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Abstract. Let f1, . . . , fn ∈ Q[x] be polynomials of degree d > 1 such
that no fi is conjugated to xd or to ±Cd(x), where Cd(x) is the Cheby-
shev polynomial of degree d. We let ϕ be their coordinatewise action on
An, i.e., ϕ : An −→ An is given by (x1, . . . , xn) 7→ (f1(x1), . . . , fn(xn)).
We prove a dynamical version of the Pink-Zilber conjecture for sub-
varieties V of An with respect to the dynamical system (An, φ), if
min{dim(V ), codim(V )− 1} ≤ 1.

1. Introduction

1.1. Notation. As always in dynamics, we write ϕm for the m-th compo-
sitional power of the self-map ϕ for any m ∈ N0 (where N0 = N∪{0}); also,
ϕ0 is the identity map. The orbit of some point α under ϕ is denoted by
Oϕ(α) and it consists of all ϕm(α) for m ∈ N0. For a subvariety Y ⊂ An
under the action of an endomorphism ϕ, we say that Y is periodic if there
exists a positive integer m such that Y = ϕm(Y ); similarly, we say that Y
is preperiodic under the action of ϕ if there exists m ∈ N0 such that ϕm(Y )
is periodic.

For every d ≥ 2, the Chebyshev polynomial of degree d, denoted Cd(x),
is the polynomial of degree d satisfying the functional equation Cd(x+ 1

x) =

xd + 1
xd

. Following [MS14], a disintegrated polynomial is a polynomial of

degree d ≥ 2 that is not linearly conjugated to xd or ±Cd(x).

1.2. The Dynamical Manin-Mumford and the Dynamical Bogo-
molov Conjectures. The following theorem proven in [GNY] is a special
case of the more general Dynamical Manin-Mumford Conjecture and of the
Dynamical Bogomolov Conjecture proposed by Zhang [Zha06].

Theorem 1.1 ([GNY]). Let f1, . . . , fn ∈ Q[x] be disintegrated polynomi-
als of degree d > 1 and we let ϕ be their coordinatewise action on An,
i.e., ϕ : An −→ An is given by (x1, . . . , xn) 7→ (f1(x1), . . . , fn(xr)). For
any irreducible Q-subvariety X ⊂ An, if X contains a Zariski dense set of
preperiodic points, then X is preperiodic. Furthermore, if for each ε > 0,
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the set of points (a1, . . . , an) ∈ X(Q) such that

ĥf1(a1) + · · ·+ ĥfn(an) < ε

is Zariski dense in X, then X is a preperiodic subvariety.

In Theorem 1.1, given a polynomial f ∈ Q[x] of degree larger than 1, ĥf (·)
is the canonical height defined as ĥf (a) := limn→∞

h(fn(a))
deg(f)n for any a ∈ Q,

where h(·) is the usual Weil height. For more details regarding heights, see
[BG06].

Actually, in [GNY, Theorem 1.1], the above result was proven for po-
larizable endomorphisms of (P1)n, i.e., maps of the form (x1, . . . , xn) 7→
(f1(x1), . . . , fn(xn)) where each fi ∈ Q(x) is a rational function of degree
d ≥ 2 (which is not conjugated to a monomial, a ±Chebyshev polynomial,
or a Lattés map). We will prove in Theorem 3.2 a slightly more precise
version of Theorem 1.1 for any subvariety of An which contains a Zariski
dense set of periodic points.

In Theorem 1.1, if each polynomial fi is conjugated with either a mono-
mial or a ±Chebyshev polynomial, then we recover the classical conjectures
of Manin-Mumford and Bogomolov for algebraic tori. Actually, those con-
jectures (including in their version for abelian varieties) motivated Zhang to
formulate in early 1990’s a far-reaching dynamical conjecture for polarizable
algebraic dynamical systems generalizing both these classical diophantine
problems and Theorem 1.1 (see also [Zha06]).

In Theorem 1.1, since the coordinatewise action of ϕ on An is given by
polynomials, one does not encounter the counterexamples (see [GTZ11]) to
the original formulation of the Dynamical Manin-Mumford Conjecture (and
of the Dynamical Bogomolov Conjecture), and hence one is not expected
to require the stronger hypothesis for the reformulation from [GTZ11, Con-
jecture 1.4] of the Dynamical Manin-Mumford Conjecture. We note that
Theorem 1.1 was initially proven when X ⊂ An is a curve in [GNY16].

