. We say that Φ has property PK if
either there exists a non-constant rational function f : GN

m 99K P1 such that
f◦Φ = f , or there exists a point ~α ∈ GN

m(K) with a Zariski dense orbit under
Φ, or there exist positive integers m and r, a connected algebraic subgroup
Y of GN

m of dimension at least equal to trdegFpK + 1 defined over a finite

subfield Fq ⊂ K and a dominant regular map τ : G −→ Y such that

(3.1.1) τ ◦ Φm = F r ◦ τ,

where F is the usual Frobenius endomorphism of GN
m induced by the field

automorphism x 7→ xq.

Next we establish a useful reduction in all of our proofs.

Proposition 3.2. Let N ∈ N and let A,B ∈ MN,N (Z) be invertible ma-
trices with the property that there exists an invertible matrix Q ∈MN,N (Q)

such that B = Q−1AQ. Let ϕ and ψ be group endomorphisms of GN
m corre-

sponding to the matrices A and B, respectively.
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Let K be an algebraically closed field of characteristic p. For each ~γ ∈
GN
m(K), we let Φ~γ := τ~γ ◦ϕ and Ψ~γ := τ~γ ◦ψ be the corresponding dominant

regular self maps on GN
m defined over K.

Let k ∈ N such that both matrices kQ and kQ−1 have integer entries. We
let g : GN

m −→ GN
m be the group endomorphism corresponding to the matrix

kQ. Then for each ~β ∈ GN
m(K), we have that if Φ

g(~β)
has property PK , then

Ψ~β
has property PK .

Remark 3.3. We note that if the matrices Q and Q−1 have integer en-
tries, then the result of Proposition 3.2 follows immediately from [GS19,
Lemma 3.1] since we can consider the group automorphism g : GN

m −→ GN
m

corresponding to the matrix Q and then Ψ~β
= g−1 ◦Φ

g(~β)
◦ g, which means

that Ψ~β
has property PK if and only if Φ

g(~β)
has property PK .

Proof of Proposition 3.2. Let ~β ∈ GN
m(K). Lemmas 3.4 , 3.5, and 3.6 deliver

the desired conclusion in Proposition 3.2. The next commutative diagram
will be used in our proofs for Lemmas 3.4 , 3.5, and 3.6.

(3.3.1)

GN
m GN

m GN
m

GN
m GN

m GN
m

ψ

Ψ~β

g

τ~β

g g

ϕ

Φ
g(~β)

τ
g(~β)

Lemma 3.4. If there exists a non-constant rational function which is in-
variant under Φ

g(~β)
, then there exists a non-constant rational function which

is invariant under Ψ~β
.

Proof of Lemma 3.4. Let f : GN
m 99K P1 be a non-constant rational function

such that

(3.4.1) f ◦ Φ
g(~β)

= f.

Let f1 := f ◦ g (which is still a non-constant rational function since g is a
dominant group endomorphism). By the commutative diagram (3.3.1) and
the equation 3.4.1, we get

f1 ◦Ψ~β
= f ◦ g ◦Ψ~β

= f ◦ Φ
g(~β)
◦ g = f ◦ g = f1,

thus proving the lemma. �

Lemma 3.5. If there exists a K-point with a Zariski dense orbit under
Φ
g(~β)

, then there exists a K-point with a Zariski dense orbit under Ψ~β
.

Proof of Lemma 3.5. Let ~α ∈ GN
m(K) whose orbit under Φ

g(~β)
is Zariski

dense in GN
m. Since g is a dominant group endomorphism, there exists some
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~γ ∈ GN
m(K) such that g(~γ) = ~α. Then for each n ∈ N, using the commutative

diagram (3.3.1) we have that

Φn
g(~β)

(~α) = Φn
g(~β)
◦ (g(~γ)) = g(Ψn

~β
(~γ)).

Since g is finite morphism, the orbit of ~γ under Ψ~β
must be Zariski dense

in GN
m, as claimed in Lemma 3.5. �

Lemma 3.6. If there exists a connected algebraic subgroup Y of GN
m with a

dimension larger than trdegFpK and a dominant regular map τ : GN
m −→ Y

such that Φg(β) satisfies equation (3.1.1) for some positive integers m and r,

then for the dominant regular map τ ◦ g : GN
m −→ Y we must have

τ ◦ g ◦Ψm
β = F r ◦ τ ◦ g.

Proof. Using the diagram (3.3.1) we have

τ ◦ g ◦Ψm
β = τ ◦ Φm

g(β) ◦ g
= F r ◦ τ ◦ g by (3.1.1),

which concludes our proof of Lemma 3.6. �

Combining Lemmas 3.4, 3.5 and 3.6 yields the desired conclusion for
Proposition 3.2. �

Theorem 3.7. Let N ∈ N, let K be an algebraically closed field which is
a transcendental extension of Fp, let ϕ be a unipotent group endomorphism

of GN
m, let ~β ∈ GN

m(K) and let Φ : GN
m −→ GN

m be the dominant regular
self-map given by Φ := τ~β ◦ ϕ. Then Φ has property PK .

Before proving Theorem 3.7, we first recall the definition of upper asymp-
totic density of a subset of non-negative integers.

Definition 3.8. Given a subset U of the set of non-negative integers, the
upper asymptotic density of U is given by

lim sup
m→∞

# {0 ≤ n ≤ m : n ∈ U}
m

.

Remark 3.9. Upper asymptotic densities will appear frequently in the rest
of the paper. So, from now on, for the sake of simplifying our notation, we
will refer to the upper asymptotic density of some subset U ⊆ N0 simply as
density of U and also, denote it by d(U).

Proof of Theorem 3.7. Using Proposition 3.2 (along with the fact that any
unipotent metrix with integer entries can be conjugate through a matrix
with rational entries to its Jordan canonical form), we may assume from
now on, that the matrix A corresponding to the group endomorphism ϕ is
in Jordan canonical form.

The following result provides a precise criterion for the trichotomy in
property PK satisfied by a self-map Φ : GN

m −→ GN
m of the form Φ = τ~β ◦ϕ,

where ϕ is a group endomorphism corresponding to a unipotent matrix A in
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Jordan canonical form. Before stating our result, we recall the notation Jλ,m
which denotes a Jordan canonical block of dimension m ≥ 1 corresponding
to the eigenvalue λ.

Proposition 3.10. Let K be an algebraically closed field, which is transcen-
dental over Fp and let Φ : GN

m(K)→ GN
m(K) be given by

(3.10.1) (x1, . . . , xn) 7−→

(
β1

N∏
i=1

x
a1,i
i , . . . , βi`

N∏
i=1

x
aN,i
i

)
,

where ai,j are the entries of a matrix A := J1,i1

⊕
J1,i2−i1

⊕
· · ·
⊕
J1,i`−i`−1

(where 1 ≤ i1 < i2 < · · · < i` = N) and (β1, . . . , βN ) ∈ GN
m(K). Then, the

following statements are equivalent:

(i) There is a non-constant rational function f : GN
m 99K P1 such that

f ◦ Φ = f .
(ii) There is no ~α ∈ GN

m(K) whose orbit is Zariski dense in GN
m(K).

(iii) βi1 , . . . , βi` are multiplicatively dependent.

