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Abstract. Given an integer g and also some given integers m
(sufficiently large) and c1, . . . , cm , we show that the number of all
non-negative integers n 6 M with the property that there exist
non-negative integers k1, . . . , km such that

n2 =

m∑
i=1

cig
ki

is o
(

(logM)
m−1/2

)
. We also obtain a similar bound when dealing

with more general inequalities∣∣∣∣∣Q(n)−
m∑
i=1

ciλ
ki

∣∣∣∣∣ 6 B,
where Q ∈ C[X] and also λ ∈ C (while B is a real number).

1. Introduction

1.1. Set-up. Motivated by applications to the dynamical Mordell-Lang
conjecture (for more details on this open problem in arithmetic dynam-
ics, we refer the reader to [BGT16]), the authors [GOSS21] have re-
cently considered the question about representations of values of poly-
nomials Q ∈ Q[X] as fixed linear combinations of powers of a prime
p . In particular, it is shown in [GOSS21] that for fixed coefficients
c1, . . . , cm ∈ Q and integral exponents a1, . . . , am the number of posi-
tive integers n 6 N for which Q(n) can be represented as

Q(n) =
m∑
i=1

cip
aiki

with some k1, . . . , km ∈ Z is bounded by O ((1 + logN)m) where the
implied constant depends only on the initial data. In fact it is easy
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to see that for Q(n) = n , this bound is tight. Furthermore, a similar
result is given in [GOSS21] for representations of the form

(1.1) Q(n) =
m∑
i=1

s∑
j=1

ci,jλ
aiki
j ,

with algebraic integers λ1, . . . , λs , each one of them of absolute value
equal to q or

√
q (where q is a given power of a prime number).

Here we first consider representations of the form (1.1) with s = 1
but arbitrary complex (rather than algebraic) parameters. We also
generalise this to approximations of polynomials rather than precise
equalities, that is, we consider inequalities of the form

(1.2)

∣∣∣∣∣Q(n)−
m∑
i=1

ciλ
ki

∣∣∣∣∣ 6 B,

with Q ∈ C[X] , c1, . . . , cm, λ ∈ C and some B ∈ R .
We then use a very different approach to obtain more precise results

in the very appealing special case of squares, that is, for Q(n) = n2 .
This approach is based on a version of the square-sieve of Heath-
Brown [H-B84] augmented by results of Katz [Kat02] on bounds mul-
tiplicative character sums with non-singular multivariate polynomials
and results of Baker and Harman [BaHa98] on shifted primes with a
large prime divisors.

1.2. Notation. We now recall that the notations A = O(B), A � B
and B > A are all equivalent to the inequality |A| 6 cB with some
constant c . Throughout this work all implied constants may depend on
the polynomial Q and the parameters ci , i = 1, . . . ,m and λ in (1.2)
and also on g in (1.4) below.

For a finite set S we use #S to denote its cardinality.

1.3. New results. We remark that the argument of [GOSS21] is based
on a result of Laurent [Lau84, Théorème 6], which required all pa-
rameters to be defined over a number field; furthermore, the result
of [Lau84] refers to equalities, not inequalities. Hence here we use a
different approach to establish the following result.

Theorem 1.1. Let c1, . . . , cm, λ ∈ C, B ∈ R and let Q ∈ C[X] be a
non-constant polynomial. Then for N > 2 we have

#{n 6 N : (1.2) holds for some k1, . . . , km ∈ Z} � (logN)m.

We observe that the implied constant in Theorem 1.1 is effectively
computable in terms of the sizes of the initial data, while in the result
of [GOSS21] it is not.
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We also note (see Example 2.1) that if one considers inequalities of
the form

(1.3)

∣∣∣∣∣Q(n)−
m∑
i=1

s∑
j=1

ci,jλ
aiki
j

∣∣∣∣∣ 6 B,

for some arbitrary complex numbers λj , then one cannot expect a
similar result as in Theorem 1.1. More precisely, there exists λ ∈ C
such that for any ε > 0 and each sufficiently large integer n , there
exists some positive integer kn with the property that∣∣∣∣n− i

π
·
(
2kn − λkn

)∣∣∣∣ 6 ε,

see Example 2.1 for more details.
Furthermore, we consider the case of perfect squares and study rela-

tions of the form

(1.4) n2 =
m∑
i=1

cig
ki ,

with non-zero integer coefficients c1, . . . , cm and an integer basis g >
2. Using the square-sieve of Heath-Brown [H-B84] we improve the
exponent m of logN .

For m = 2, we write the equation (1.4) as n2 = gk1
(
c1 + c2g

k2−k1
)

(with k2 > k1 ). Hence either c1 + c2g
k2−k1 or c1g + c2g

k2−k1+1 is a
perfect square j2 for some j 6 n 6 N . Since the largest prime divisor
of j2+c for any c 6= 0 tends to infinity with j , see [Kea69], we see that
k2 − k1 can take only finitely many values. Hence for m = 2 we have
O(logN) solution to (1.4) with n 6 N . This bound is obviously the
best possible as the example of the numbers 2k1 +2k2 , with k2 = k1 +3
and even k1 , shows. We also note that in [CGSZ, Theorem 5.1 (B)], it
is established even more generally the precise set of all positive integers
n for which un is of the form c1g

k1 + c2g
k2 (for some given g , c1 , c2 ),

where {un}n>1 is an arbitrary linear recurrence sequence (the result
of [CGSZ, Theorem 5.1 (B)] is stated only when g = p is a prime
number, but as remarked in [CGSZ, Section 5], the method extends
verbatim to an arbitrary integer g ).

So we are mostly interested in the case of m > 3; furthermore, we
note that for m = 3 (and in some cases, depending on g and the ci ,
even for m = 4), more precise results are available in the literature
(see [CoZa13]). However, when m > 5, it is very difficult to find a
precise description of all n ∈ N such that n2 is of the form (1.4) (for
some given integers g and ci ).
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Theorem 1.2. Let m > 3 and let c1, . . . , cm and g > 2 be integers.
Then for N > 2 we have

#{n 6 N : (1.4) holds for some k1, . . . , km ∈ Z} 6 (logN)m−γm+o(1),

where

γ3 =
677

1969
and γm =

677m

1323m+ 1354
for m > 4.

We observe that γm → 677/1323 = 0.5117 . . . as m→∞ . Thus for
large m Theorem 1.2 saves more than 1/2 compared to the general
bound of Theorem 1.1. More precisely, simple calculations show that
γm > 1/2 for m > 44.

We remark that the proof of Theorem 1.2 is based on some ideas
and results from [LuSh09], later enhanced in [BaSh17]. The numerical
constants come from the work of Baker and Harman [BaHa98] on large
prime divisors of shifted primes.