1.3. The Dynamical Pink-Zilber Conjecture. In [GN16], a dynamical
version of the Bounded Height Conjecture (see [BMZ07] for the formula-
tion of this classical conjecture in the context of algebraic tori) was proven
for endomorphisms of An given by coordinatewise action of disintegrated
polynomials. The results of [GN16] suggest the following variant of the
Pink-Zilber Conjecture in a dynamical setting; see [BMZ99, Zil02, Pin] for
the statement of this conjecture in the classical setting of algebraic tori, or
more generally, of semiabelian schemes.

Conjecture 1.2. Let f1, . . . , fn ∈ Q[x] be disintegrated polynomials of de-
gree d ≥ 2. We let ϕ be their coordinatewise action on An, i.e., ϕ : An −→
An is given by (x1, . . . , xn) 7→ (f1(x1), . . . , fn(xn)). For each positive inte-

ger s ≤ n, we let Per[s] be the union of all irreducible periodic subvarieties
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of An of codimension s; similarly, we let Prep[s] be the union of all irre-
ducible preperiodic subvarieties of An of codimension s. Let X ⊂ An be an
irreducible subvariety of dimension m.

(1) If X ∩ Per[m+1] is Zariski dense in X, then X is contained in a
proper, irreducible subvariety of An, which is periodic under the
action of ϕ.

(2) If X ∩ Prep[m+1] is Zariski dense in X, then X is contained in a
proper, irreducible subvariety of An, which is preperiodic under the
action of ϕ.

It makes sense to restrict in Conjecture 1.2 to polynomials which are
not conjugated to monomials or Chebyshev polynomials since otherwise we
would encounter the classical Pink-Zilber Conjecture (see [Zan12] for a com-
prehensive discussion). Also, we note that if X is contained in a proper,
irreducible (pre)periodic subvariety Y of An, then (simply, by geometric
considerations of counting the dimensions) X intersects nontrivially each
(pre)periodic subvariety of relative codimension in Y equal to dim(X), and

thus, X has a Zariski dense intersection with Per[dim(X)+1] (respectively,

Prep[dim(X)+1]); this scenario is exactly similar to the classical case when a
subvariety X ⊂ Gn

m contained in a proper algebraic subtorus would have a
Zariski dense intersection with the union of all subtori in Gn

m of codimension
equal to dim(X) + 1.

We also note that the two parts of Conjecture 1.2 are independent, nei-
ther one implying the other one. Furthermore, it is likely that the meth-
ods one would need to employ in proving the above two conjectures might
differ slightly. For example, we would expect that some of the p-adic tech-
niques developed for proving the Dynamical Mordell-Lang Conjecture (for
more details, see [BGT16, Chapter 4]) could prove useful in treating Con-
jecture 1.2 (1) in full generality. On the other hand, in attacking Conjec-
ture 1.2 (2), one might need to develop generalizations of the arguments
employed in [GNY]. Also, Conjecture 1.2 (2) is particularly challenging
since one lacks a corresponding Dynamical Bounded Height Conjecture for
preperiodic subvarieties, in the spirit of the one proven in [GN16] (which
is valid only for periodic subvarieties). Attempting to prove a variant of
the Bounded Height Conjecture for preperiodic subvarieties of An leads to
subtle diophantine questions similar to the ones encountered in [DGKNTY].

Finally, it is important to observe that if we did not impose the condition
that the polynomials have the same degree, then there would be simple
counterexamples (similar to a naive formulation of the Dynamical Manin-
Mumford Conjecture, which does not require the polarizability of the given
endomorphism). Indeed, if f ∈ Q[x] has degree d ≥ 2, then its graph y =
f(x) is a (rational) plane curve containing infinitely many points which are
periodic under the coordinatewise action of (x, y) 7→ (f(x), f2(y)); however,
this graph is not periodic under the action of (f, f2).
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1.4. Our results. We prove the following results.