Proof. As noted already in [AC08, MS14, BGR17], we have that (i)⇒(ii).
Now, in order to prove that (ii)⇒(iii), it suffices to show that if βi1 , βi2 , . . . , βi`
are multiplicatively independent then we can find a point in GN

m(K) with a
Zariski dense orbit. Note there exists a vector ~γ such that(

~γ
)A−idN = (β1, . . . , βi1−1, 1, βi1+1, . . . , βi`−1, 1) .

It is easy to check that the map τ~γ ◦ Φ ◦ τ−1
~γ is given by

(3.10.2) ~x 7→ ~β′~xA, where ~β′ := (1, . . . , 1, βi1 , 1, . . . , 1, βi`) ∈ GN
m(K).

Therefore, after conjugating Φ with τ~γ (see also [GS19, Lemma 3.1]), we
may assume without loss of generality that

(3.10.3) (β1, . . . , βN ) = (1, . . . , 1, βi1 , 1, . . . , 1, βi`),

i.e., βk = 1 unless k = ij for some j = 1, . . . , `. We choose a point

(3.10.4) ~α := (α1, . . . , αi1−1, 1, αi1+1, . . . , αi2−1, 1, . . . , αi`−1, 1) ∈ GN
m(K),

such that αi1 , . . . , αi1−1, βi1 , αi1+1, . . . , αi`−1, βi` are multiplicatively inde-
pendent (note that since trdegFpK > 0, we can find arbitrarily many multi-

plicatively independent elements of K). We let

~η = (α1, . . . , αi1−1, βi1 , αi1+1, . . . , αi`−1, βi`).

Then the orbit of α under Φ consists of points of the following form:

OΦ(α) =
{
~βA

n−1+···+A+id~αA
n

: n ∈ N0

}
.

We claim that the orbit of ~α under Φ is Zariski dense. We argue by contra-
diction, and therefore assume that its Zariski closure V is a proper subvariety
of GN

m.
We let Γ ⊂ GN

m be the finitely generated group consisting of all elements
of the form ~ηE where E is any N -by-N matrix with integer entries; clearly,
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OΦ(~α) ⊆ Γ. By Theorem 2.1, we know that V ∩Γ is a union of finitely many
sets of the form

U := ~γ · S(~η1, . . . , ~ηr; δ1, . . . , δr) ·H,(3.10.5)

where there exists some positive integer m such that

(3.10.6) ~γm, ~ηm1 , . . . , ~η
m
r ∈ Γ,

the δj ’s are positive integers, and H is a subgroup of Γ.
Because OΦ(~α) is contained in finitely many sets of the form (3.10.5), then

there must exist a given set U of the form (3.10.5) for which the following
subset of N0:

S = {n ∈ N0 : Φn(~α) ∈ U}

has positive density d(S) (see Remark 3.9 regarding our notation for upper
asymptotic density of subsets of N0).

The algebraic closure of H must be an algebraic group G contained in
the stabilizer of the variety W , which is the Zariski closure of U . Since V
is a proper subvariety and W ⊆ V , then G must also be a proper algebraic
subgroup of GN

m. So, there must exist a nonzero vector ~v ∈ ZN such that

(3.10.7) (~ε)~v = 1 for each ~ε ∈ H.

Let n ∈ S; so, Φn(α) ∈ U (see (3.10.5)). Equation (3.10.6) yields that

~γm = ~ηC and ~ηmi = ~ηBi for each i = 1, . . . , r,

where C,B1, . . . , Br ∈MN,N (Z) and so,

(3.10.8) Φn(~α)m = (~η)C+
∑r
j=1 p

δjnjBj · ~εn

for some nonnegative integers nj and some ~εn ∈ H. So, combining (3.10.8)
with (3.10.7) yields

(3.10.9) Φn(~α)m~v = ~η

(
C+
∑r
j=1 p

δjnjBj

)t
·~v
.

On the other hand, we know that Φn(~α) = ~β
∑n−1
j=0 A

j

· ~αAn (see (2.0.4))
and we also compute:

An =


1
(
n
1

)
· · ·

(
n

i1−1

)
0 1 · · ·

(
n

i1−2

)
...

...
. . .

...
0 0 · · · 1

⊕ · · ·
⊕


1
(
n
1

)
· · ·

(
n

i`−i`−1−1

)
0 1 · · ·

(
n

i`−i`−1−2

)
...

...
. . .

...
0 0 · · · 1


(3.10.10)
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and so,

An−1 + · · ·+ id =


n
(
n
2

)
· · ·

(
n
i1

)
0 n · · ·

(
n

i1−1

)
...

...
. . .

...
0 0 · · · n

⊕ · · ·
⊕


n
(
n
2

)
· · ·

(
n

i`−i`−1

)
0 n · · ·

(
n

i`−i`−1−1

)
...

...
. . .

...
0 0 · · · n

 .

(3.10.11)

Therefore, using (3.10.9) along with formulas (3.10.10) and (3.10.11), we
obtain that for each n ∈ S, we have

~βm(
∑n−1
i=0 A

i)
t·~v · ~α(mAn)t·~v = (~η)C

t~v+
∑r
j=1 p

njδjBtj~v .(3.10.12)

Now, both sides in (3.10.12) consist of products of powers of

(3.10.13) α1, . . . , αi1−1, βi1 , αi1+1, . . . , αi2−1, βi2 , αi2+1, . . . , αi`−1, βi`

and since the N elements of Gm(K) from (3.10.13) are multiplicatively inde-
pendent, then it means that the exponents of each αi and each βij appearing
in the left-hand side of (3.10.12) must match the corresponding exponent of
the αi, respectively of βij appearing in the right-hand side of (3.10.12).

Now, since ~v := (v1, . . . , vN ) is nonzero, then there is some 1 ≤ k ≤ `
such that the tuple (vik−1+1, . . . , vik) is nonzero (where we denoted i0 :=
0 for convenience). We use equations (3.10.10) and (3.10.11) to compute
the exponent of βik appearing in the left-hand side of (3.10.12) and then
comparing it with the exponent of βik from the right-hand side of (3.10.12),
we get

m

(
vik−1+1 ·

(
n

ik − ik−1

)
+ vik−1+2 ·

(
n

ik − ik−1 − 1

)
+ · · ·+ vik ·

(
n

1

))

(3.10.14) = b0 +

r∑
j=1

bjp
δjnj ,

for some integers b0, . . . , br which are independent of n (and only depend
on the entries of the matrices C,B1, . . . , Br and the entries of the vector ~v).
Since the tuple

(
vik−1+1, . . . , vik

)
is nonzero, then the polynomial

(3.10.15) P (n) := m ·
ik−ik−1∑
j=1

vik−1+j ·
(

n

ik − ik−1 + 1− j

)
must be non-constant. So, equations (3.10.15) and (3.10.14) yield that each
element n ∈ S must satisfy an equation of the form:

(3.10.16) P (n) = b0 +

r∑
j=1

bjp
δjnj ,

for some nj ∈ N0. Because P is non-constant (while the δj ’s are positive
integers and the bj ’s are given), [GOSS21b, Theorem 1.1] yields that d(S) =
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0, therefore contradicting our assumption that S has positive density. Hence,
indeed OΦ(~α) must be Zariski dense in GN

m, as desired for showing the
implication (ii)⇒(iii).

