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Abstract. We prove a uniform version of the Dynamical Mordell–Lang Conjecture for étale maps;
also, we obtain a gap result for the growth rate of heights of points in an orbit along an arbitrary
endomorphism of a quasiprojective variety defined over a number field. More precisely, for our
first result, we assume X is a quasi-projective variety defined over a field K of characteristic 0,
endowed with the action of an étale endomorphism Φ, and f : X −→ Y is a morphism with Y
a quasi-projective variety defined over K. Then for any x ∈ X(K), if for each y ∈ Y (K), the
set Sx,y := {n ∈ N : f(Φn(x)) = y} is finite, then there exists a positive integer Nx such that
#Sx,y ≤ Nx for each y ∈ Y (K). For our second result, we let K be a number field, f : X 99K P1

is a rational map, and Φ is an arbitrary endomorphism of X. If OΦ(x) denotes the forward orbit
of x under the action of Φ, then either f(OΦ(x)) is finite, or lim supn→∞ h(f(Φn(x)))/ log(n) > 0,
where h(·) represents the usual logarithmic Weil height for algebraic points.

1. Introduction

As usual in algebraic dynamics, given a self-map Φ: X −→ X of a quasi-projective variety X,
we denote by Φn the n-th iterate of Φ. Given a point x ∈ X, we let OΦ(x) = {Φn(x) : n ∈ N} be
the orbit of x. Recall that a point x is periodic if there exists some n ∈ N such that Φn(x) = x;
a point y is preperiodic if there exists m ∈ N such that Φm(y) is periodic. Our first result is the
following.

Theorem 1.1. Let X and Y be quasi-projective varieties defined over a field K of characteristic
0, let f : X −→ Y be a morphism defined over K, let Φ: X −→ X be an étale endomorphism, and
let x ∈ X(K). If |OΦ(x) ∩ f−1(y)| <∞ for each y ∈ Y (K), then there is a constant N (depending
only on X, Y , Φ and x, but independent of y) such that

|OΦ(x) ∩ f−1(y)| < N

for each y ∈ Y (K).

Theorem 1.1 offers a uniform statement for the Dynamical Mordell–Lang Conjecture. Indeed, the
Dynamical Mordell–Lang Conjecture (see [GT09, BGT16]) predicts the following: given a quasi-
projective variety X defined over a field K of characteristic 0, endowed with an endomorphism Φ,
for any point x ∈ X(K) and any subvariety V ⊂ X, the set

S(X,Φ, V, x) := {n ∈ N : Φn(x) ∈ V (K)}
is a finite union of arithmetic progressions {ak+b : k ∈ N} for some suitable integers a and b, where
the case a = 0 yields a singleton instead of an infinite arithmetic progression. We also note that
a = 0 is the typical case since a > 0 would mean that V contains a positive dimensional periodic
subvariety.

In particular, assuming x is not preperiodic, if V ⊂ X contains no periodic positive dimensional
subvariety intersecting the orbit of x, then the Dynamical Mordell–Lang Conjecture predicts that
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V intersects the orbit of x in finitely many points, see [BGT10, §3.1.3]. The Dynamical Mordell–
Lang Conjecture is still open in its full generality, though several partial results are known; for a
full account of the known results prior to 2016, see [BGT16]. One important case for which the
Dynamical Mordell–Lang Conjecture is known is the case of étale endomorphisms, see [BGT10].
Our Theorem 1.1 yields a uniform statement for the Dynamical Mordell–Lang Conjecture in the
case of étale endomorphisms, as follows.

Let X be a quasi-projective variety defined over a field K of characteristic 0, endowed with an
étale endomorphism Φ. Let {Xy}y∈Y be an algebraic family of subvarieties of X parametrized by
some quasi-projective variety Y (i.e., the family of fibers of a morphism X −→ Y ). Let x ∈ X(K)
be a non-preperiodic point with the property that its orbit under Φ meets each subvariety Xy

in finitely many points, i.e., no subvariety Xy contains a periodic positive dimensional subvariety
intersecting OΦ(x). Then Theorem 1.1 proves that there exists a uniform upper bound N for the
number of points from the orbit OΦ(x) on the subvarieties Xy as y varies in Y (K). We believe
the same statement would hold more generally (for an arbitrary endomorphism), as stated in the
following uniform version of the Dynamical Mordell–Lang Conjecture.