Furthermore, as in [BaSh17] we observe that under the Generalised
Riemann Hypothesis we can obtain a slightly larger value of γm .

On the other hand defining s as the largest integer with s(s+1)/2 6
m and considering numbers

(
gh1 + . . .+ ghs

)2
with

hi 6
log (N/s2)

2 log g
, i = 1, . . . , s,

we see that for at least one choice c1, . . . , ct > 0 with t 6 m and
c1 + . . . + ct 6 s(s + 1)/2 occurs at least C0(logN)s times, for some
constant C0 > 0, which shows that the best possible exponent in any
result of the type of Theorem 1.2 must grow with m (at least as about√

2m for large m).
Note that cycling over all gm choices of

(c1, . . . , cm) ∈ {0, . . . , g − 1}m

we obtain from Theorem 1.2 a result about the sparsity of the values
of n for which n2 has at most m non-zero digits to base g . Various
finiteness results on sparse digital representations of perfect powers
can be found in [BeBu14, BBM13, CoZa13, Mos21]. Note that as we
have just seen, in our setting of arbitrary m no finiteness result is
possible, and hence we can use Theorem 1.2 to provide a counting result
related to such representations. More precisely we have the following
straightforward consequence:

Corollary 1.3. Let m > 3 and let K > 1 and g > 2 be integers. Then
there are at most Km−γm+o(1) integer squares with g -ary expansion of
length K and with at most m non-zero digits.
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2. Proof of Theorem 1.1

2.1. Counterexample to a possible extension to (1.3). Before proceed-
ing to the proof of Theorem 1.1, we provide the Example 2.1 (mentioned
in Section 1.3), which shows that one cannot expect to generalise The-
orem 1.1 to (1.3), that is, to the case when we approximate Q(n) with
a sum of powers of different λj .

Example 2.1. We consider the sequence of positive integers {bj}j>2
given by

b2 = 2 and bj+1 = 2bj + bj + 1 for j > 2.

We let λ = 2 · e2παi , where

α =
∞∑
j=2

j − 1

2bj
.

We let n be a positive integer and show that

(2.1) n− i

π
·
(

22bn − λ2bn
)
� n

bn+1

.

Indeed, we first notice that

λ2
bn

= 22bn · e2πtni,
where

tn =
∞∑

j=n+1

j − 1

2bj−bn
.

Then

22bn − λ2bn = 22bn · ((1− cos(2πtn))− i sin (2πtn))

= 22bn · 2 sin(πtn) · (sin(πtn)− i cos(πtn)) ,

and so,

(2.2)
i

π
·
(

22bn − λ2bn
)

=
21+2bn sin(πtn)

π
· eπtni.

Now, by the definition of the rapidly increasing sequence {bj}j>2 , we
have that

(2.3) 0 < tn −
n

2bn+1−bn
<

1

22bn+1
;

also, clearly, tn → 0 as n → ∞. Furthermore, we know that when t
is close to 0, then

(2.4) | sin t− t| 6 t2.
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So, using the inequalities (2.3) and (2.4), along with the fact that
bn+1 = 2bn + bn + 1, we get that

(2.5)

∣∣∣∣∣n− 21+2bn sin (πtn)

π

∣∣∣∣∣ < 2−bn � 1/bn+1

for all n sufficiently large. Also, for n large, using the inequality (2.3)
we have that

(2.6)
∣∣1− eπtni∣∣ < 2−bn � 1/bn+1.

Recalling (2.2) and using (2.5) and (2.6), we derive (2.1).

Therefore, the conclusion of Theorem 1.1 cannot be generalised to
inequalities (1.3) where we approximate a polynomial Q(n) with sums
of powers of different λ1, . . . , λs .

Next we proceed to proving Theorem 1.1.

2.2. Preliminaries. We first note that if |λ| = 1, then the inequal-
ity (1.2) yields that |Q(n)| is uniformly bounded above and therefore,
we can only have finitely many n ∈ N satisfying such inequality since
Q is a non-constant polynomial. Furthermore, since the exponents ki
appearing in the inequality (1.2) are arbitrary integers, then without
loss of generality, we may assume from now on that |λ| > 1.

Now, if some of the exponents ki , i = 1, . . . ,m , from (1.2) were
non-positive, then the absolute value of the corresponding terms ciλ

ki

is uniformly bounded above. So, at the expense of replacing B by
a larger constant (but depending only on the absolute values of the
ci ), we may assume from now on, that each exponent ki from (1.2) is
positive.

Let Q(X) = adX
d + · · ·+ a1X + a0 for complex numbers a0, . . . , ad

with ad 6= 0. There exists N0 > 0 (depending only on d and the
absolute values of the coefficients of Q) such that

(2.7) |Q(n)| 6 2
∣∣adnd∣∣ 6 N0 · nd for each n > N0.

Furthermore, at the expense of replacing N0 by a larger positive integer
(but still depending only on d , the absolute values of the coefficients
of Q and also depending on B in this case), we may also assume that

(2.8) |Q(n1 + n2)−Q(n1)| > 2B for each n1, n2 > N0.

2.3. Induction. We proceed to prove our desired result by induction
on m .

We prove first the base case m = 1, which also constitutes the in-
spiration for our proof for the general case in Theorem 1.1. So, we
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have that |Q(n)| = O(Nd) for each 0 6 n 6 N (see also the inequal-
ity (2.7)). Therefore, for n 6 N satisfying the inequality

(2.9)
∣∣Q(n)− c1λk1

∣∣ 6 B

one has |λ|k1 = O
(
Nd
)

and thus, k1 = O (logN). On the other hand,
for a given k1 , the inequality (2.9) is satisfied by O(1) non-negative
integers n (see also (2.8)), thus proving the desired bound in the case
m = 1.

So, suppose that the result is true for m 6 s and we prove that
Theorem 1.1 holds when m = s + 1; clearly we may assume each ci
for i = 1, . . . , s + 1 is nonzero. Since there are m powers of λ in the
inequality (1.2), then in order to prove Theorem 1.1, it suffices to prove
that the set S0 , consisting of all n ∈ N for which there exist integers

(2.10) 1 6 k1 6 k2 6 · · · 6 ks+1

such that

(2.11)

∣∣∣∣∣Q(n)−
s+1∑
j=1

cjλ
kj

∣∣∣∣∣ 6 B

satisfies

(2.12) {n ∈ S0 : n 6 N} � (logN)s+1 .

Let ∆ ∈ N be sufficiently large (but depending only on |λ| , which
is larger than 1, and also depending on the absolute values of the
c1, . . . , cs+1 ) such that we have

(2.13)
|cs+1|

2
· |λ|ks+1 6

∣∣∣∣∣
s+1∑
j=1

cjλ
kj

∣∣∣∣∣ ,
for all integers ks+1 > · · · > k1 > 0 satisfying the inequality (2.11)
along with the inequality ks+1 − ks > ∆.