Finally, in order to prove that (iii)⇒(i), we know that there exists a

nonzero ~v ∈ Z` such that
∏`
j=1 β

vj
ij

= 1 since the βij ’s are multiplicatively

dependent. Therefore, the non-constant rational function

f(x1, . . . , xN ) :=
∏̀
j=1

x
vj
ij

is invariant under Φ (note that i` = N with our notation from Proposi-
tion 3.10). This concludes our proof for Proposition 3.10. �

Proposition 3.10 finishes the proof of Theorem 3.7. �

Remark 3.11. Our proof of Proposition 3.10 shows that for a regular self-map
Φ as given in (3.10.1), if in addition the vector β has the form (3.10.3) with
βi1 , . . . , βi` multiplicatively independent, then for any point ~α ∈ GN

m(K) as
in (3.10.4) such that

α1, . . . , αi1−1, βi1 , αi1+1, . . . , αi2−1, βi2 , αi2+1, . . . , αi`−1, βi`

are multiplicatively independent, OΦ(~α) is Zariski dense. Furthermore, our
proof of Proposition 3.10 yields the stronger statement that for a point
~α ∈ GN

m(K) as in (3.10.4), for any subset S ⊆ N0 of positive density, the set

{Φn(~α) : n ∈ S}
is actually Zariski dense in GN

m. The strength of this refined result com-
ing from Theorem 3.7 allows us to prove an important reduction step in
Theorem 2.6 (see Proposition 3.12).

3.3. The split case. The following result is instrumental in proving our
Theorem 2.6 by reducing it to our Theorem 3.7 combined with Theorem 2.5.

Proposition 3.12. Let K be an algebraically closed field of characteristic
p > 0, let N1, N2 ∈ N, let N := N1 + N2, let D be an invertible N2-by-N2

matrix with integer entries, whose eigenvalues are not roots of unity, let B
be a unipotent N1-by-N1 matrix in Jordan canonical form, i.e.,

B := J1,i1 ⊕ J1,i2−i1 ⊕ · · · ⊕ J1,is−is−1 ,

where is = N1, and let ~β := (1, . . . , 1, βi1 , 1, . . . , 1, βis) ∈ GN1
m (K). Let

~γ := (γ1, . . . , γi1−1, 1, γi1+1, . . . , γi2−1, 1, γi2+1, . . . , γis−1, 1) ∈ GN1
m (K)

and let ~α := (α1, . . . , αN2) ∈ GN2
m (K). Assume the following elements of

Gm(K) are multiplicatively independent:

(3.12.1) γ1, . . . , γi1−1, β1, γi1+1, . . . , γis−1, βis ,

and define
~η = (γ1, . . . , γi1−1, β1, γi1+1, . . . , γis−1, βis).
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Also, assume that the αi’s are multiplicatively independent from the elements
from (3.12.1), i.e., letting Γ be the subgroup of Gm(K) spanned by the ele-
ments from (3.12.1) and letting Λ be the subgroup of Gm(K) spanned by the
αi’s, then Γ ∩ Λ = {1}.

Let Φ1 : GN1
m −→ GN1

m be the regular map defined by

~x 7→ ~β · (~x)B for each ~x ∈ GN1
m .

Let Φ2 be the group endomorphism of GN2
m given by ~x 7→ (~x)D for each

~x ∈ GN2
m , and let Φ be the regular self-map of GN

m := GN1
m ⊕ GN2

m given by
Φ1 ⊕ Φ2.

Assume that for any positive density subset S ⊆ N0, the set

{Φn
2 (~α) : n ∈ S}

is Zariski dense in GN2
m . Then OΦ(~γ ⊕ ~α) is Zariski dense in GN

m.

Proof. Assume OΦ(~γ ⊕ ~α) is not Zariski dense in GN
m and thus, let V ⊂ GN

m

be its Zariski closure.
Let ∆ := ΓN1 × ΛN2 ⊂ GN

m(K); then OΦ(~γ ⊕ ~α) ⊆ ∆. Then V ∩∆ is a
finite union of sets of the form (3.10.5), i.e., sets of the form

U := ~η0 · S(~η1, . . . , ~ηr; δ1, . . . , δr) ·H,(3.12.2)

where there exists some positive integer m such that

(3.12.3) ~ηm0 , ~η
m
1 , . . . , ~η

m
r ∈ ∆,

while the δj ’s are positive integers and H is a subgroup of ∆. Because the
entire orbit of ~γ⊕~α under Φ is contained in the union of finitely many sets as
the one from (3.12.2), there must exist some set U as in (3.12.2) containing
Φn(~γ ⊕ ~α) for all integers n in some subset S ⊆ N0 of positive density.

Now, assume there exists some nonzero vector ~v1 ∈ ZN1 and some vector

~v2 ∈ ZN2 such that for the vector ~v := ~v1 ⊕ ~v2 ∈ ZN , we have that (~ε)~v = 1
for each ~ε ∈ H. We argue as in the proof of Proposition 3.10 and get that
for each n ∈ S, we have

(3.12.4) Φn(~γ ⊕ ~α)m~v = (~η ⊕ ~α)

(
C+
∑r
j=1 p

δjnjBj

)t
·~v
,

for some suitable N -by-N matrices C, B1, . . . , Br with integer entries. Now,
using that ~v1 is a nonzero vector, along with our hypothesis that the βij ’s and
the γj ’s are multiplicatively independent, while the αi’s are multiplicatively
independent from the βij ’s and the γj ’s, then arguing exactly as in the proof
of Proposition 3.10 (see equations (3.10.14), (3.10.15) and (3.10.16)) we get
that there exists some non-constant polynomial P and some integers bj such
that for each n ∈ S, there are non-negative integers nj such that

(3.12.5) P (n) = b0 +

r∑
j=1

bjp
δjnj .

Since S has positive density, this yields a contradiction to the conclusion of
[GOSS21b, Theorem 1.1]. Therefore there is no nonzero vector ~v1 ∈ ZN1
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such that for some ~v2 ∈ ZN2 , we have that ~v = ~v1 ⊕ ~v2 kills each element
of H. We let G ⊆ GN

m be the Zariski closure of H; then G is an algebraic
subgroup. Now, the fact that any vector ~v ∈ ZN which kills each element
of G must have its first N1 entries equal to 0 yields that G = GN1

m ×G2 for
some algebraic subgroup G2 ⊂ GN2

m .
So, letting W be the Zariski closure of U in GN

m, then its stabilizer must
contain G and therefore, it contains GN1

m (seen as a subgroup of GN
m under

the natural embedding ~x 7→ ~x ⊕ ~1GN2
m

); i.e., for each ~ε1 ∈ GN1
m and each

~µ ∈ W , we have that ~ε · ~µ ∈ W . Hence W = GN1
m × Z, for some subvariety

Z ⊆ GN2
m . However, Z must contain each Φn

2 (~α) for n ∈ S and S ⊆ N0 is a
set of positive density; then our hypothesis yields that Z = GN2

m . Therefore,
W = GN

m and so, indeed OΦ(~γ ⊕ ~α) must be Zariski dense in GN
m. �

4. Proof of Theorem 1.5

We start this Section by proving a preliminary result used in the proof of
Theorem 2.5 and then we will proceed to proving Theorems 2.5 and 2.6.