Conjecture 1.2. (Uniform Dynamical Mordell-Lang Conjecture) Let f : X −→ Y be a morphism
of quasi-projective varieties defined over a field K of characteristic 0, let Φ: X −→ X be an
endomorphism defined over K and let x ∈ X(K). If |OΦ(x) ∩ f−1(y)| <∞ for all y ∈ Y (K), then
there is a constant N (depending only on X, Y , Φ and x, but independent of y) such that

|OΦ(x) ∩ f−1(y)| < N

for all y ∈ Y (K).

Theorem 1.1 answers Conjecture 1.2 in the case of étale endomorphisms. Furthermore, at the
expense of replacing Φ by an iterate and also, replacing X by Φ`(X) for a suitable `, we see that
Theorem 1.1 yields a positive answer for Conjecture 1.2 for unramified endomorphisms Φ of a
smooth quasi-projective variety X; thus, the conclusion of Theorem 1.1 applies to any endomor-
phism of a semiabelian variety X defined over a field of characteristic 0. We note that a uniform
version of the Dynamical Mordell-Lang Conjecture was suggested by the automatic uniformity fea-
ture from the classical Mordell-Lang conjecture (see [Sca04]); also, there were various special cases
which suggested that a uniform Dynamical Mordell-Lang Conjecture might hold (see [DAOSS19]).

One of the key lemmas from the proof of Theorem 1.1 (see Lemma 2.1) provides the motivation
for our next result (which is also motivated in its own right by the Dynamical Mordell–Lang
Conjecture, as we will explain after its statement).

Theorem 1.3. Let X be a quasi-projective variety defined over Q, let Φ: X −→ X be an endo-
morphism, and let f : X 99K P1 be a rational function. Then for each x ∈ X(Q) with the property
that the set f(OΦ(x)) is infinite, we have

lim sup
n→∞

h(f(Φn(x)))

log(n)
> 0,

where h(·) is the logarithmic Weil height for algebraic numbers.

Note that if X = A1, the map Φ: X −→ X is given by Φ(x) = x+1, and f : X ↪→ P1 is the usual
embedding, then h(f(Φn(0))) = log(n) for n ∈ N. This example shows that Theorem 1.3 is, in
some sense, the best possible. However, we believe that this gap result should hold more generally
for rational self-maps. Specifically, we make the following conjecture.

Conjecture 1.4. (Height Gap Conjecture) Let X be a quasi-projective variety defined over Q, let
Φ: X 99K X be a rational self-map, and let f : X 99K P1 be a rational function. Then for x ∈ X(Q)
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with the property that Φn(x) avoids the indeterminacy locus of Φ for every n ≥ 0, if f(OΦ(x)) is
infinite then

lim sup
n→∞

h(f(Φn(x)))

log(n)
> 0.

Remark 1.5. We note that since in our proof of Theorem 1.3 we use the fact that there exist finitely
many points of bounded height in a given finite extension of our ground field, then our argument
does not extend to the function field case (i.e., replacing Q with the algebraic closure of L(t) for
a field L of characteristic 0). Also, in order to state a counterpart of our Conjecture 1.4 in the
function field setting, one would also need to take into account the isotriviality issues since the
orbit of x might be infinite but contain only points defined over the constant field.

Theorem 1.3 proves this conjecture in the case of endomorphisms. Many interesting number
theoretic questions fall under the umbrella of the gap conjecture stated above. As an example,
we recall that a power series F (x) ∈ Q[[x]] is called D-finite if it is the solution to a non-trivial
homogeneous linear differential equation with rational function coefficients. It is known that if∑

n≥0 a(n)xn is a D-finite power series over a field of characteristic zero, then there is some d ≥ 2,

a rational endomorphism Φ: Pd 99K Pd, a point c ∈ Pd and a rational map f : Pd 99K P1 such that
a(n) = f ◦ Φn(c) for n ≥ 0, see [BGT16, Section 3.2.1]. Heights of coefficients of D-finite power
series have been studied independently, notably by van der Poorten and Shparlinski [vdPS96], who
showed a gap result holds in this context that is somewhat weaker than what is predicted by our
height gap conjecture above; specifically, they showed that if

∑
n≥0 a(n)xn ∈ Q[[x]] is D-finite and

lim sup
n→∞

a(n)

log log(n)
= 0,

then the sequence {a(n)} is eventually periodic. This was improved recently [BNZ19], where it

is shown that if lim supn→∞
a(n)

log(n) = 0, then the sequence {a(n)} is eventually periodic. We see

this then gives additional underpinning to Conjecture 1.4. Furthermore, with the notation as in
Theorem 1.3, assume now that

(1.6) lim sup
n→∞

h(f(Φn(x)))

log(n)
= 0.