Now, we let U be the subset of S0 consisting of integers n ∈ N
for which one can find integers kj satisfying (2.11) and in addition,
ks+1−ks < ∆. Then the existence of such a solution tuple (k1, . . . , ks+1)
for each n ∈ U means that∣∣Q(n)−

(
c1λ

k1 + · · ·+ cs−1λ
ks−1 +

(
cs + cs+1λ

ks+1−ks
)
λks
)∣∣ 6 B.

Because ks+1− ks ∈ {0, . . . ,∆− 1} , applying the induction hypothesis
for each of the possible ∆ values of ks+1 − ks , we obtain the desired
conclusion regarding the asymptotic growth given by (2.12) (further-
more, we actually get that the exponent from the right-hand side of
the inequality (2.12) is s = m− 1 not s+ 1 = m).
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On the other hand, for each n ∈ S0 \U satisfying n > N0 , we know
that there must exist some tuple of nonnegative integers (k1, . . . , ks+1)
satisfying (2.11) and in addition, ks+1−ks > ∆. Then using both (2.7)
and (2.13), we get

|cs+1|
2
· |λ|ks+1 −B 6

∣∣∣∣∣c0 +
s+1∑
j=1

cjλ
kj

∣∣∣∣∣−B 6 |Q(n)| 6 2|ad| · nd,

which implies that

(2.14) ks+1 6 b0 (1 + log n)

for some positive real number b0 depending only on B , |λ| , d , |ad|
and |cs+1| .

So, let N be an integer larger than N0 ; then for each integer N0 6
n 6 N contained in S0 \ U , we know there exists an (s + 1)-tuple
of integers ki satisfying (2.10) and (2.11). Combining the fact that
1 6 ki 6 ks+1 with the inequality (2.14), we get that there are at most
(b0 (1 + logN))s+1 tuples (k1, . . . , ks+1) for which we could find some
n ∈ S0 \ U satisfying the inequality N0 6 n 6 N . However, since
n > N0 , then the inequality (2.8) yields that for any such (s+1)-tuple
of integers ki , there are at most N0 integers n ∈ (S0 \U ) ∩ [N0, N ]
satisfying (2.11) with respect to the tuple (k1, . . . , ks+1). Hence, we
get the inequality

# {n 6 N : n ∈ S0 \U } 6 N0 ·
(
1 + (b0 · (1 + logN))s+1) .

for each positive integer N > N0 . This concludes our proof of Theo-
rem 1.1.

3. Construction and properties of the sieving set of
primes

3.1. Multiplicative orders. Let τ`(g) denote the multiplicative order
of an integer g > 2 modulo a prime ` , that is, the smallest positive
integer τ for which gτ ≡ 1 mod ` .

Let α be a fixed real number such that

(3.1) # {` 6 z : ` is prime and P (`− 1) > `α} � z

log z

for all sufficiently large z , where P (k) denotes the largest prime divisor
of an integer k > 2, and the implied constant depends only on α .

We recall the following well known result which follows from the
divisibility τ`(g) | `− 1 (provided gcd(g, `) = 1) and the bound

#
{
` 6 z : ` is prime, P (`− 1) > `1/2

}
= (1 + o(1))

z

log z
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as z → ∞ , which easily follows from a stronger result of Erdős and
Murty [ErMu96, Theorem 3]. Details can be found in the work of
Kurlberg and Pomerance [KuPo05, Lemma 20].

Lemma 3.1. For any fixed α > 1/2 satisfying (3.1) and any fixed inte-
ger g > 1 we have

# {` 6 z : ` is prime, τ`(g) > `α} � z

log z
as z →∞.

For an integer s > 1 we denote by ν2(s) the 2-adic order of s , that
is, the largest power ν such that 2ν | s .

Lemma 3.2. For any fixed α > 1/2 satisfying (3.1) and any fixed inte-
ger g > 1 there are some absolute constants C1, C2 > 0, such that for
every sufficiently large real number z > 1, there exist some integer u0
and a set Lz ⊆ [z, C1z] of primes of cardinality

#Lz >
C2z

log z log log z

such that for every ` ∈ Lz we have

P (`− 1) > zα, P (`− 1) | τ`(g), ν2 (τ`(g)) = u0.

Proof. Lemma 3.1 obviously implies that for some absolute constants
C1, C3 there are at least C3z/ log z primes ` ∈ [z, C1z] satisfying only
the first two conditions, see also [LuSh09, Lemma 5.1]. Let L z be this
set. Trivially, there are at at most z/2v0 primes ` with ν2(τ`(g)) > v0 .
Hence taking a sufficiently large C4 , and v0 = bC4 log log zc , we see

that if we remove these primes from L z we obtain the set of L̃z ⊆ L z

of cardinality

#L̃z > #L z − z/2v0 > 0.5#L z > 0.5C3z/ log z.

Since obviously ν2 (τ`(g)) 6 ν2 (`− 1) 6 v0 , making a majority decision
we can find a set of Lz of cardinality

#Lz >
#L̃z

v0
>

0.5C3z

v0 log z

with ν2 (τ`(g)) = u0 for some fixed u0 6 v0 for every ` ∈ Lz . Taking
C2 = 0.5C3/C4 we conclude the proof. �

We note that the Brun-Titchmarsh theorem (see [IwKo04, Theo-
rem 6.6]) can be used to remove log log z in the bound on #Lz of
Lemma 3.2. However in our final result we do not try to optimise terms
of this order, so we ignore this and similar potential improvements.
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3.2. Sieving set Lz . We see that using a result of Baker and Har-
man [BaHa98] one can take

(3.2) α = 0.677,

in Lemmas 3.1 and 3.2.
From now on, for any positive real number z , we fix a set Lz satis-

fying the conclusion of Lemma 3.2 with α given by (3.2).

3.3. Bounds of some arithmetic sums. For an integer K we consider
the set

(3.3) K = Km(K)

where

(3.4) Km(K) = {0, . . . , K}m,
and for k = (k1, . . . , km) ∈ K we define

(3.5) F (k) =
m∑
i=1

cig
ki .

For a real z > 2 let ωz (n) be the number of distinct prime factors
` ∈ Lz of n .

Lemma 3.3. Let an integer K and a real z be sufficiently large. For
K and F (k) as in (3.3) and (3.5), respectively, we have∑

k∈K

ωz (F (k))�
(
Kmz−α +Km−1)#Lz.

Proof. We have∑
k∈K

ωz (F (k))�
∑
k∈K

∑
`∈Lz
`|F (k)

1 =
∑
`∈Lz

∑
k∈K
`|F (k)

1.