Proposition 4.1. Let K be an algebraically closed field of transcendence
degree d ≥ 1 over Fp. Let Φ : GN

m(K) → GN
m(K) be given by ~x 7→ (~x)A,

where A is an invertible N -by-N matrix that has a conjugate of the form

(4.1.1)

s⊕
i=1

 `i⊕
j=1

J
pni ,m

(j)
i −m

(j−1)
i

 ,

where ni’s are distinct positive integers and m
(j)
i ’s are non-negative integers

such that for every 1 ≤ i ≤ s we have

0 = m
(0)
i < m

(1)
i < · · · < m

(`i)
i ,

while
s∑
j=1

m
(`j)
j = N.

Then one of the following statements must hold:

(1) There exists 1 ≤ i ≤ s such that `i > d.
(2) for any finitely generated subgroup Λ ⊂ Gm(K) there exists ~α ∈

GN
m(K) such that
(i) the subgroup of Gm(K) spanned by the αi’s (the coordinates of

~α) has trivial intersection with Λ; and
(ii) any infinite subset of OΦ(~α) is Zariski dense in GN

m.

Remark 4.2. Note that condition (1) in Proposition 4.1 says precisely that
condition (C) from Theorem 1.5 holds for the given map Φ.

Proof of Proposition 4.1. Suppose that condition (1) does not hold. We will
prove the next lemma which reduces the problem to the case where A is
equal to a matrix of the form (4.1.1).
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Lemma 4.3. It suffices to prove that condition (2) holds in the case where
A is equal to a matrix of the form (4.1.1).

Proof of Lemma 4.3. Since A has a conjugate of the form (4.1.1), there must
exist a group endomorphism Ψ corresponding to a matrix of the form (4.1.1)
and a dominant group endomorphism g : GN

m −→ GN
m such that the next

diagram commutes

(4.3.1)

GN
m GN

m

GN
m GN

m.

Φ

g g

Ψ

Suppose that ~α satisfies conditions (i) and (ii) with respect to the group

endomorphism Ψ. We choose ~β ∈ GN
m such that g(~β) = ~α. Using Lemma

3.5 the orbit of ~β under Φ must be Zariski dense in GN
m. Now suppose for

the sake of contradiction that there exists some non-zero vector ~v ∈ ZN such
that ~β~v ∈ Λ \ {0}. Let g correspond to a matrix B ∈ MN,N (Z) which is
invertible as g is dominant. So, there must exist a non-zero integer m and
a non-zero vector ~v′ ∈ ZN such that Bt~v′ = m~v. This implies that

~α~v
′

= ~βB
t~v′ = ~βm~v ∈ Λ \ {0},

which contradicts the assumption that ~α satisfies condition (ii). This con-
cludes our proof of Lemma 4.3. �

Therefore, from now on we may assume without loss of generality that A
is equal to a matrix of the form (4.1.1). Choose t1, . . . , td ∈ Gm(K) that are
algebraically independent over Fp and moreover, the subgroup of Gm(K)
generated by t1, . . . , td has trivial intersection with Λ. We claim that any
infinite subset of the orbit of

~α := ~α1 ⊕ · · · ⊕ ~αs ∈ GN
m(K),

where

~αi := (t1, . . . , t1︸ ︷︷ ︸
m

(1)
i times

, t2, . . . , t2︸ ︷︷ ︸
m

(2)
i −m

(1)
i times

, . . . , t`i , . . . , t`i)︸ ︷︷ ︸
m

(`i)
i −m(`i−1)

i times

under Φ is Zariski dense. Note that for every 1 ≤ i ≤ s, ~αi is well-defined
since `i < d. We also note that due to our choice for t1, . . . , td, the entries
of ~α satisfy conclusion (i) from Proposition 4.1.

Now, suppose that there exists an infinite subset S ⊆ N0 with the property
that the Zariski closure of the set {Φn(~α) : n ∈ S} is a proper subvariety
V ⊂ GN

m; we will derive a contradiction, which will thus show that ~α also
satisfies conclusion (ii) from Proposition 4.1.

Let Γ0 be the finitely generated subgroup of Gm(K) generated by t1, . . . , td
and let Γ := ΓN0 ⊂ GN

m(K). Then OΦ(~α) ⊆ Γ and furthermore, by Theorem
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2.1, V ∩Γ is a finite union of sets of the form (3.10.5), i.e., sets of the form:

U := ~γ−1 · S(~η1, . . . , ~ηr; δ1, . . . , δr) ·H,(4.3.2)

where there exists some positive integer m such that

(4.3.3) ~γm, ~ηm1 , . . . , ~η
m
r ∈ Γ,

the δj ’s are positive integers, and H is a subgroup of Γ. We also recall that

S(~η1, . . . , ~ηr; δ1, . . . , δr) consists of all points of the form
∏r
j=1 (~ηj)

pδjnj for
any nonnegative integers n1, . . . , nr.

Since S is an infinite subset of N0 and each Φn(~α) belongs to a set as
in (4.3.2), then the pigeonhole principle guarantees that at the expense of
replacing S by an infinite subset of it, we may assume that each Φn(~α) are
contained in the same set U as in (4.3.2).

Lemma 4.4. The Zariski closure of the set U from (4.3.2) is of the form
γ−1 ·W , where W ⊂ GN

m is a proper subvariety defined over Fp.

Proof of Lemma 4.4. The Zariski closure of the subgroup H from (4.3.2)
is an algebraic subgroup of GN

m and therefore, it is defined over Fp. Also,
the Zariski closure of the set S(~η1, . . . , ~ηr; δ1, . . . , δr) is invariant under a
suitable power of the Frobenius endomorphism (more precisely, it is invariant
under F δ, where δ is the least common multiple of all the positive integers
δj). Therefore, the Zariski closure of S(~η1, . . . , ~ηr; δ1, . . . , δr) ·H must be a

subvariety W defined over Fp. Furthermore, W is a proper subvariety of
GN
m since, according to our assumption, also V ⊂ GN

m is a proper subvariety
(and γ−1 ·W ⊆ V ). This concludes our proof of Lemma 4.4. �

Lemma 4.4 yields the existence of a polynomial g(x) ∈ Fp[x1, . . . , xN ]
such that g(γ · ~x) vanishes at each point Φn(~α) for n ∈ S. Let g(~x) :=∑M

i=1 ai (~x)~vi , where the vectors ~vi ∈ ZN are distinct and each ai ∈ Fp is
nonzero.

Let ~η := (t1, . . . , td) ∈ Gd
m(K) and choose a point ~η0 := (t′1, . . . , t

′
d) ∈

Gd
m(K) where (t′i)

m = ti for every 1 ≤ i ≤ d; in particular, (~η0)m = ~η. Also,

note that t′1, . . . , t
′
d are algebraically independent over Fp. Similarly, define

~α0 := ~α′1 ⊕ · · · ⊕ ~α′s ∈ GN
m(K),

where

~α′i := (t′1, . . . , t
′
1︸ ︷︷ ︸

m
(1)
i times

, t′2, . . . , t
′
2︸ ︷︷ ︸

m
(2)
i −m

(1)
i times

, . . . , t′`i , . . . , t
′
`i︸ ︷︷ ︸

m
(`i)
i −m(`i−1)

i times

).