Then Theorem 1.3 asserts that Equation (1.6) yields that f(OΦ(x)) is finite. We claim that actually
this means that the set {f(Φn(x))}n∈N is eventually periodic. Indeed, for each m ∈ N, we let Zm

be the Zariski closure of {Φn(x)}n≥m. Then Zm+1 ⊆ Zm for each m and thus, by the Noetherian
property, we get that there exists some M ∈ N such that Zm = ZM for each m ≥M . So, there exists
a suitable positive integer ` such that Φ` induces an endomorphism of each irreducible component
of ZM ; moreover, each irreducible component of ZM contains a Zariski dense set of points from
the orbit of x. Furthermore, because f(OΦ(x)) is a finite set, we get that f must be constant on
each irreducible component of ZM and thus, in particular, f is constant on each orbit OΦ`(Φr(x))
for r sufficiently large. Hence, Theorem 1.3 actually yields that once Equation (1.6) holds, then
{f(Φn(x))}n∈N is eventually periodic.

It is important to note that one cannot replace lim sup with lim inf in Conjecture 1.4, even
in the case of endomorphisms. To see this, consider the map Φ: A3 → A3 given by (x, y, z) 7→
(yz, xz, z + 1). Then, letting c = (0, 1, 1), it is easily shown by induction that for n ≥ 0, we have

Φ2n(c) = (0, (2n)!, 2n+ 1) and Φ2n+1(c) = ((2n+ 1)!, 0, 2n+ 2).
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Consequently, if f : A3 → A1 is given by f(x, y, z) = x, then we see that f(Φ2n(c)) = 0 and
f(Φ2n+1(c)) = (2n+ 1)! for every n ≥ 0, and so

lim inf
n→∞

h(f(Φn(c)))

log(n)
= 0, while lim sup

n→∞

h(f(Φn(c)))

log(n)
=∞.

Despite the fact that the conjecture does not hold when one replaces lim sup with lim inf, we believe
the following variant of Conjecture 1.4 holds if we were to add the hypothesis that the orbit of x
under Φ is Zariski dense in X (note that in the above example, the orbit OΦ(x) lies inside the union
of the two lines x = 0 and y = 0 of A3).

Conjecture 1.7. Let X be an irreducible quasi-projective variety defined over Q, let Φ: X 99K X
be a rational self-map, and let f : X 99K P1 be a non-constant rational function. Let x ∈ X(Q) with
the property that Φn(x) avoids the indeterminacy locus of Φ for every n ≥ 0, and further suppose
that OΦ(x) is Zariski dense in X. Then

lim inf
n→∞

h(f(Φn(x)))

log(n)
> 0.

We point out that, if true, this would be a powerful result and would imply the Dynamical
Mordell–Lang conjecture for rational self-maps when we work over a number field. To see this,
let Z be a quasi-projective variety defined over Q, let Φ: Z 99K Z be a rational self-map, Y be a
subvariety of Z, and suppose that the orbit of x ∈ Z(Q) avoids the indeterminacy locus of Φ. As
before, denote by Zn the Zariski closure of {Φj(x) : j ≥ n}. Since Z is a Noetherian topological
space, there is some m such that Zn = Zm for every n ≥ m. Letting X = Zm, and replacing
Y with Y ∩X, it suffices to show that the conclusion to the Dynamical Mordell–Lang conjecture
holds for the data (X,Φ, x, Y ). We let X1, . . . , Xd denote the irreducible components of X and
let Yi = Y ∩ Xi. Since Φ|X is a dominant self-map, it permutes the components Xi, so there is
some b such that Φb(Xi) ⊂ Xi for each i. Then if we let x1, . . . , xd be elements in the orbit of x
with the property that xi ∈ Xi, then it suffices to show that the conclusion to the statement of
the Dynamical Mordell–Lang conjecture holds for the data (Xi,Φ

b, xi, Yi) for i = 1, . . . , d. Then by
construction, the orbit of xi under Φb is Zariski dense. We prove that either OΦb(xi) ⊂ Yi or that
OΦb(xi) intersects Yi finitely many times. If Yi = Xi or Yi = ∅ then the result is immediate; thus
we may assume without loss of generality that Yi is a non-empty proper subvariety of Xi. We pick
a non-constant morphism fi : Xi −→ P1 such that fi(Yi) = 1 (we find such fi by choosing first a
non-constant rational function Fi vanishing on Yi and then letting fi := Fi + 1). If Φbn(xi) ∈ Yi,
then h(fi(Φ

bn(xi))) = 0. Conjecture 1.7 implies that this can only happen finitely many times, and
so {n : Φbn(xi) ∈ Yi} is finite.