Clearly the last sum can be estimated as∑
k∈K
`|F (k)

1 6 (K + 1)m−1
(
K + 1

τ`(g)
+ 1

)

� Km`−α +Km−1 6 Kmz−α +Km−1,

and the result follows. �

Remark 3.4. The proof of Lemma 3.3 appeals to essentially trivial
bound O (Km−1 (K/τ`(g) + 1)) on the number of solution to the con-
gruence F (k) ≡ 0 (mod `), k ∈ K . Using bounds of exponential
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sums one can obtain a better bound, which however does not improve
our final result (see also our Appendix).

For a real κ we define the sums

Dκ =
∑
`,r∈Lz

P (`−1)6=P (r−1)

gcd (`− 1, r − 1)κ .

Lemma 3.5. Let a real z be sufficiently large. Then for κ > 1 we have

Dκ 6 zκ+α−ακ+1+o(1).

Proof. Clearly for each pair of primes (`, r) in the sum Dκ we have
gcd (`− 1, r − 1) 6 (`− 1)/P (`− 1) 6 H for some integer H � z1−α .
Hence

Dκ 6
H∑
h=1

hκ
∑
`,r∈Lz

P (`−1)6=P (r−1)
gcd(`−1,r−1)=h

1.

We estimate the inner sum trivially as O ((z/h)2) and derive

Dκ 6 z2
H∑
h=1

hκ−2 6 z2+o(1)Hκ−1 6 z2+(κ−1)(1−α)+o(1),

and the desired result follows. �

4. Bounds of character sums

4.1. Complete character sums with diagonal forms over finite fields.
Let q be an odd prime power and let Fq be the finite field of q elements.
We note that for the purpose of proving Theorem 1.2, we only need
to estimate the sums of this section over a prime finite field. However,
since our proofs work over arbitrary finite fields, we present them in
this more general setting with the hope they would be of independent
interest.

We let m > 1 and d > 2 be integers with d coprime with q .
Let X denote the set of multiplicative characters of F∗q and let

X ∗ = X \ {χ0} be the set of non-principal characters, we refer
to [IwKo04, Chapter 3] for a background on characters. We also denote
by η ∈X ∗ the quadratic characters (that is η2 = χ0 ).

We recall that the implied constant may depend on m (but not on
d , q and other parameters).

We start with ‘pure’ bounds of sums of quadratic characters.
We note that in our next result we have an additional condition of

d being an even integer.
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Lemma 4.1. Assume that the integer d > 2 satisfies gcd(d, q) = 1 and
is even. Let a1, . . . , am ∈ F∗q . Then for

S =
∑

x1,...,xm∈Fq

η
(
a1x

d
1 + · · ·+ amx

d
m

)
we have

|S| 6 dm−1(q − 1)q(m−1)/2.

Proof. The proof follows by induction on m . For m = 1, since d is
even, the sum becomes ∣∣∣∣∣∣

∑
x1∈Fq

η
(
a1x

d
1

)∣∣∣∣∣∣ = q − 1.

We assume the bound true for m− 1 and we prove it for m . We have

S =
∑
xm∈F∗

q

∑
x1,...,xm−1∈Fq

η
(
a1x

d
1 + · · ·+ amx

d
m

)
+

∑
x1,...,xm−1∈Fq

η
(
a1x

d
1 + · · ·+ am−1x

d
m−1
)
.

By the induction hypothesis, the second sum in the above is bounded
by dm−2(q − 1)q(m−2)/2 . Hence, we have

(4.1) |S| 6 |S∗|+ dm−2(q − 1)q(m−2)/2,

where
S∗ =

∑
xm∈F∗

q

∑
x1,...,xm−1∈Fq

η
(
a1x

d
1 + · · ·+ amx

d
m

)
,

to which we apply a bound of Katz [Kat02, Theorem 2.2]. Indeed,
since xm 6= 0 in S∗ , we make the transformation xi → xixm , i =
1, . . . ,m− 1, which does not change the sum. Moreover, since again d
is even and η(xdm) = 1, we obtain

S∗ =
∑
xm∈F∗

q

∑
x1,...,xm−1∈Fq

η
(
a1x

d
1 + · · ·+ am−1x

d
m−1 + am

)
= (q − 1)

∑
x1,...,xm−1∈Fq

η
(
a1x

d
1 + · · ·+ am−1x

d
m−1 + am

)
.

(4.2)

Let now

F (X1, . . . , Xm−1) = a1X
d
1 + · · ·+ am−1X

d
m−1 + am ∈ Fq[X1, . . . , Xm−1].

We note that the equation F (X1, . . . , Xm−1) = 0 defines a smooth
hypersurface in the affine space Am−1(Fq). Indeed, considering the
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partial derivatives of F with respect to each variable Xi , we ob-
tain that the only possible singular point would be (0, . . . , 0). How-
ever, since am 6= 0, this point does not belong to the hypersurface
F (X1, . . . , Xm−1) = 0.

Similarly, the equation given by the leading homogenous part of F ,
a1X

d
1 + · · · + am−1X

d
m−1 = 0, defines a smooth hypersurface in the

projective space Pm−2(Fq).
Applying now [Kat02, Theorem 2.2], we conclude from (4.2) that

(4.3) |S∗| 6 (d− 1)m−1(q − 1)q(m−1)/2.

Substituting (4.3) in (4.1), we obtain

|S| 6 (d− 1)m−1(q − 1)q(m−1)/2 + dm−2(q − 1)q(m−2)/2

6 dm−2(q − 1)q(m−2)/2
(

(d− 1)q
1
2 + 1

)
.

Since (d− 1)q
1
2 + 1 < dq1/2 , we conclude the proof. �

Next we need the following bound on multidimensional sum of qua-
dratic characters, twisted by arbitrary characters. In the next result
we do not use that d is even.

Lemma 4.2. Assume that the integer d > 2 satisfies gcd(d, q) = 1. Let
a1, . . . , am ∈ F∗q . Then for any χ1, . . . , χm ∈X we have∑

x1,...,xm∈Fq

η
(
a1x

d
1 + · · ·+ amx

d
m

)
χ1 (x1) . . . χm (xm)� dmq(m+1)/2.

Proof. First we note that if each χi is equal to the principal character,
then the result follows from Lemma 4.1. So, from now on, we assume
that not all of the characters χi are equal to the principal character.

We have

(4.4)
∑

x1,...,xm∈Fq

η
(
a1x

d
1 + · · ·+ amx

d
m

)
χ1 (x1) . . . χm (xm) = S1 − S0,

where
S0 =

∑
x1,...,xm∈Fq

χ1 (x1) . . . χm (xm)

and
S1 =

∑
y∈F∗

q

∑
x1,...,xm∈Fq

a1xd1+···+amxdm=y2

χ1 (x1) . . . χm (xm) .