Since ~γm ∈ Γ, there must exist an N -by-d matrix B with integer entries such

that ~γm = ~ηB. This implies that ~γ = ~ζ · (~η0)B where ζ ∈ GN
m(K) is a point

of order dividing m; in particular, ~ζ ∈ GN
m(Fp). Also, for every 1 ≤ k ≤ d

define ~uk to be a vector in ZN whose i-th coordinate is equal to 1 whenever
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the i-th coordinate of α is equal to tk and it is 0 otherwise. Then, for every
n ∈ S we must have

0 =
M∑
i=1

ai~α
(An)t~vi~γ~vi

=
M∑
i=1

(
ai(~ζ)~vi

)
(~α0)m(An)t~vi (~η0)B

t~vi

=
M∑
i=1

ci ·
d∏

k=1

(t′k)
m
(

(An)t~vi

)
·~uk+(Bt~vi)k ,(4.4.1)

where ci := ai · (~ζ)~vi ∈ Fp and (Bt~vi)k denotes the k-th coordinate of Bt~vi
for every 1 ≤ i ≤ M . Since t′1, . . . , t

′
d are algebraically independent over Fp

there must exist i < j such that

m
(
(An)t~vi

)
· ~uk + (Bt~vi)k = m

(
(An)t ~vj

)
· ~uk + (Bt ~vj)k

for every 1 ≤ k ≤ d, which implies that

m
(
(An)t(~vi − ~vj)

)
· ~uk + (Bt(~vi − ~vj))k = 0(4.4.2)

for every 1 ≤ k ≤ d. But because there are only finitely many pairs (i, j)
of indices in {1, . . . ,M}, by the pigeonhole principle, there is a pair (i, j)
and an infinite subset S0 ⊂ S such that for every n ∈ S0, (4.4.2) holds. Let
~w := ~vi − ~vj ∈ ZN and (Bt ~w)k = ck ∈ Z for every 1 ≤ k ≤ d. So, for each
n ∈ S0 and every 1 ≤ k ≤ d we have

m((An)t ~w) · ~uk + ck = 0.(4.4.3)

For each n ∈ N, we have that An equals

s⊕
i=1


`i⊕
j=1


pn·ni

(
n
1

)
p(n−1)·ni · · ·

( n

m
(j)
i −m

(j−1)
i −1

)
p(n−(m

(j)
i −m

(j−1)
i )+1)·ni

0 pn·ni · · ·
( n

m
(j)
i −m

(j−1)
i −2

)
p(n−(m

(j)
i −m

(j−1)
i )+2)·ni

...
...

. . .
...

0 0 · · · pn·ni



 .

Let ~w := (w1, . . . , wN ). Since ~w is nonzero, we let wr be the first nonzero
entry of ~w from the left. Due to the definition of each ~uk, we have that
there exists a unique 1 ≤ k ≤ d such that the r-th coordinate (~uk)r of ~uk is
non-zero. Also, there exist unique integers 1 ≤ i′ ≤ s and 1 ≤ j′ ≤ `i′ such
that

i′−1∑
q=1

m
(`q)
q +m

(j′−1)
i′ < r ≤

i′−1∑
q=1

m
(`q)
q +m

(j′)
i′ .
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Then, the coefficient of
( n

r−m(j′−1)

i′ −1

)
p

(
n−
(
r−m(j′−1)

i′

)
+1

)
·ni′

in (An)t ~w · ~uk
(note that we have a dot product of vectors) is equal to

(4.4.4) wr(~uk)r,

which is non-zero as both wr and (~uk)r are non-zero. Furthermore, there
is no other (nonzero) term in (An)t ~w · ~uk containing pn·ni′ multiplied by a

polynomial in n of degree greater than or equal to r−m(j′−1)
i′ −1 (note that

this is a consequence of our choice for the coordinates of ~α). Therefore we
get

m((An)t ~w · ~uk) =
s∑
i=1

Qi(n)pn·ni ,

where each Qi is a polynomial with coefficients in Q and furthermore, Qi′(n)

is nonzero of degree r −m(j′−1)
i′ − 1. Thus, equation (4.4.3) becomes

(4.4.5)

s∑
i=1

Qi(n)pn·ni + c = 0

for every n ∈ S0. But, the left-hand side of (4.4.5) is the general term of
a non-degenerate linear recurrence which can have only finitely many solu-
tions (see [Sch03] for a thorough treatment of the famous Skolem-Mahler-
Lech problem represented by equation (4.4.5)) since not all of the Qi’s are
identically equal to zero and furthermore, because the ni’s are distinct pos-
itive integers, the quotient of any two pni appearing in the equation (4.4.5)
is not equal to a root of unity and also no pni is a root of unity (note that
the characteristic roots of the linear recurrence sequence from (4.4.5) belong
to the set {1, pn1 , . . . , pns}). This contradicts the fact that S0 is an infinite
set. So, any infinite subset of the orbit of ~α under Φ must be Zariski dense
in GN

m, which concludes our proof of Proposition 4.1. �

The next lemma will be used in the proof of Theorem 2.5.

Lemma 4.5. Let p be a prime number, let N ∈ N, let ~v ∈ ZN , let δ1, . . . , δr ∈
N, and let A,B1, . . . , Br, C be N -by-N matrices with integers entries such
that A is invertible and moreover, none of the eigenvalues of A are mul-
tiplicatively dependent with respect to p. If there exists an infinite subset
S ⊆ N with the property that for each n ∈ S, there exist n1, . . . , nr ∈ N0

such that

An~v = C~v +

r∑
i=1

pniδiBi~v,(4.5.1)

then ~v must be the zero vector.

Proof. Note that there exists a matrix P such that A = P−1DP where
D = Jλ1,i1

⊕
Jλ2,i2−i1

⊕
· · ·
⊕
Jλ`,i`−i`−1

(i` = N). Thus, equation (4.5.1)
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becomes

(P−1DnP )~v = C~v +
r∑
i=1

pniδiBi~v,

which is equivalent to

DnP~v = (PC)~v +

r∑
i=1

pniδi(PBi)~v.(4.5.2)

Now suppose for the sake of contradiction that ~v is nonzero. This implies
that P~v is nonzero (since P is invertible). Let j be the first nonzero coor-
dinate of P~v from the right. Let i0 = 0 and suppose that is−1 < j ≤ is for
some 1 ≤ s ≤ `. Comparing the j-th coordinate of both sides of equation
(4.5.2) we get that there exist a, c1, . . . , cr ∈ Q with a 6= 0 such that

aλns = c1p
n1δ1 + · · ·+ crp

nrδr .

for each n ∈ S. This fact contradicts [CGSZ21, Theorem 5.1 (A)]; therefore,
~v must indeed be the zero vector, as claimed in Lemma 4.5. �

Proof of Theorem 2.5. Let Γ ⊂ Gm(K) be a finitely generated subgroup.
We first prove a useful reduction.

Lemma 4.6. It suffices to prove Theorem 2.5 after replacing Φ by an iterate
Φ` (for some ` ∈ N).