Acknowledgments. We thank Thomas Scanlon and Igor Shparlinski for stimulating conver-
sations. We are also grateful to both referees for many useful comments and suggestions which
improved our paper.

2. Proof of our main results

We recall the following definitions. The ring of strictly convergent power series Qp〈z〉 is the
collection of elements P (z) := a0 + a1z + a2z

2 + · · · ∈ Qp[[z]] such that |an|p → 0 as n → ∞ and
which thus consequently converge uniformly on Zp. The Gauss norm is given by |P (z)|Gauss :=
maxn≥0 |an|p. The ring Zp〈z〉 ⊂ Qp〈z〉 is the set of P (z) with |P (z)|Gauss ≤ 1, i.e. the set of P with
ai ∈ Zp.

Proof of Theorem 1.1. Clearly, we may reduce immediately (at the expense of replacing Φ by an
iterate of it) to the case X and Y are irreducible.
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A standard spreading out argument (similar to the one employed in the proof of [BGT10, Theo-
rem 4.1]) allows us to choose a model of X, Y , f , Φ, and x over an open subset U ⊆ SpecR, where
R is an integral domain which is a finitely generated Z-algebra. In other words, K is a field exten-
sion of the fraction field of R, we can find a map X −→ Y over U , a section U −→ X , and an étale
endomorphism X −→ X over U which base change over K to be f : X −→ Y , x : SpecK −→ X,
and Φ: X −→ X, respectively. After replacing U by a possibly smaller open subset, we can assume
U = SpecR[g−1] for some g ∈ R. Since R[g−1] is a finitely generated Z-algebra, it is of the form
Z[u1, . . . , ur]. Applying [Bel06, Lemma 3.1], we can find a prime p ≥ 5 and an embedding R[g−1]
into Qp which maps the ui into Zp. Base changing by the resulting map SpecZp −→ U , we can
assume U = SpecZp. We will abusively continue to denote the map X −→ Y by f , the étale

endomorphism X −→ X by Φ, and the section SpecZp = U −→ X by x. We let X = X ×Zp Fp, let

Φ: X −→ X be the reduction of Φ, and let x ∈ X (Fp) be the reduction of x ∈ X (Zp).
Notice that if f(Φn(x)) = y, then since x extends to a Zp-point of X , necessarily y ∈ Y (K)

extends to a Zp-point of Y as well. In particular, it suffices to give a uniform bound on the sets
{n : f(Φn(x)) = y} as y varies through the elements Y(Zp).

To prove Theorem 1.1, we may replace x by Φ`(x) for some ` ∈ N; similarly, we can replace
Φ by ΦD for some D ∈ N. Since |X (Fp)| < ∞, there exist integers i ≥ 0 and j ≥ 1 such that

Φ
i+j

(x) = Φ
i
(x); therefore, at the expense of replacing x by Φi(x) and also replacing Φ by Φj ,

we may assume that x is fixed by Φ. Applying the p-adic Arc Lemma (see e.g., Remark 2.3 and
Theorem 3.3 of [BGT10]) we can assume there are p-adic analytic functions φ1, . . . , φd ∈ Zp〈z〉 such
that letting B ⊂ X (Zp) be the set of points whose reduction mod p is x, then there is a bijection

ι : B −→ Zd
p, such that

ι(Φn(x)) = (φ1(n), . . . , φd(n)) := φ(n)

for each positive integer n.
Next, fix an embedding Y ⊂ Pr

Zp
, let {Vi}i be an open affine cover of Y, and for each i, let {Uij}j

be an open affine cover of f−1(Vi). We can further assume that each Vi is contained in one of
the coordinate spaces Ar