Theorem 1.3. Let f1, . . . , fn ∈ Q[x] be disintegrated polynomials of degree
d > 1 and let ϕ be their coordinatewise action on An, i.e., ϕ : An −→ An is
given by ϕ(x1, . . . , xn) = (f1(x1), . . . , fn(xn)). Let X ⊂ An be an irreducible
subvariety defined over Q such that min{dim(X), codim(X)−1} ≤ 1. If X∩
Per[dim(X)+1] is Zariski dense, then X is contained in a proper, irreducible,
periodic subvariety of An.

Therefore Theorem 1.3 provides a proof for Conjecture 1.2(1) in the fol-
lowing 3 nontrivial cases:

(I) X is a hypersurface (see Theorem 3.2, which proves a more general
result).

(II) X is a curve (see Theorem 4.1).
(III) X ⊂ An has codimension 2 (see Theorem 5.1).

Clearly, if X is a point (i.e., dim(X) = 0), or if X = An (i.e., codim(X) = 0),
Conjecture 1.2 holds.

It is difficult to extend any of our results to dynamical systems given
by the coordinatewise action of rational functions due to the absence of
Medvedev-Scanlon’s classification [MS14] of periodic subvarieties in that
case (see also [GN16]). Also, it is difficult to extend Theorem 1.3 to subvari-
eties X ⊂ An of dimension either larger than 1, or codimension larger than
2; see the following Example, which can be generalized to any subvariety of
An of dimension in the range {2, . . . , n− 3}.

Example 1.4. Let f ∈ Q[x] be a polynomial of degree d ≥ 2 and let
ϕ be its coordinatewise action on A6. Let X ⊂ A3 be a surface which
projects to a non-preperiodic point to each of the first 3 coordinates, i.e.,
X = ζ × X1, where ζ ∈ A3(Q) and X1 ⊂ A3 is a surface defined over Q.
We also assume X1 is not a periodic surface, while ζ is not contained in a
proper periodic subvariety of A3; this last assumption can be achieved (see
Section 2) by assuming the coordinates of ζ := (ζ1, ζ2, ζ3) belong to different
orbits under f , i.e., there is no i, j ∈ {1, 2, 3} and no m,n ∈ N such that
fm(ζi) = fn(ζj). Then X is not contained in a proper periodic subvariety

of A3 and therefore, Conjecture 1.2 predicts that X ∩ Per[3] is not Zariski
dense in X. In particular, this yields that

(1.5) X1 ∩ (Of (ζ1)×Of (ζ2)×Of (ζ3))

is not Zariski dense in X1. However, understanding the intersection from
(1.5) is equivalent with solving a stronger form of the Dynamical Mordell-
Lang Conjecture for hypersurfaces in A3 and at the present moment, this
problem seems very difficult; for a comprehensive discussion about the Dy-
namical Mordell-Lang Conjecture, see [BGT16].

As shown in a series of papers by Bombieri-Masser-Zannier (see [BMZ99,
BMZ06]), even the classical Pink-Zilber conjecture in the context of algebraic
tori is very difficult and initially, only the case of curves was established; for
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more details, see the beautiful book of Zannier [Zan12]. In the dynamical
context, the fact that we do not even know the validity of the Dynamical
Mordell-Lang conjecture makes Conjecture 1.2 particularly challenging.

1.5. Plan for our paper. We prove Theorem 1.3 by splitting it into its
3 nontrivial cases (I)-(III), i.e., X is a hypersurface (Theorem 3.2), X is a
curve (Theorem 4.1) and finally, X has codimension 2 (Theorem 5.1). The
common ingredients for proving these results are the classification of peri-
odic subvarieties of An under the coordinatewise action of n one-variable
polynomials (as obtained by Medvedev-Scanlon [MS14], along with some
further refinements obtained by the authors in [GN16]) and also the proof
of the Dynamical Manin-Mumford and of the Dynamical Bogomolov conjec-
tures for endomorphisms of (P1)n (see theorem 1.1 and [GNY16, GNY]). In
the case of curves X ⊂ An, we also need to employ the recent result of Xie
[Xie], who proved the dynamical Mordell-Lang Conjecture for plane curves.