Proof of Lemma 4.6. So, assume conditions (i)-(ii) are satisfied for the start-
ing point ~α (with respect to Γ) and for the endomorphism Φ` (for some given
` ∈ N). We claim that ~α will also satisfy conditions (i)-(ii) in Theorem 2.5
for the endomorphism Φ. Clearly, condition (i) is unaffected since it refers
strictly about the coordinates of the given starting point ~α. Now, in order
to check condition (ii), we let S ⊆ N0 be an infinite subset and we want to
prove that

(4.6.1) US := {Φn(~α) : n ∈ S}

is Zariski dense in GN
m. In particular, there exists i0 ∈ {0, . . . , ` − 1} such

that the set

Si0 := {n ∈ S : n ≡ i0 (mod `)}
is an infinite subset. Since condition (ii) is verified by

(
Φ`, ~α

)
, then the set

(4.6.2) US,i0 :=
{

Φn−i0(~α) : n ∈ Si0
}

must be Zariski dense in GN
m. Because Φi0 is a dominant group endomor-

phism, then also Φi0 (US,i0) ⊆ US (see (4.6.1) and (4.6.2)) is Zariski dense

in GN
m, as desired in the conclusion of Lemma 4.6. �

Using Lemma 4.6 (and therefore after replacing Φ by a suitable iterate),
we may assume that the matrix A corresponding to the endomorphism Φ
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has the property that for each of its eigenvalues λ, if λ is multiplicatively
dependent with respect to p, then actually,

λ = pm for some m ∈ N.(4.6.3)

Note that the exponent m from (4.6.3) can be chosen indeed to be a positive
integer since m = 0 would lead to A having eigenvalues root of unity (which
is not allowed by hypothesis (1) in Theorem 2.5), while a negative integer
would mean that λ from (4.6.3) would not be an algebraic integer (which
contradicts the fact that λ is an eigenvalue of a matrix with integer entries).

We let g ∈ Z[x] be the minimal polynomial for the endomorphism Φ. We
let h1(x) be the polynomial with integer coefficients, which is a factor of
g(x) having all the roots (with corresponding multiplicities) of g(x) which
are of the form (4.6.3). Then we can write g(x) := h1(x) · h2(x), where also
the polynomial h2(x) has integer coefficients. Furthermore, h1(x) and h2(x)
are coprime polynomials. We let G1 = h1(Φ)

(
GN
m

)
and G2 = h2(Φ)

(
GN
m

)
.

Then G1 and G2 are both connected algebraic subgroups of GN
m. Since h1

and h2 are coprime, then there exist polynomials with integer coefficients
Q1 and Q2 along with some positive integer `0 such that

Q1(x) · h1(x) +Q2(x) · h2(x) = `0,

which means that G1 and G2 are complementary subtori of GN
m, in the

sense that G1 ' Gk
m and G2 ' GN−k

m , for some integer k ∈ {0, . . . , N} and
moreover, GN

m = G1 · G2, while G1 ∩ G2 is finite (consisting only of points
of order dividing `0). Furthermore, Φ induces endomorphisms of both G1

and G2; call them Φ1, respectively Φ2. In addition, the minimal polynomial
of Φ1 is h2(x), while the minimal polynomial of Φ2 is h1(x). Also, if we let
ι : G1 × G2 −→ GN

m be the map given by (x1, x2) 7→ x1 · x2 (note that G1

and G2 are subgroups of GN
m), then the following diagram commutes

(4.6.4)

G1 ×G2 G1 ×G2

GN
m GN

m.

(Φ1,Φ2)

ι ι

Φ

Note that ι is a finite morphism of degree `0. We now prove the following
lemma.

Lemma 4.7. It suffices to prove the conclusion of Theorem 2.5 for the
action of Ψ := (Φ1,Φ2) on G1 ×G2.

Proof of Lemma 4.7. For a given finitely generated subgroup Γ ⊂ Gm(K),

we let Γ̃ := ι−1(ΓN ) and then let Γ1 ⊂ Gm(K) be the finitely generated

subgroup spanned by the projections of Γ̃ onto each coordinate of G1×G2
∼→

GN
m.
Assume there exists a point (~x1, ~x2) ∈ (G1 × G2)(K) satisfying the con-

clusions (i)-(ii) of Theorem 2.5 with respect to (Φ1,Φ2) and the subgroup
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Γ1. We claim that ~x := ι (~x1, ~x2) ∈ GN
m(K) satisfies the conclusions (i)-(ii)

of Theorem 2.5 with respect to the endomorphism Φ and the subgroup Γ.
Indeed, first of all, condition (i) is satisfied by ~x with respect to the

subgroup Γ since the same condition is satisfied by (~x1, ~x2) and subgroup
Γ1. As for condition (ii) in Theorem 2.5, we let S ⊆ N0 be an infinite subset.
Since by our hypothesis, the set

{(Φ1,Φ2)n (~x1, ~x2) : n ∈ S}
is Zariski dense inG1×G2, then its image under ι will be Zariski dense in GN

m,
thus proving the desired condition (ii) for Φ, as claimed in Lemma 4.7. �

Now, G1 × G2 is itself isomorphic to Gk
m × GN−k

m ; our argument thus
far has been similar to the proof of our Proposition 3.2 in order to justify
that we can work with a dominant group endomorphism Ψ = (Φ1,Φ2) where

Φ1 : Gk
m → Gk

m and Φ2 : GN−k
m → GN−k

m given by ~x1 7→ ~xA1
1 and respectively,

~x2 7→ ~xA2
2 . Moreover, the minimal polynomials of A1 and A2 are h2(x) and

h1(x), respectively.
We pick a starting point (~x1, ~x2) for the action of Ψ on Gk

m(K)×GN−k
m (K)

of the following form:

• ~x2 ∈ GN−k
m (K) satisfies both conditions (i)-(ii) from the conclusion

of Proposition 4.1 with respect to the finitely generated subgroup
Γ ⊂ Gm(K) (note that because of Condition (2) in the hypothesis
of Theorem 2.5, Condition (2) in Proposition 4.1 must hold); and
• ~x1 has its k coordinates multiplicatively independent among them-

selves and also, the subgroup of Gm(K) generated by the coordi-
nates of ~x1 has trivial intersection with the subgroup spanned by Γ
and the coordinates of ~x2.

Let

Λ :=
{(
~xE1

1 , ~xE2
2

)
: E1 ∈MN1,N1(Z) and E2 ∈MN2,N2(Z)

}
;(4.7.1)

then Λ is finitely generated and all the points in OΨ (~x1, ~x2) lie in Λ.
We let S ⊆ N0 be an arbitrary infinite subset; we will prove that the set

U := {Ψn (~x1, ~x2) : n ∈ S}
must be Zariski dense in GN

m. If U is not Zariski dense, then we let V ⊂ GN
m

be its Zariski closure. Using Theorem 2.1, there must exist a set of the
form (3.10.5) containing infinitely many elements of U . So, at the expense
of replacing S by a still infinite subset (and thus replacing the set U with
its corresponding infinite subset), we may assume without loss of generality
that there exists a set

F := ~λ · S(~η1, . . . , ~ηr; δ1, . . . , δr) ·H,(4.7.2)

containing U . Now, regarding the set F , just as before, there exists a positive
integer m such that

(4.7.3) ~λm, ~ηm1 , . . . , ~η
m
r ∈ Λ,
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while the δj ’s are positive integers and H is a subgroup of Λ.
Since we assumed that U is not Zariski dense in GN

m, then V is a proper
subvariety of GN

m and in particular, the Zariski closure of H must be a
proper algebraic subgroup of GN

m; so, there exists a nonzero ~v ∈ Zn with the
property that

(4.7.4) for each ~h ∈ H we have
(
~h
)~v

= 1.