Zp
⊂ Pr

Zp
. Since X and Y are quasi-compact, we can assume the {Uij}i,j

and {Vi}i are finite covers. Then we can view f |Uij : Uij −→ Vi ⊆ Ar
Zp

as a tuple of polynomials

(pij0, . . . , pijr). Letting Pijk(z) = pijkι
−1φ(z), we see f |OΦ(x) is given by the following piecewise

analytic function:
f(Φn(x)) = (Pij0(n), . . . , Pijr(n))

whenever Φn(x) ∈ Uij .
It therefore suffices to prove that for each i, j, there exists Nij such that for all (y1, . . . , yr) ∈

Vi(Zp) ⊆ Ar(Zp), the number of simultaneous roots of Pijk(z)− yk (for k = 1, . . . , r) is bounded by
Nij . In other words, we have reduced to proving the lemma below, where S = {n : Φn(x) ∈ Uij}
and V = Vi(Zp).

Lemma 2.1. Let r be a positive integer, let V ⊂ Zr
p, and let S ⊂ N be an infinite subset. For each

1 ≤ k ≤ r, let Pk ∈ Zp〈z〉 and consider the function P : S −→ Zr
p given by

P (n) := (P1(n), . . . , Pr(n)).

Suppose the set {n ∈ S : P (n) = y} is empty if y ∈ Zr
p rV and is finite if y ∈ V . Then there exists

a positive integer N depending on V , P1 . . . , Pr, but independent of y, such that

|{n ∈ S : P (n) = y}| ≤ N
for all y ∈ V .

Proof. We may assume S is infinite since otherwise we can take N = |S|. We claim that Pk(z) is
not a constant power series for some k. Suppose to the contrary that Pk(z) = ck ∈ Zp for each k.
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If y := (c1, . . . , cr) ∈ Zr
p r V , then we can take N = 0. If y ∈ V , then {n ∈ S : P (n) = y} = S

which is infinite, contradicting the hypotheses of the lemma.
We have therefore shown that some Pk(z) is non-constant. Let K be the set of k for which

Pk(z) :=
∑

m≥0 ck,mz
m is non-constant. Given any non-constant element Q(z) :=

∑
m≥0 cmz

m of

Zp〈z〉, let

(2.2) D(Q) := max{m : |cm| = |Q|Gauss}.

Recall from Strassman’s Theorem (see [Str28] or [Cas86, Theorem 4.1, p. 62]) that the number of
zeros of Q(z) is bounded by D(Q). We can obtain a slight strengthening of Strassman’s Theorem
as follows.

Proposition 2.3. Let Q(z) :=
∑

m≥0 cmz
m ∈ Zp〈z〉 be a non-constant power series. Then there

exists a positive integer Dmax(Q) such that for any α ∈ Zp, there are at most Dmax(Q) zeros for
the power series Q(z)− α.

Proof of Proposition 2.3. We claim that the desired conclusion holds with Dmax(Q) := D(Q(z) −
Q(0)). Indeed, D(Q(z)−Q(0)) is a positive integer since Q(z) is a non-constant power series and
therefore, Q(z)−Q(0) is a non-constant power series with its constant term equal to 0. Now, this
means that for any α ∈ Zp, we have that the power series Q(z) − α has at most D(Q(z) − α)
zeros (according to Strassman’s Theorem). However, for each α ∈ Zp, we have that D(Q(z)−α) ≤
D(Q(z) − Q(0)) because the constant term of Q(z) − Q(0) is zero and therefore, it has absolute
value less than the absolute value of the constant term of any other power series Q(z) − α (while
the other corresponding coefficients of the two power series Q(z) − α and Q(z) − Q(0) are equal
to each other). So, the conclusion in Proposition 2.3 holds with Dmax(Q) := D(Q(z) − Q(0)), as
desired. �

We let N := mink∈KDmax(Pk) and then we see then that for all (y1, . . . , yr) ∈ Zr
p, the number of

simultaneous zeros of P1(z)− y1, . . . , Pr(z)− yr is bounded by N . In particular, |{n ∈ S : P (n) =
y}| ≤ N for all y ∈ V , as desired in the conclusion of Lemma 2.1. �

This concludes our proof of Theorem 1.1. �

Proof of Theorem 1.3. As before, at the expense of replacing Φ by an iterate, we may assume X
is irreducible. Furthermore, arguing as in the last paragraph of the introduction, we may assume
OΦ(x) is Zariski dense.