Indeed, we observe that each vector (x1, . . . , xm) ∈ Fmq contributes
2χ1(x1) . . . χm(xm) to the sum S1 . It is also easy to see that S0 vanishes
unless χ1 = . . . = χm = χ0 ; therefore, due to our assumption from
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above, we get that S0 = 0. We now fix a nontrivial additive character
ψ of Fq . By the orthogonality relation,

1

q

∑
λ∈Fq

ψ (λu) =

{
1, if u = 0,

0, if u ∈ F∗q,

see [IwKo04, Section 3.1]. Hence we write

S1 =
∑

x1,...,xm∈Fq

∑
y∈F∗

q

1

q

∑
λ∈Fq

ψ
(
λ
(
a1x

d
1 + · · ·+ amx

d
m − y2

))
χ1(x1) . . . χm(xm)

=
1

q

∑
λ∈Fq

∑
y∈F∗

q

ψ
(
−λy2

)
∑

x1,...,xm∈Fq

ψ
(
λ
(
a1x

d
1 + · · ·+ amx

d
m

))
χ1(x1) . . . χm(xm)

=
1

q

∑
λ∈Fq

∑
y∈F∗

q

ψ
(
−λy2

) m∏
i=1

∑
xi∈Fq

ψ
(
λaix

d
i

)
χi (xi) .

The contribution from the terms corresponding to λ = 0 is obviously
equal to q−1

q
· S0 = 0 since S0 = 0 (because not all of the characters

χi are equal to the principal character). Hence

(4.5) S1 = W,

where

W =
1

q

∑
λ∈F∗

q

∑
y∈F∗

q

ψ
(
−λy2

) m∏
i=1

∑
xi∈Fq

ψ
(
λaix

d
i

)
χi (xi) .

Now the sum over y differs from the classical Gauss sums by only one
term corresponding to y = 0, and so we have

(4.6)
∑
y∈F∗

q

ψ
(
−λy2

)
� q1/2,

see [IwKo04, Theorem 3.4]. For the remaining sums, using that λai ∈
F∗q we apply the Weil bound [Wei74, Appendix 5, Example 12] of mixed
sums of additive and multiplicative characters which implies

(4.7)
∑
xi∈Fq

ψ
(
λaix

d
i

)
χi (xi)� dq1/2,
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see also [Li96, Chapter 6, Theorem 3]. Therefore, the bounds (4.6)
and (4.7), combined together yield

W � dmq(m+1)/2.

and together with (4.4) and (4.5) we conclude the proof. �

We remark that some, or all, of the characters χ1, . . . , χm ∈ X
can be principal and that the implied constant from the conclusion of
Lemma 4.2 depends only on m .

4.2. Incomplete character sums with exponential functions. We now
extend the definition of τ`(g) to orders modulo any composite moduli
q with gcd(g, q) = 1. We also use (u/q) to denote the Jacobi symbol
modulo an odd q .

Here we need to obtain multidimensional analogues of the result on
character sums from [BaSh17, Section 3]. Although this does not re-
quire new ideas and can be achieved at the cost of merely typographical
changes we present some short proofs of these results.

As usual, we write e(t) = exp(2πit) for all t ∈ R .
We use the following variant of the result of [BaSh17, Lemma 3.1],

which in turn is based on some ideas of Korobov [Kor70, Theorem 3].

Lemma 4.3. Let a1, b1 . . . , am, bm ∈ Z and let ϑ ∈ Z with ϑ > 2. Let
` and r be distinct primes with

t` = τ`(ϑ), tr = τr(ϑ), t = τ`r(ϑ)

and such that

gcd (`r, a1 . . . amϑ) = gcd (t`, tr) = 1.

We define integers bi,` and bi,r by the conditions

bi,`tr + bi,rt` ≡ bi (mod t), 0 6 bi,` < t`, 0 6 bi,r < tr,

for i = 1, . . . ,m. Then, for

S =
t∑

k1,...,km=1

(
a1ϑ

k1 + . . .+ amϑ
km

`r

)
e

(
b1k1 + . . .+ bmkm

t

)
we have

S = S`Sr
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where

S` =

t∑̀
x1,...,xm=1

(
a1ϑ

x1 + . . .+ amϑ
xm

`

)
e

(
b1,`x1 + . . .+ bm,`xm

t`

)
,

Sr =
tr∑

y1,...,ym=1

(
a1ϑ

y1 + . . .+ amϑ
ym

r

)
e

(
b1,ry1 + . . .+ bm,rym

tr

)
.

Proof. As in the proof of [BaSh17, Lemma 3.1], using that gcd(t`, tr) =
1, we see that the integers

xtr + yt`, 0 6 x < t`, 0 6 y < tr,

run through the complete residue system modulo

t = t`tr.

Moreover,

(4.8) ϑxtr+yt` ≡ ϑxtr (mod `), ϑxtr+yt` ≡ ϑyt` (mod r),

and

(4.9) e(b(xtr + yt`)/t) = e(bx/t`) e(by/tr).

Hence,

S =

t∑̀
x1,...,xm=1

tr∑
y1,...,ym=1

(
a1ϑ

x1tr+y1t` + . . .+ amϑ
xmtr+ymt`

`r

)
e

(
b1 (x1tr + y1t`) + . . .+ bm (xmtr + ymt`)

t

)
.

(4.10)

Using the multiplicativity of the Jacobi symbol, and recalling the
congruences (4.8), we derive(

a1ϑ
x1tr+y1t` + . . .+ amϑ

xmtr+ymt`

`r

)
=

(
a1ϑ

x1tr+y1t` + . . .+ amϑ
xmtr+ymt`

`

)
(
a1ϑ

x1tr+y1t` + . . .+ amϑ
xmtr+ymt`

r

)
=

(
a1ϑ

x1tr + . . .+ amϑ
xmtr

`

)
(
a1ϑ

y1t` + . . .+ amϑ
ymt`

r

)
.

(4.11)
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Furthermore, by (4.9) we have

e

(
b1 (x1tr + y1t`) + . . .+ bm (xmtr + ymt`)

t

)
= e

(
b1x1 + . . .+ bmxm

t`

)
e

(
b1y1 + . . .+ bmtm

tr

)
.

(4.12)

Using (4.11) and (4.12) in (4.10), we see that the sum S can be de-
composed into a product of two sums as follows

S =

t∑̀
x1,...,xm=1

(
a1ϑ

x1tr + . . .+ amϑ
xmtr

`

)
e

(
b1x1 + . . .+ bmxm

t`

)
tr∑

y1,...,ym=1

(
a1ϑ

y1t` + . . .+ amϑ
ymt`

r

)
e

(
b1y1 + . . .+ bmtm

tr

)
.