In Section 2, using [MS14] (along with its refinements from [Ngu13, GN16])
we introduce the structure of periodic subvarieties of An under the coordi-
natewise action of n one-variable polynomials. In Section 3 we prove Theo-
rem 1.3 for hypersurfaces X ⊂ An (see Theorem 3.2, which actually proves
that any subvariety of An containing a Zariski dense set of periodic points
must be periodic itself). Then we continue by proving Theorem 1.3 when
X is a curve (see Theorem 4.1) in Section 4, and we conclude our paper by
proving Theorem 1.3 when codim(X) = 2 (see Theorem 5.1) in Section 5.

Acknowledgments. We thank Tom Tucker for his comments on our
paper.

2. Structure of preperiodic subvarieties

Most of this section is taken from [GN16, GN17] which, in turn, follows
from [MS14, Ngu13]. Throughout this section, let n ≥ 2, and let f1, . . . , fn
be disintegrated polynomials in C[x]. For m ≥ 2, an irreducible curve (or
more generally, a higher dimensional subvariety) in Am is said to be fibered
if its projection to one of the coordinate axes is constant, otherwise the
curve (or the subvariety) is called non-fibered. For any two disintegrated
polynomials f(x) and g(x), write f ≈ g if the self-map (x, y) 7→ (f(x), g(y))
of A2 admits an irreducible non-fibered periodic curve. The relation ≈ is
an equivalence relation in the set of disintegrated polynomials (see [GN16,
Section 7]).

Let ϕ = f1 × . . . × fn be the self-map of An given by ϕ(x1, . . . , xn) =
(f1(x1), . . . , fn(xn)). Let s denote the number of equivalence classes arisen
from f1, . . . , fn (under ≈). Let n1, . . . , ns denote the sizes of these classes
(hence n1 + . . . + ns = n). We relabel the polynomials f1, . . . , fn as fi,j
for 1 ≤ i ≤ s and 1 ≤ j ≤ ni according to the equivalence classes. After
rearranging the polynomials f1, . . . , fn so that equivalence polynomials stay
in blocks, we have ϕ = ϕ1×. . .×ϕs where ϕi is the self-map fi,1×. . .×fi,ni of
Ani . There exist a positive integer N , non-constant pi,j ∈ C[x] for 1 ≤ i ≤ s
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and 1 ≤ j ≤ ni and disintegrated w1, . . . , ws ∈ C[x] in s different equivalence
classes such that the following holds. For 1 ≤ i ≤ s, let ψi be the self-map
wi × . . . × wi on Ani , and let ψ = ψ1 × . . . × ψs. Let ηi be the self-map
pi,1 × . . .× pi,ni of Ani and let η = η1 × . . .× ηs. We have the commutative
diagram:

(2.1)

An1 × . . .× Ans An1 × . . .× Ans

An1 × . . .× Ans An1 × . . .× Ans

?

η

-ψ

?

η

-
ϕN

We have the following simple observation:

Lemma 2.2. Let V be an irreducible ϕ-preperiodic subvariety of dimension
r. We have:

(a) Every irreducible component of η−1(V ) is ψ-preperiodic and has
dimension r.

(b) If V is ϕ-periodic then some irreducible component of η−1(V ) is
ψ-periodic.

(c) Let X be an irreducible subvariety in An and let Per
[r]
ϕ (respectively

Per
[r]
ψ ) be the union of ϕ-periodic (respectively ψ-periodic) subvari-

eties of codimension r. If X∩Per
[r]
ϕ is Zariski dense in X then there

is an irreducible component X ′ of η−1(X) such that X ′ ∩ Per
[r]
ψ is

Zariski dense in X ′.

Proof. Part (a) follows from the commutative diagram (2.1) and the fact
that η is finite. For part (b), if ϕM0(V ) = V then ψM0 maps the set of
irreducible components of η−1(V ) to itself; hence at least one element in
this set is a ψ-periodic subvariety.