We write ~v = (~v1, ~v2) ∈ ZN1 × ZN2 . Using (4.7.3), there exist matrices
Bi ∈ MN1,N1(Z) and Ci ∈ MN2,N2(Z) (for i = 1, . . . , r) along with matrices
Dj ∈MNj ,Nj (Z) for j = 1, 2 such that

~ηmi =
(
~xBi1 , ~xCi2

)
for each i = 1, . . . , r and ~λm =

(
~xD1

1 , ~xD2
2

)
.

So, for each n ∈ S, using that Ψn(~x1, ~x2) ∈ F , we must have some some
nonnnegative integers ni (for i = 1, . . . , r) such that

Ψn(~x1, ~x2)m~v = (Φn
1 (~x1),Φn

2 (~x2))m~v

= Φn
1 (x1)m~v1 · Φn

2 (x2)m~v2

= ~x
m(An1 )t ~v1
1 · ~xm(An2 )t ~v2

2

= ~x
Dt1 ~v1+

∑r
i=1 p

niδiBti ~v1
1 · ~xD

t
2 ~v2+

∑r
i=1 p

niδiCti ~v2
2 ,(4.7.5)

where in (4.7.5) we also used (4.7.4). Since the coordinates of ~x1 are mul-
tiplicatively independent among themselves, and also multiplicatively inde-
pendent with respect to the coordinates of ~x2 we must have that

(4.7.6) m(An1 )t ~v1 = Dt
1 ~v1 +

r∑
i=1

pniδiBt
i ~v1,

for every n ∈ S. Hence, since none of the eigenvalues of A1 are multiplica-
tively dependent with respect to p, Lemma 4.5 yields that we must have
~v1 = 0. So, this means that for any vector ~v = ~v1 ⊕ ~v2 ∈ ZN with the

property that
(
~h
)~v

= 1 for each point ~h in the Zariski closure H of H inside

G1⊕G2, we must have that ~v1 is the zero vector in ZN1 . Therefore, H is an
algebraic group of the form G1⊕H2 for some algebraic subgroup H2 ⊆ G2.

So, the Zariski closure W of the set F (which is itself contained in the
Zariski closure of the set U) must be of the form G1⊕W2 for some subvariety

W2 ⊆ G2 because G1 ⊕ ~1G2 is contained in the stabilizer of W . However,
W2 contains all the points Φn

2 (x2) for n ∈ S. Then using the fact that S
is an infinite subset of N0 along with Proposition 4.1, we conclude that W2

must be the entire G2. So, actually W must be the entire G1 ⊕ G2 = GN
m,

which means that any infinite subset of the orbit of (~x1, ~x2) under (Φ1,Φ2)
must be Zariski dense in G1 ×G2.

This concludes our proof of Theorem 2.5. �
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Proof of Theorem 2.6. As noted before (see [AC08, MS14, BGR17]) we have
that (i)⇒(ii).

Our strategy for proving that (ii)⇒(iii) is to assume that condition (iii)
does not hold and then prove the existence of a point with a Zariski dense
orbit.

First note that there exists a suitable power An0 of A (for some n0 ≥ 1)
such that each eigenvalue of An0 is either equal to 1 or it is not a root of
unity and each eigenvalue of An0 which is multiplicatively dependent with
respect to p is actually of the form pm for some m ∈ N0. Next we prove that
condition (iii) from Theorem 2.6 is not changed when replacing Φ by Φn0 .

Lemma 4.8. Let n0 ∈ N. If condition (iii) from Theorem 2.6 is not met
for the regular self-map Φ : GN

m −→ GN
m, then condition (iii) is also not met

for Φn0 : GN
m −→ GN

m.

Proof of Lemma 4.8. When we replace Φ by Φn0 , then we replace A by An0

and also, replace ~β by

(4.8.1) ~β1 := ~β
∑n0−1
j=0 Aj .

Now, we assume there exists a nonzero vector ~v ∈ ZN such that condi-
tion (iii) is met for Φn0 , i.e., for some ` ∈ N we have:

(4.8.2)
(
An0`

)t
~v = ~v and

(
~β1

)(
∑`−1
j=0 A

n0j)
t
~v

= 1.

But then using (4.8.1), we see that

1 = ~β
(
∑`−1
j=0 A

n0j)
t·~v

1 = ~β

(∑n0`−1
j=0 Aj

)t
·~v
,

thus proving (in connection with (4.8.2)) that condition (iii) would be met
for Φ, contradiction. This concludes our proof of Lemma 4.8. �

Lemma 4.8 allows us to replace Φ by Φn0 and therefore, it suffices to find
a point ~α ∈ GN

m(K) with a Zariski denese orbit under Φn0 ; note that then
also OΦ(~α) would be Zariski dense in GN

m. So, from now on, we work under
the hypothesis that

• each eigenvalue of the matrix A corresponding to the group endo-
morphism ϕ (where Φ = τ~β ◦ ϕ) is either equal to 1 or it is not a

root of unity; and
• each eigenvalue of A which is multiplicatively dependent with re-

spect to p is actually of the form pm for some m ∈ N0.

This hypothesis yields that there exists an invertible matrix P with ra-
tional entries such that

(4.8.3) P−1AP = J1,i1

⊕
J1,i2−i1

⊕
· · ·
⊕

J1,is−is−1

⊕
D,

where D is an invertible matrix satisfying the following properties:

• no eigenvalue of D is a root of unity;
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• there does not exist k := trdegFpK + 1 Jordan blocks in the Jordan

canonical form of A corresponding to eigenvalues λ1,. . . , λk satis-
fying the equation λm1 = · · · = λmk = pr for some positive integers
m and r.

We write N1 := is and N2 := N − N1; so, N1 is the dimension of the
unipotent matrix B appearing on the right-hand side of equation (4.8.3),
while N2 is the dimension of the matrix D. According to Proposition 3.2
(especially, see Lemma 3.5), it suffices to prove the existence of a point with
a Zariski dense orbit under the assumption that the matrix A actually has
the form from the right-hand side of (4.8.3). Furthermore, condition (iii)
is unchanged when we replace A by another matrix with integer entries of
the form P−1AP where P and P−1 have rational entries. Indeed, one can
choose some positive integer m such that both mP and mP−1 have integer

entries and then condition (iii) holds for the triple
(
A, ~β,~v

)
(and ` ∈ N)

if and only if condition (iii) holds for
(
P−1AP, ~βm(P−1)t ,mP t~v

)
(and the

same integer `).
So, from now on, we may assume that the matrix A corresponding to the

endomorphism ϕ is itself equal to B
⊕
D.