We now replace xi with xit
−1
r (mod t`) and yi with yit

−1
` (mod tr),

and take into account that

bit
−1
r ≡ bi,` (mod t`) and bit

−1
` ≡ bi,r (mod tr),

for i = 1, . . . ,m . This concludes the proof. �

Next we estimate the sums S` and Sr which appear in Lemma 4.3.
Namely we now establish an analogue of [BaSh17, Lemma 3.2].

Lemma 4.4. Let a1, b1 . . . , am, bm ∈ Z and let ϑ ∈ Z with ϑ > 2. Let
` be a prime with

t` = τ`(ϑ)

and such that

gcd (`, a1 . . . amϑ) = 1 and gcd(t`, 2) = 1.

Then for

S` =

t∑̀
x1,...,xm=1

(
a1ϑ

x1 + . . .+ amϑ
xm

`

)
e

(
b1x1 + . . .+ bmxm

t`

)
we have

S` �

{
`(m+1)/2, for arbitrary b1, . . . , bm,

t``
(m−1)/2, for b1 = . . . = bm = 0.
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Proof. Denoting d = (`− 1)/t` , we can write ϑ = ρd with some prim-
itive root ρ modulo ` . Then,

S` =
1

dm

`−1∑
x1,...,xm=1

(
a1ρ

dx1 + . . .+ amρ
dxm

`

)
e

(
d (b1x1 + . . .+ bmxm)

`− 1

)
=

1

dm

`−1∑
w1,...,wm=1

(
a1w

d
1 + . . .+ amw

d
m

`

)
χ1(w1) . . . χm(wm),

(4.13)

where for w ∈ F` we define χi by

χi(w) = e (bidx/(`− 1)) , i = 1, . . . ,m,

where x is any integer for which w ≡ ρx (mod `).
As in the proof of [BaSh17, Lemma 3.2] we observe χi is a multi-

plicative character of F` for each i = 1, . . . ,m . Recalling Lemma 4.2,
we derive from (4.13)

S` �
1

dm
dm`(m+1)/2 = `(m+1)/2,

which establishes the desired bound for arbitrary b1, . . . , bm ∈ Z .
For b1 = . . . = bm = 0 we observe that since t` is odd, d is even

and hence we can use Lemma 4.1 instead of Lemma 4.2. Thus in this
case (4.13) implies

S` �
1

dm
dm−1`(m+1)/2 =

1

d
`(m+1)/2 � t``

(m−1)/2,

which concludes the proof. �

Lemmas 4.3 and 4.4 combined together imply the following bound.

Corollary 4.5. Let a1, b1 . . . , am, bm ∈ Z and let ϑ ∈ Z with ϑ > 2. Let
` and r be distinct primes with

t` = τ`(ϑ), tr = τr(ϑ), t = τ`r(ϑ)

and such that

gcd (`r, a1 . . . amϑ) = gcd (t`, tr) = gcd(t`tr, 2) = 1.

Then, for

S =
t∑

k1,...,km=1

(
a1ϑ

k1 + . . .+ amϑ
km

`r

)
e

(
b1k1 + . . .+ bmkm

t

)
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we have

S �

{
(`r)(m+1)/2, for arbitrary b1, . . . , bm,

t(`r)(m−1)/2, for b1 = . . . = bm = 0.

Clearly in Lemma 4.4 and Corollary 4.5 the parity condition on mul-
tiplicative orders is important only in the case where b1 = . . . = bm = 0,
as only these parts appeal to Lemma 4.1 (which required d to be even).

Combining Corollary 4.5 with the completing method, see [IwKo04,
Section 12.2], we derive an analogue of [BaSh17, Lemma 3.4], which is
our main technical tool.

Lemma 4.6. Let a1, . . . , am ∈ Z and let ϑ ∈ Z with ϑ > 2. Let ` and
r be distinct primes with

gcd (`r, a1 . . . amϑ) = gcd (τ`(ϑ), τr(ϑ)) = gcd(τ`(ϑ)τr(ϑ), 2) = 1.

Then, for any integers L1, . . . Lm > 1, we have

L1∑
k1=1

. . .
Lm∑
km=1

(
a1ϑ

k1 + . . .+ amϑ
km

`r

)
� L1 . . . Lmt

−m+1(`r)(m−1)/2

+
(
Lm−1t−m+1 + 1

)
(`r)(m+1)/2 (log(`r))m ,

where
L = max{L1, . . . Lm} and t = τ`r(ϑ),

and the implied constant is absolute.

Proof. Clearly we can split the above sum into bL1/tc · · · · · bLm/tc
complete sums, where each variable runs over the complete residue
system modulo t and into at most O ((L/t)m−1 + 1) incomplete sums
over a complete residue system modulo `r .

By Corollary 4.5 each of these complete sums can be estimated as
O
(
t(`r)(m−1)/2

)
, so they contribute O

(
L1 . . . Lmt

−m+1(`r)(m−1)/2
)

in
total.

By the standard completing techniques, see, for example, [IwKo04,
Section 12.2], we derive from Corollary 4.5 that each incomplete sum
can be estimated as O

(
(`r)(m+1)/2 (log(`r))m

)
. Therefore, in total they

contribute O
(
(Lm−1t−m+1 + 1) (`r)(m+1)/2 (log(`r))m

)
.

Combining both contributions together, we conclude the proof. �

5. Proof of Theorem 1.2

5.1. Preliminary transformations. We can always assume that

km > . . . > k1.
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We note that there is an integer constant h0 depending only on the
initial data such that if km > km−1 + h0 then

n2 =
m∑
i=1

cig
ki > 0.5gkm

and hence for some

(5.1) K � logN

we have

(5.2) km = max{k1, . . . , km} � K.

On the other hand, for km < km−1 + h0 , writing km = km−1 + h ,
h = 0, . . . , h0 − 1 and

n2 =
m∑
i=1

cig
ki =

m−2∑
i=1

cig
ki + (cm−1 + cmg

h)gkm−1

by Theorem 1.1 we obtain at most O ((logN)m−1) solutions n 6 N .
Hence we now estimate the number of solutions to (1.4) with (5.2)

(for K as in (5.1)).
We recall the notation (3.3) and (3.5), and we write (1.4) as

(5.3) n2 = F (k).

We also recall the definitions of the set Lz in Section 3.2 and of ωz(n)
from Section 3.3.

To simplify the exposition everywhere below we replace logarithmic,
and double logarithmic factors of z with zo(1) (implicitly assuming that
z →∞). In particular we simply write

(5.4) #Lz = z1+o(1).