Let K be a number field such that X, Φ, and f are defined over K and moreover, x ∈ X(K). As
proven in [Sch79], there exists a constant c0 > 0 such that for each real number N ≥ 1, there are
fewer than c0N

2 algebraic points in K of logarithmic height bounded above by log(N). So, there
exists a constant c1 > 1 such that for each real number N ≥ 1, there are fewer than cN1 points in
K of logarithmic height bounded above by N .

Arguing as in the proof of Theorem 1.1, we can find a suitable prime number p, a model X of
X over some finitely generated Z-algebra R which embeds into Zp such that the endomorphism
Φ extends to an endomorphism of X , and a section Spec(Zp) −→ X extending x; we continue to
denote by Φ and x the endomorphism of X and the section Spec(Zp) −→ X , respectively. At the
expense of replacing both Φ and x by suitable iterates, we may assume the reduction of x modulo
p (called x) is fixed under the induced action of Φ on the special fiber of X . Consider the p-adic
neighborhood B ⊂ X (Zp) consisting of all points whose reduction modulo p is x. Then there is an
analytic isomorphism ι : B → Zm

p so that in these coordinates

x = (0, . . . , 0) ∈ Fm
p
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and Φ is given by (x1, · · · , xm) 7→ (φ1(x1, . . . , xm), · · · , φm(x1, . . . , xm)), where

φi(x1, . . . , xm) ≡
m∑
j=1

ai,jxj (mod p)

for each i = 1, . . . ,m, for some suitable constants ai,j ∈ Zp (for more details, see [BGT16,
Section 11.11]). Applying [BGT16, Theorem 11.11.1.1] (see also the proof of [BGT16, Theo-
rem 11.11.3.1]), there exists a p-adic analytic function G : Zp −→ Zm

p such that for each n ≥ 1, we
have

(2.4) ‖Φn(x)−G(n)‖ ≤ p−n,
where for any point (x1, . . . , xm) ∈ Zm

p , we let

‖(x1, . . . , xm)‖ := max
1≤i≤m

|xi|p.

As in the proof of Theorem 1.1, let V1 ' A1 and V2 ' A1 be the standard affine cover of P1,
and let {Uij} be a finite open affine cover of X minus the indeterminacy locus of f such that
f(Uij) ⊂ Vi ' A1. Let

Sij := {n : Φn(x) ∈ Uij}.
Since f |Uij is given by a polynomial with p-adic integral coefficients, there exist Hij(z) ∈ Zp〈z〉
such that

f(G(n)) = Hij(n)

whenever n ∈ Sij . Notice that if f(Φn(x)) = y, then since x extends to a Zp-point of X , necessarily
y ∈ P1(K) extends to a Zp-point of P1 as well. Thus, we need only concern ourselves with roots of
Hij(z)− t for t ∈ Zp.

Lemma 2.5. The following holds:

(1) for all i and j, we have that {f(Φn(x)) : n ∈ Sij} is an infinite set,
(2) for all i and j, we have that Nr Sij has upper Banach density zero,
(3) there exist i and j, there exists a constant κ and a sequence M1 < M2 < . . . such that

#{n ∈ Sij : n ≤ κM`} ≥M`.

Proof of Lemma 2.5. We first prove property (1) for all i, j. If {f(Φn(x)) : n ∈ Sij} = {t1, . . . , tk}
is a finite set, then

OΦ(x) ⊂ (X r Uij) ∪
⋃

1≤`≤k
f−1(t`)

which contradicts the fact that OΦ(x) is Zariski dense.
We next prove property (2) for all i, j. Since Z := X r Uij is a closed subvariety, [BGT15,

Corollary 1.5] tells us Nr Sij is a union of at most finitely many arithmetic progressions and a set
of upper Banach density zero. Since OΦ(x) is Zariski dense, NrSij cannot contain any non-trivial
arithmetic progressions. Indeed, if there exists 0 ≤ b < a such that {an + b : n ∈ N} ⊂ N r Sij ,

then writing OΦ(x) =
⋃

0≤`<a Φ`OΦa(x), we see Φ`OΦa(x) is Zariski dense for some `; applying a

suitable iterate of Φ, we see ΦbOΦa(x) is also Zariski dense, contradicting the fact that ΦbOΦa(x)
is contained in the proper closed subvariety Z. Thus, Nr S has upper Banach density zero.