For part (c), we have a collection of points {Pi : i ∈ S} that is Zariski
dense in X and satisfies the property that for each i ∈ S, there is an irre-
ducible ϕ-subvariety Vi of codimension r such that Pi ∈ X ∩ Vi. For each
i ∈ S, there is an irreducible component Wi of η−1(Vi) that is ψ-periodic
and there is a point Qi ∈Wi such that η(Qi) = Pi. Let X1, . . . , XM denote
all the irreducible components of η−1(X). We partition S into S1, . . . ,SM
such that i ∈ Sj implies Qi ∈ Xj for every 1 ≤ j ≤ M . We claim that
there exists some j ∈ {1, . . . ,M} such that {Qi : i ∈ Sj} is Zariski dense

in Xj ; consequently Xj ∩ Per
[r]
ψ is Zariski dense in Xj . To prove this claim,

assume that the Zariski closure of {Qi : i ∈ Sj} is strictly smaller than Xj

for every j ∈ {1, . . . ,M}. Then the image under η of the union of these
M Zariski closures contains {Pi : i ∈ S} and is strictly smaller than X,
contradiction. �

Remark 2.3. We will also use the following simple observation which can be
proved by arguments which are similar to the ones employed in the proof of
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part (c) above. If X is an irreducible subvariety of An and {Vi : i ∈ S} is a
collection of irreducible subvarieties of An such that X ∩

⋃
i∈S Vi is Zariski

dense in X and S1, . . . ,SM is a partition of S then there exists j such that
X ∩

⋃
i∈Sj Vi is Zariski dense in X.

Each irreducible ϕ-preperiodic subvariety V of An has the form V1×. . .×Vs
where each Vi is an irreducible ϕi-preperiodic subvariety of Ani . Let W be
an arbitrary irreducible component of η−1(V ). Then W is ψ-preperiodic
and has the form W1× . . .×Ws where each Wi is an irreducible component
of ψ−1i (Vi) and it is ψi-preperiodic. Note that ψi is the coordinate-wise
self-map of Ani induced by the common polynomial wi.

Let f be a disintegrated polynomial and let Φ = f × . . .× f be the corre-
sponding self-map of An. We recall the structure of Φ-periodic subvarieties
of An given in [GN16, Section 2]. Write In = {1, . . . , n}. For each ordered
subset J of In, we define:

AJ := A|J |

equipped with the canonical projection πJ : An → AJ . In this paper, we
will consider ordered subsets of In whose orders need not be induced from
the usual order of the set of integers. If J1, . . . , Jm are ordered subsets of In
which partition In, then we have the canonical isomorphism:

(πJ1 , . . . , πJm) : An = AJ1 × . . .× AJm .

For each irreducible subvariety V of An, let JV denote the set of all j ∈ In
such that the projection from V to the jth coordinate axis is constant. If
JV 6= ∅, we equip JV with the natural order of the set of integers, and we let
aV ∈ AJV (C) denote πJV (V ). Even when JV = ∅, we will vacuously define
(A1)JV as the variety consisting of one point and define aV to be that point.
We have the following:

Proposition 2.4. (a) Let V be an irreducible Φ-periodic subvariety of
An of dimension r. Then there exists a partition of In − JV into r
non-empty subsets J1, . . . , Jr such that the following hold. We fix
an order on each J1, . . . , Jr, and identify:

An = AJV × AJ1 × . . .× AJr .

For 1 ≤ i ≤ r, let Φi denote the coordinatewise self-map of AJi
induced by f . For 1 ≤ i ≤ r, there exists an irreducible Φi-periodic
curve Ci in AJi such that:

V = {aV } × C1 × . . .× Cr.

(b) Let C be an irreducible Φ-periodic curve in An and denote m :=
|In−JC | ≥ 1. Then there exist a permutation (i1, . . . , im) of In−JC
and non-constant polynomials g2, . . . , gm ∈ Q[x] such that C is given
by the equations xi2 = g2(xi1),. . . , xim = gm(xim−1). Furthermore,
the polynomials g2, . . . , gm commute with an iterate of f .
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Remark 2.5. Let C be a non-fibered irreducible preperiodic curve in A2

under the map Φ(x, y) = (f(x), f(y)). Then Φr(C) is periodic for some r.
So we know that C satisfies an equation of the form f r(x2) = g(f r(x1)) or
f r(x1) = g(f r(x2)) where g commutes with an iterate of f . We can express
both cases by an equation of the form g(x1) = G(x2) where both g and G
commute with an iterate of f .