For any vector ~x = (x1, . . . , xN ) ∈ GN
m(K), we let ~xB and ~xD denote

(x1, . . . , xN1) and (xN1+1, . . . , xN ) respectively. Since D has no eigenvalues
that are equal to a root of unity we can choose a vector ~γD ∈ GN2

m (K) such

that
(
~γD
)D−idN2 = ~βD. Also, there is a vector ~γB such that(

~γB
)B−idN1 = (β1, . . . , βi1−1, 1, βi1+1, . . . , βis−1, 1) .

Let ~γ := ~γB ⊕ ~γD ∈ GN
m. It is easy to check that the map τ~γ ◦ Φ ◦ τ−1

~γ is

given by
(4.8.4)

~x 7→ ~β′B~x
B ⊕ ~xD, where ~β′B := (1, . . . , 1, βi1 , 1, . . . , 1, βis) ∈ GN1

m (K).

According to [GS19, Lemma 3.1], it suffices to prove that there exists a point
with a Zariski dense orbit for the regular self-map on GN

m given by (4.8.4).

We also note that condition (iii) is unchanged when replacing A and ~β by A

and ~β′, where ~β′ := ~β′B ⊕~0. Indeed, for any positive integer `, we have that

(A`)t~v = ~v if and only if (B`)t~vB = ~vB and ~vD = 0

since 1 is not an eigenvalue of D`. Moreover, every eigenvector of (B`)t

corresponding to 1 must be of the form

(4.8.5) (0, . . . , 0, vi1 , 0, . . . , 0, vis).

So, for a vector as in (4.8.5), we have that(
~β
)(
∑`−1
i=0 A

i)
t
~v

= 1 if and only if
(
~β′
)(
∑`−1
i=0 A

i)
t
~v

= 1.



ZARISKI DENSE ORBITS 29

Therefore, in the proof of the implication (ii)⇒(iii) we may assume from

now on that ~βB = ~β′B and ~βD = (0, . . . , 0) (see (4.8.4)).
Since condition (iii) does not hold, in particular we have that

(4.8.6) βi1 , . . . , βis are multiplicatively independent.

Indeed, otherwise we would have some nonzero vector ~w ∈ Zs such that∏s
j=1 β

wj
ij

= 1 and so, letting

~v := (0, . . . , 0, w1, 0, . . . , 0, w2, 0, . . . , 0, ws, 0, . . . , 0) ∈ ZN

be the vector whose only possibly nonzero entries are its ij-th entries (for
j = 1, . . . , s), we immediately see that

(4.8.7) At~v = ~v and ~β~v = 1.

Thus showing that condition (iii) holds in this case. So, indeed, since we
assumed that condition (iii) does not hold, then we must have that the βij ’s
are multiplicatively independent (as claimed in (4.8.6)). We let

~αB := (γ1, . . . , γi1−1, 1, γi1+1, . . . , γi2−1, 1, γi2+1, . . . , γis−1, 1) ∈ GN1
m (K)

where the γj ’s are multiplicatively independent and also multiplicatively
independent with respect to the βij ’s.

Since the eigenvalues of D satisfy the hypotheses of Theorem 2.5, then we
can find ~αD ∈ GN2

m (K) which satisfies conditions (i)-(ii) from the conclusion
of Theorem 2.5 with respect to the subgroup Γ of GK

m spanned by all the βij ’s
and all the γj ’s. In particular, this means that writing ~αD := (α1, . . . , αN2),
we have that the αj ’s (along with the βij ’s and the γj ’s) satisfy the hypothe-

ses of Proposition 3.12. Hence, the orbit of ~α := ~αB ⊕ ~αD ∈ GN
m(K) under

Φ must be Zariski dense in GN
m, as claimed. This concludes our proof of

Theorem 2.6. �

As noted in Section 2, Theorem 1.5 is a consequence of Theorem 2.6.
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fibré canonique trivial Pure Appl. Math. Q. 4 (2008), no. 2, Special Issue: In
honor of Fedor Bogomolov. Part 1, 509–545.

[BGR17] J. P. Bell, D. Ghioca and Z. Reichstein, On a dynamical version of a theorem
of Rosenlicht, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 17 (2017), no. 1, 187–
204.

[BGRS17] J. P. Bell, D. Ghioca, Z. Reichstein, and M. Satriano, On the Medvedev-
Scanlon conjecture for minimal threefolds of non-negative Kodaira dimension,
New York J. Math. 23 (2017), 1185–1203.

[BGT16] J. P. Bell, D. Ghioca, and T. J. Tucker, The dynamical Mordell-Lang conjec-
ture, Mathematical Surveys and Monographs, 210, American Mathematical
Society, Providence, RI, 2016, xiii+280 pp.

[CGSZ21] P. Corvaja, D. Ghioca, T. Scanlon, and U. Zannier, The Dynamical Mordell-
Lang Conjecture for endomorphisms of semiabelian varieties defined over fields
of positive characteristic, J. Inst. Math. Jussieu 20 (2021), no. 2, 669–698.



30 DRAGOS GHIOCA AND SINA SALEH

[Fal94] G. Faltings, The general case of S. Lang’s conjecture, Barsotti Symposium
in Algebraic Geometry (Abano Terme, 1991), Perspect. Math., vol. 15, Aca-
demic Press, San Diego, CA, 1994, pp. 175–182.

[Ghi08] D. Ghioca, The isotrivial case in the Mordell-Lang Theorem, Trans. Amer.
Math. Soc. 360 (2008), no. 7, 3839–3856.

[GH18] D. Ghioca and F. Hu, Density of orbits of endomorphisms of commutative
linear algebraic groups, New York J. Math. 24 (2018), 375–388.

[GOSS21] D. Ghioca, A. Ostafe, S. Saleh, I. Shparlinski, A sparsity result for the Dy-
namical Mordell-Lang Conjecture in positive characteristic, to appear in the
Bull. Aust. Math. Soc., 2021, 10 pages.

[GOSS21b] D. Ghioca, A. Ostafe, S. Saleh, I. Shparlinski, On sparsity of rep-
resentations of polynomials as linear combinations of exponential func-
tions, submitted for publication, 2021, 29 pages, available online at
https://arxiv.org/pdf/2102.01949.pdf

[GS21] D. Ghioca and S. Saleh, Zariski dense orbits for regular self-maps on split
semiabelian varieties, to appear in the Canad. Math. Bull., 2021, 7 pages.

[GS19] D. Ghioca and M. Satriano, Density of orbits of dominant regular self-maps of
semiabelian varieties, Trans. Amer. Math. Soc. 371 (2019), no. 9, 6341–6358.

[GS17] D. Ghioca and T. Scanlon, Density of orbits of endomorphisms of abelian
varieties, Trans. Amer. Math. Soc. 369 (2017), no. 1, 447–466.

[GX18] D. Ghioca and J. Xie, Algebraic dynamics of skew-linear self-maps, Proc.
Amer. Math. Soc. 146 (2018), no. 10, 4369–4387.

[Hru96] E. Hrushovski, The Mordell-Lang conjecture for function fields, J. Amer.
Math. Soc. 9 (1996), no. 3, 667–690.

[Iit76] S. Iitaka, Logarithmic forms of algebraic varieties, J. Fac. Sci. Univ. Tokyo
Sect. IA Math. 23 (1976), 525–544.
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