Next, we turn to property (3). Let U denote our set of affine patches Uij , and let κ = |U|. For
each M ≥ 2, there must exist some element g(M) ∈ U and 0 ≤ n1 < n2 < · · · < nM ≤ (M − 1)κ
such that Φn`(x) ∈ g(M) for 1 ≤ ` ≤M . Let i and j be such that g(M) = Uij for infinitely many
M ≥ 2. With this choice of i and j, by construction, there is a sequence M1 < M2 < . . . such that
Sij contains at least M` of the integers 0 ≤ n ≤ (M` − 1)κ. As a result,

#{n ∈ Sij : n ≤ κM`} ≥M`
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finishing the proof of lemma. �

Let i and j be as in Lemma 2.5. For ease of notation, let H(z) = Hij(z) and S = Sij . Since

lim sup
n→∞

h(f(Φn(x)))

log(n)
≥ lim sup

n∈S,n→∞

h(f(Φn(x)))

log(n)

it suffices to show the latter is positive.
We split our proof now into two cases which are analyzed separately in Lemmas 2.6 and 2.10.

Before giving the proof of Lemma 2.6, we recall that by the Weierstrass Preparation Theorem
[BGR84, 5.2.2], if P (z) := a0 + a1z+ a2z

2 + · · · ∈ Qp〈z〉 is nonzero and D = D(P ) as in (2.2), then
P (z) = Q(z)u(z) where u(z) is a unit in Qp〈z〉 with |u(z)|Gauss = 1, and Q(z) is a polynomial of
degree D whose leading coefficient has p-adic norm equal to |P (z)|Gauss. Combined with [BGR84,
5.1.3 Proposition 1], we see u(z) = c + pu0(z) with |c|p = 1 and |u0|Gauss ≤ 1. In particular,
|u(n)|p = 1 for all n ∈ N.

Lemma 2.6. If H(z) is non-constant, then the conclusion of Theorem 1.3 holds.

Proof of Lemma 2.6. Writing H(z) = a0 + a1z + a2z
2 + · · · ∈ Zp〈z〉, there exists some L ≥ 1 such

that |aL|p > |aj |p for all j > L. As proven in Lemma 2.1, since H(z) is not constant, there exists
a uniform bound C such that for each t ∈ Zp, the number of solutions to H(z) = t is at most C.
Furthermore, if n is an element of S such that f(Φn(x)) = t, then equation (2.4) yields

|H(n)− t|p ≤ p−n.
As mentioned above, by the Weierstrass Preparation Theorem, we can write

H(z)− t = qt(z)ut(z)

with qt(z) a polynomial of degree D(H − t) ≤ L and ut(z) a unit of Gauss norm 1; moreover, the
leading coefficient of qt(z) has p-adic norm equal to the Gauss norm of H − t. Hence, we can write

qt(z) = bt(z − β1,t) · · · (z − βD(H−t),t)

with bt ∈ Qp, the βj,t ∈ Qp, and

|bt|p = |H − t|Gauss ≥ |aL|p.
We have therefore bounded |bt|p below independent of t ∈ Zp. As noted before the proof of the
lemma, we know |ut(n)|p = 1 for all t ∈ Zp and n ∈ N. Hence, there is a constant c2 > 0
(independent of t) such that for all t ∈ Zp, if |H(n)− t|p ≤ p−n then there exists 1 ≤ j ≤ D(H − t)
such that

|n− βj,t|p < c2p
− n

D(H−t) ≤ c2p
− n

L .

So, if n1, . . . , nL+1 are distinct elements of S with |H(ni)− t|p ≤ p−ni for i = 1, . . . , L+1 then there

exist k1, k2 with k1 6= k2 and j such that |nk1 − βj,t|p < c2p
−nk1

/L and |nk2 − βj,t|p < c2p
−nk2

/L.
Consequently,

|nk1 − nk2 |p < c2p
−min(nk1

,nk2
)/L.

Hence, letting | · | be the usual Archimedean absolute value, we have that

|nk1 − nk2 | > c2p
min(nk1

,nk2
)/L;

therefore there exists a positive constant c3 (independent of t, since both L and c2 are independent
of t) such that for all M ≥ 1 and all t ∈ P1(K),

(2.7) #{n ≤M : n ∈ S and f(Φn(x)) = t} ≤ c3 log(M).1

1In fact, we have a substantially better bound. Let expk denote the k-th iterate of the exponential function and
let Lp(M) be the smallest integer k such that expk(p) > M . Then #{n ≤M : n ∈ S and f(Φn(x)) = t} ≤ c3Lp(M),
however we will not need this stronger bound.
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As an aside, we note that this type of gap is similar to the one obtained for the Dynamical Mordell–
Lang problem in [BGKT10].