Since zo(1) also absorbs all implied constants, we use 6 instead of �
in the corresponding bounds.

5.2. Sieving. Note that if F (k) is a perfect square, then we always
have ∑

`∈Lz

(
F (k)

`

)
= #Lz − ωz (F (k)) .

Hence

#Lz 6

∣∣∣∣∣∑
`∈Lz

(
F (k)

`

)∣∣∣∣∣+ ωz (F (k)) .
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Denote by M the set of values of k ∈ K satisfying (5.3) and let
M = #M be its cardinality. Invoking Lemma 3.3, we obtain

M#Lz 6
∑
k∈M

∣∣∣∣∣∑
`∈Lz

(
F (k)

`

)∣∣∣∣∣+
∑
k∈M

ωz (F (k))

6
∑
k∈M

∣∣∣∣∣∑
`∈Lz

(
F (k)

`

)∣∣∣∣∣+
∑
k∈K

ωz (F (k))

�
∑
k∈M

∣∣∣∣∣∑
`∈Lz

(
F (k)

`

)∣∣∣∣∣+
(
Kmz−α +Km−1)#Lz.

Therefore either

(5.5) M#Lz �
∑
k∈M

∣∣∣∣∣∑
`∈Lz

(
F (k)

`

)∣∣∣∣∣
or

(5.6) M � Kmz−α +Km−1.

Assuming that (5.5) holds, by the Cauchy inequality

(M#Lz)
2 6M

∑
k∈M

∣∣∣∣∣∑
`∈Lz

(
F (k)

`

)∣∣∣∣∣
2

and extending summation back to all k ∈ K and using (5.4), we
obtain

(5.7) M 6 z−2+o(1)W,

where

W =
∑
k∈K

∣∣∣∣∣∑
`∈Lz

(
F (k)

`

)∣∣∣∣∣
2

=
∑
k∈K

∑
`,r∈Lz

(
F (k)

`r

)
.

Combining (5.6) and (5.7), we see that in any case we have

(5.8) M 6
(
Kmz−α +Km−1 + z−2W

)
zo(1).

We further split the sum W into two sums as W = U + V , where

U =
∑
`,r∈Lz

P (`−1)=P (r−1)

∑
k∈K

(
F (k)

`r

)
,

V =
∑
`,r∈Lz

P (`−1)6=P (r−1)

∑
k∈K

(
F (k)

`r

)
.

(5.9)
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To estimate U (which also includes the diagonal case ` = r), we use
the trivial bound (K + 1)m on each inner sum, deriving that

U 6 (K + 1)m
∑
`,r∈Lz

P (`−1)=P (r−1)

1

6 (K + 1)m
∑
d>zα

∑
`,r∈Lz

`≡r≡1 mod d

1� Km
∑
d>zα

z2

d2
� Kmz2−α.

Hence we can write (5.8) as

(5.10) M 6
(
Kmz−α +Km−1 + z−2V

)
zo(1).

5.3. Bounds of character sums. To estimate V , we first observe that
for every ` ∈ Lz the inequality τ`(g) > P (` − 1) > `α implies (since
α > 1

2
) that P (`− 1) | τ`(g).

Fix a pair (`, r) ∈ Lz×Lz with P (`− 1) 6= P (r − 1) and define

h = gcd (τ`(g), τr(g)) and ϑ = gh.

We observe that

τ`(ϑ) = τ`(g)/h and τr(ϑ) = τr(g)/h.

Furthermore, due to our choice of the set Lz in Section 3.2 we have

ν2(τ`(g)) = ν2(τr(g)) = ν2(h)

and hence both τ`(ϑ) and τr(ϑ) are odd.
We now write

(5.11)
∑
k∈K

(
F (k)

`r

)
=

h∑
j1,...,jm=1

T`,r (j1, . . . , jm) ,

where

T`,r (j1, . . . , jm) =
∑

16k16(K−j1)/h

. . .
∑

16km6(K−jm)/h

(
c1g

k1h+j1 + . . .+ cmg
kmh+jm

`r

)
=

∑
16k16(K−j1)/h

. . .
∑

16km6(K−jm)/h

(
c1g

j1ϑk1 + . . .+ cmg
jmϑkm

`r

)
.
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We can certainly assume that z is large enough so that

gcd(c1 · · · cm, `r) = 1

for `, r ∈ Lz . Therefore Lemma 4.6 applies to T`,r (j1, . . . , jm) and
implies

T`,r (j1, . . . , jm)

� (K/h)m (τ`(ϑ)τr(ϑ))−m+1 (`r)(m−1)/2

+
(
(K/h)m−1 (τ`(ϑ)τr(ϑ))−m+1 + 1

)
(`r)(m+1)/2 (log(`r))m .

Using

τ`(ϑ)τr(ϑ)� z2α and `r � z2

we see that

T`,r (j1, . . . , jm)

6
(
(K/h)mz(m−1)(1−2α) +

(
(K/h)m−1z(m−1)(1−2α)+2 + zm+1

))
zo(1).

Therefore, after the substitution in (5.11) we obtain∣∣∣∣∣∑
k∈K

(
F (k)

`r

)∣∣∣∣∣
6
(
Kmz(m−1)(1−2α) +Km−1hz(m−1)(1−2α)+2 + hmzm+1

)
zo(1).

Since obviously h 6 gcd(`− 1, r− 1), from the definition of V in (5.9)
and using (5.4), we now derive

V 6
(
Kmz(m−1)(1−2α) +D1K

m−1z(m−1)(1−2α) +Dmz
m−1) z2+o(1),

where D1 and Dm are as in Lemma 3.5 and thus we get

D1 6 z2+o(1) and Dm 6 zm+α−αm+1+o(1).

Therefore

V 6
(
Kmz(m−1)(1−2α) +Km−1z(m−1)(1−2α)+2 + z2m+α−αm) z2+o(1).

which after the substitution in (5.10) yields

M 6 (Kmz−α +Km−1 +Kmz(m−1)(1−2α)

+Km−1z(m−1)(1−2α)+2 + z2m+α−αm)zo(1).
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5.4. Optimisation. Clearly we can assume that

(5.12) z 6 K1/(2−α)

as otherwise the last term z2m+α−αm exceeds the trivial bound Km .
Furthermore, for m > 3 and α as in (3.2), we have

(5.13) (m− 1)(2α− 1) > α

and hence (using that z(m−1)(1−2α) < z−α due to the inequality (5.13)),
we can simplify the above bound as follows:

M 6
(
Kmz−α +Km−1 +Km−1z2−(m−1)(2α−1) + z2m+α−αm) zo(1).

Moreover, since we have (5.12) and α < 1, we see that

Kmz−α > Km−1

which means that

(5.14) M 6
(
Kmz−α +Km−1z2−(m−1)(2α−1) + z2m+α−αm) zo(1).