Now, let κ be as in Lemma 2.5, and choose a constant c4 > 1 such that

(2.8) c3 · log(κcr4) · cr1 < cr−1
4

for all sufficiently large r ∈ R, e.g. we may take c4 := 2c1. Let M1 < M2 < . . . be as in Lemma
2.5, and let

N` = dlogc4
(M`)e.

Property (3) of Lemma 2.5 implies

(2.9) #{n ≤ κcN`
4 : n ∈ S} ≥M` > cN`−1

4 .

To conclude the proof, we show that for all ` sufficiently large, there exists some n` ≤ κcN`
4 with

the property that n` ∈ S and h(f(Φn`(x))) ≥ N`. If this were not the case, then since there are

fewer than cN`
1 algebraic numbers t ∈ P1(K) of logarithmic Weil height bounded above by N`, by

(2.9) there would be such an algebraic number t with

#{n ≤ κcN`
4 : n ∈ S and f(Φn(x)) = t} > cN`−1

4

cN`
1

> c3 log(κcN`
4 )

and this violates inequality (2.7). We have therefore proven our claim that for all ` sufficiently

large, there exists a positive integer n` ≤ κcN`
4 with h(f(Φn`(x))) ≥ N`. So,

lim sup
n→∞

h(f(Φn(x)))

log(n)
≥ lim

`→∞

N`

log(κ) +N` log(c4)
=

1

log(c4)
> 0

as desired in the conclusion of Theorem 1.3. �

Lemma 2.10. If H(z) is a constant, then lim supn→∞
h(f(Φn(x)))

log(n) =∞.

Proof of Lemma 2.10. By property (1) of Lemma 2.5, we can find a sequence n1 < n2 < . . . with
the ni ∈ S such that

f(Φn2k−1(x)) 6= f(Φn2k(x)) and {n ∈ S : n2k−1 < n < n2k} = ∅
for all k ≥ 1.

Let t0 := H(n) (for all n ∈ N) and for each i ≥ 1, let ti := f(Φni(x)). Then (2.4) yields that

|ti − t0|p ≤ p−ni .

So, |t2k − t2k−1|p ≤ p−n2k−1 and since t2k 6= t2k−1, we have that for all k ≥ 1,

(2.11) h(t2k − t2k−1) = h
(
(t2k − t2k−1)−1

)
≥ c5n2k−1,

for a constant c5 depending only on the number field K and on the particular embedding of K
into Qp (for example, for the usual embedding of K into Qp, we may take c5 := 1

2[K:Q]). Inequality

(2.11) yields that

(2.12) max{h(t2k), h(t2k−1)} ≥ 1

2
(c5n2k−1 − log(2))

since h(a+ b) ≤ h(a) + h(b) + log(2) for any a, b ∈ Q.
First suppose that max{h(t2k), h(t2k−1)} = h(t2k−1) for infinitely many k. Then consider a

subsequence k1 < k2 < . . . where max{h(t2kj ), h(t2kj−1)} = h(t2kj−1). Letting mj = n2kj−1, we see

h(f(Φmj (x))) ≥ 1

2
(c5mj − log(2))

which shows lim supn→∞
h(f(Φn(x)))

log(n) =∞.
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Thus, we may assume that max{h(t2k), h(t2k−1)} = h(t2k) for all k sufficiently large. We claim
that

(2.13) lim sup
k→∞

h(f(Φn2k(x)))

log(n2k)
=∞.

If this is not the case, then there is some C ′ > 0 such that for all sufficiently large k, we have

C ′ >
h(f(Φn2k(x)))

log(n2k)
≥ 1

2 log(n2k)
(c5n2k−1 − log(2)),

where we have made use here of inequality (2.12). In particular, there is a constant C > 1 such
that for all k sufficiently large,

(2.14) n2k > C n2k−1 .

Recalling that S does not contain any positive integers between n2k−1 and n2k, inequality (2.14)
implies that NrS has positive upper Banach density. This contradicts property (2) of Lemma 2.5,

and so our initial assumption that C ′ > h(f(Φn2k (x)))
log(n2k) is incorrect. This proves equation (2.13), and

hence Lemma 2.10. �

Clearly, Lemmas 2.6 and 2.10 finish the proof of Theorem 1.3. �
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