First we note that for m > 5, with our choice of α = 0.677 in (3.2)
along with our assumption (5.12), we have that

Kmz−α > Km−1z2−(m−1)(2α−1)

and thus the second term in (5.14) never dominates and we choose

z = Km/(2m+2α−αm)

to balance the first and the third terms. Hence for if m > 5, we obtain:

(5.15) M 6 Km−mα/(2m+2α−αm)+o(1).

For m = 4 and with (3.2), direct calculations show that as for m > 5,
it is better to balance the first and the third terms in (5.14) (rather
than the first and the second terms), hence (5.15) also holds for m = 4.

Finally, for m = 3 one checks that balancing the first and the second
terms in (5.14) with z = K1/(4−3α) leads to an optimal result

M 6
(
K3−α/(4−3α) +K(6−2α)/(4−3α))Ko(1) 6 K3−α/(4−3α)+o(1),

which concludes the proof (see also (5.1)).

6. Comments

The proof of Theorem 1.2, depends on the bound∑
k∈K

ωz (F (k)) 6
∑
`∈Lz

Tm(K, `),

where Tm(K, `) is the number of solutions to the congruence

F (k) ≡ 0 (mod `), k ∈ Km(K),
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where Km(K) is given by (3.4), see the proof of Lemma 3.3. In fact,
in the proof of Lemma 3.3 we use the trivial bound

(6.1) Tm(K, `) 6 (K + 1)m−1
(
K + 1

τ`(g)
+ 1

)
� Kmz−α +Km−1,

which holds for any ` ∈ Lz and is the best possible for m = 2. For
m > 3 we get a better bound using exponential sum. This does not
improve our final result, however since it can be of independent interest
and since it maybe becomes important if better bounds of W in (5.7)
become available (or maybe with some other modifications of the argu-
ment) we present such a better bound in Appendix A, see Lemma A.2.

The method of the proof of Theorem 1.2 also works for relations of
the form

n2 =
m∑
i=1

cig
ki
i ,

with integer coefficients c1, . . . , cm of the same sign and arbitrary in-
teger bases g1, . . . , gm > 2. Indeed, in this case we still have a bound
O(logN) on the exponents k1, . . . , km , which is important for our
method. It is an interesting open question to establish such a bound
for arbitrary c1, . . . , cm . Similarly, our method can also be used to
estimate the number of n 6 N which can be represented as

n2 = u1 + . . .+ um

for some S -units u1, . . . , um , that is, as a sum of m integers which
have all their prime factors from a prescribed finite set of primes S .
Again, if negative values of u1, . . . , um are allowed then some additional
arguments are needed to bound the powers of primes in each S -unit.

Furthermore, as in [BaSh17] we observe that under the Generalised
Riemann Hypothesis we can obtain a slightly larger value of γm . We
now recall that p is called a Sophie Germain prime if p and 2p + 1
are both prime. Under the assumption of the existence of the expected
number of Sophie Germain primes in intervals, or in fact of just z1+o(1)

such primes up to z , we can choose a set Lz in the argument of the
proof of Theorem 1.2 with any α < 1 and we see that under this
assumption we can take γm = m/(m+ 2) for m > 3.

Finally, we note that other perfect powers nν for a fixed ν = 3, 4, . . . ,
can be investigated by our method. However, one needs a version of a
result of Baker and Harman [BaHa98] for primes ` in the arithmetic
progression ` ≡ 1 (mod ν), so that there are multiplicative characters
modulo ` of order ν .
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Appendix A. Congruences with exponential functions

First we recall the following special case of a classical result of Ko-
robov [Kor72, Lemma 2].

Lemma A.1. Let a ∈ Z and let ϑ ∈ Z with ϑ > 2. Let ` be a prime
with

t = τ`(ϑ),

and such that

gcd (`, aϑ) = 1.

Then, we have ∣∣∣∣∣
t∑

k=1

e
(
aϑk/t

)∣∣∣∣∣ 6 `1/2.

We now have a bound on Tm(K, `) which improves (6.1) in some
ranges.

Lemma A.2. Let m > 3. Then for K > z and ` ∈ Lz , where Lz is
as in Section 3.2, we have

Tm(K, `)� Kmz−1 +Kmzm/2−α(m−1)−1.

Proof. Let t = τ`(g); then since ` ∈ Lz , we know that t > zα . We
also let

Tm(`) = Tm(t− 1, `).

First we observe that K > z � t and thus

(A.1) Tm(K, `) 6

(
K + 1

t
+ 1

)m
Tm(`)� Kmt−mTm(`).

Now, using the orthogonality of exponential functions, we write

Tm(`) =
1

`

∑
k∈Km(t−1)

`−1∑
a=0

e (aF (k)/`) ,

where Km(t− 1) consists of all m-tuples (k1, . . . , km) of non-negative
integers ki < t . Now changing the order of summation, we obtain

Tm(`) =
1

`

`−1∑
a=0

∑
k∈Km(t−1)

e (aF (k)/`) =
1

`

`−1∑
a=0

m∏
i=1

t−1∑
ki=0

e
(
acig

ki/`
)
.

The term corresponding to a = 0 is equal to tm/` . We can as-
sume that z is large enough (as otherwise the bound is trivial) so
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that gcd(c1 · · · cm, `) = 1 for ` ∈ Lz . We apply now the bound of
Lemma A.1 to m− 2 sums over k3, . . . , km and derive

(A.2) Tm(`) 6 tm/`+ `(m−2)/2
1

`
R,

where

R =
`−1∑
a=0

∣∣∣∣∣
t−1∑
k1=0

e
(
ac1g

k1/`
)∣∣∣∣∣ ·
∣∣∣∣∣
t−1∑
k2=0

e
(
ac2g

k2/`
)∣∣∣∣∣

(note that after an application of Lemma A.1 we have added the term
corresponding to a = 0 back to the sum). By the Cauchy inequality

R2 6

 `−1∑
a=0

∣∣∣∣∣
t−1∑
k1=0

e
(
ac1g

k1/`
)∣∣∣∣∣

2
 ·

 `−1∑
a=0

∣∣∣∣∣
t−1∑
k2=0

e
(
ac2g

k2/`
)∣∣∣∣∣

2
 .

Using the orthogonality of exponential functions again, we derive

`−1∑
a=0

∣∣∣∣∣
t−1∑
k1=0

e
(
ac1g

k1/`
)∣∣∣∣∣

2

= `t

and similarly for the sum over k2 . Hence R 6 `t , and after substitution
in (A.2) we derive

Tm(`) 6 tm/`+ `(m−2)/2t,

which together with the inequality (A.1) and the fact that t > zα

concludes the proof. �
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