Remark 2.6. The above discussion gives a very precise description of irre-
ducible ϕ-preperiodic subvarieties of An (recall that ϕ = f1 × . . . × fn).
Occasionally, the following simpler observation is sufficient for our pur-
pose. Let V ( An be an irreducible ϕ-periodic subvariety. Then there
exist 1 ≤ i < j ≤ n and an irreducible curve C in A2 which is preperiodic
under (x, y) 7→ (fi(x), fj(y)) such that V ⊆ π−1(C) where π is the projection
from An to the i-th and j-th coordinates A2.

Remark 2.7. The permutation (i1, . . . , im) mentioned in part (b) of Proposi-
tion 2.4 induces the order i1 ≺ . . . ≺ im on In−JC . Such a permutation and
its induced order are not uniquely determined by V . For example, let L be
a linear polynomial commuting with an iterate of f . Let C be the periodic
curve in A2 defined by the equation x2 = L(x1). Then I − JC = {1, 2}, and
1 ≺ 2 is an order satisfying the conclusion of part (b). However, we can
also express C as x1 = L−1(x2). Then the order 2 ≺ 1 also satisfies part
(b). Therefore, in part (a), the choice of an order on each Ji is not unique.
Nevertheless, the partition of In − JV into the subsets J1, . . . , Jr is unique
(see [Ngu13, Section 2]).

Next we describe all polynomials g commuting with an iterate of f :

Proposition 2.8. Let f ∈ C[x] be a disintegrated polynomial of degree
greater than 1. We have:

(a) If g ∈ C[x] has degree at least 2 such that g commutes with an
iterate of f then g and f have a common iterate.

(b) Let M(f∞) denote the collection of all linear polynomials commut-
ing with an iterate of f . Then M(f∞) is a finite cyclic group under
composition.

(c) Let f̃ ∈ C[x] be a polynomial of minimum degree d̃ ≥ 2 such that

f̃ commutes with an iterate of f . Then there exists D = Df > 0

relatively prime to the order of M(f∞) such that f̃ ◦L = LD ◦ f̃ for
every L ∈M(f∞).

(d)
{
f̃m ◦ L : m ≥ 0, L ∈M(f∞)

}
=
{
L ◦ f̃m : m ≥ 0, L ∈M(f∞)

}
,

and these sets describe exactly all polynomials g commuting with an
iterate of f . As a consequence, there are only finitely many polyno-
mials of bounded degree commuting with an iterate of f .

Remark 2.9. In the diagram (2.1), if f1, . . . , fn are in Q[x] then the poly-
nomials wi’s and pi,j ’s can be chosen to be in Q[x]. In Proposition 2.8, if

f(x) ∈ Q[x] then f̃ ∈ Q[x] and elements of M(f∞) are in Q[x].
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We will use the following immediate corollary to recognize when a point
is f -periodic:

Corollary 2.10. Let f ∈ C[x] be a disintegrated polynomial of degree greater
than 1.

(a) Let g(x) ∈ C[x] such that deg(g) ≥ 2 and g commutes with an
iterate of f . Then α ∈ C is g-periodic if and only if it is f -periodic.

(b) Let p(x) ∈ C[x] such that deg(p) ≥ 1 and p commutes with an
iterate of f . Let α ∈ C be f -periodic. Then p(α) is also f -periodic.

(c) If α is f -preperiodic then for any polynomial g that commutes with
an iterate of f and deg(g) is sufficiently large, g(α) is f -periodic.

(d) If α is f -preperiodic then the set

{g(α) : g commutes with an iterate of f}

is finite.

Proof. Part (a) is obvious since g and f have a common iterate. For part (b),
choose m such that fm commutes with p and α = fm(α). Then fm(p(α)) =
p(fm(α)) = p(α). For part (c), let r ≥ 0 such that f r(α) is f -periodic,
then if deg(g) ≥ deg(f)r, we can write g = g1 ◦ f r where g1 commutes with
an iterate of f by Proposition 2.8(d). Now g(α) = g1(f

r(α)) is f -periodic

by part (b). For part (d), let f̃ be as in Proposition 2.8, we can write g

as L ◦ f̃m for some m ≥ 0 and L ∈ M(f∞). Since α is f̃ -preperiodic and
M(f∞) is finite, there are only finitely many possibilities for g(α). �

We now consider the more general self-map ϕ = f1 × . . . × fn as in the
beginning of this section. Let V be an irreducible ϕ-preperiodic subvariety
of An with r := dim(V ). As before, JV denotes the set of i ∈ In such that the
projection from V to the i-th coordinate A1 is constant and aV ∈ AJV (C) is
the image πJV (V ). By Proposition 2.4 and the diagram 2.1, we can partition
the set In\JV into r non-empty subsets J1, . . . , Jr such that after identifying

An = AJV × AJ1 × . . .× AJr ,

we have:

V = {aV } × C1 × . . .× Cr

where each Cj is a preperiodic curve in AJj with respect to the coordinate-
wise self-map induced by the polynomials fi’s for i ∈ Jj . Moreover, if V
is periodic then aV and each Cj are periodic. Since each Ci is necessarily
non-fibered thanks to the definition of JV , we have that f ≈ g for f, g ∈ Jj
for 1 ≤ j ≤ r. We have the following:

Definition 2.11. The weak signature of V is the collection consisting of the
set JV and the partition of In \ JV into the sets J1, . . . , Jr.
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3. Proof of Theorem 1.3 for hypersurfaces

We start by proving a more precise version of [GNY, Theorem 1.1] for
plane curves containing infinitely many periodic points.

Theorem 3.1. Let f1, f2 ∈ Q[x] be disintegrated polynomials of degree d ≥
2 and let ϕ : A2 −→ A2 be their coordinatewise action, i.e., (x1, x2) 7→
(f1(x1), f2(x2)). If X ⊂ A2 is an irreducible curve containing infinitely
many periodic points, then X must be periodic under the action of ϕ.

Proof. This theorem follows from the more technical result [GNY16, Theo-
rem 5.1]. Here we include a different proof illustrating the sort of arguments
used in the later sections. First of all, by Theorem 1.1, we have that X is
preperiodic since it contains infinitely many (pre)periodic points. We now
recall the equivalence relation ≈ in Section 2. If f1 and f2 are not in the
same equivalence class then the only ϕ-preperiodic curves are of the form
{ζ1}×A1 or A1×{ζ2} where ζi is fi-preperiodic for i = 1, 2. However, since
X contains infinitely many periodic points, we conclude that X is periodic
(i.e., ζ1, or respectively, ζ2 must be periodic).

We now assume that f1 ≈ f2. By Lemma 2.2, we may assume that
f1 = f2 =: f . The arguments in the previous paragraph can be used to
treat the case when X is fibered. We reduce to the case that X is a non-
fibered preperiodic curve. Let f̃ be as in Proposition 2.8; since f and f̃ have
a common iterate, we may assume that f = f̃ without changing the content
of Theorem 3.1. By Proposition 2.4 and without loss of generality, we may
assume that X satisfies the equation fk(x) = g(fk(y)) for some k ≥ 0 and
g(x) ∈ C[x] that commutes with an iterate of f . By Proposition 2.8, we can
write g = L ◦ f ` for some L ∈M(f∞) and ` ≥ 0.

Let (a1, a2) be a ϕ-periodic point onX and let ρ ≥ k such that fρ(a1) = a1
and fρ(a2) = a2. By using Proposition 2.8 and applying fρ−k to both sides
of the equation

fk(a1) = g(fk(a2))

and thus using that there exists some L1 ∈ M(f∞) such that fρ−k ◦ L =
L1 ◦ fρ−k, we get

fρ(a1) = L1(f
ρ+`(a2)).

Then using that both a1 and a2 are fixed by fρ yields that

a1 = L1(f
`(a2)).

Now, because M(f∞) is finite and there are infinitely many periodic points

(a1, a2) on X, there exists L̃ ∈M(f∞) such that α = L̃(f `(β)) for infinitely
many (periodic) points (α, β) in X. Therefore X is given by the equation

x = L̃(f `(y)), thus proving that X must be periodic, as claimed. �

The above theorem is the key step to obtaining the following more general
result:
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Theorem 3.2. Let f1, . . . , fn, d, and ϕ be as in Theorem 1.3. Let X be
an irreducible subvariety of An such that X contains a Zariski dense set
of ϕ-periodic points, then X is periodic. Consequently, Theorem 1.3 holds
when codim(X) = 1.

Proof. Since X contains a Zariski dense set of preperiodic points, Theo-
rem 1.1 yields that X must be preperiodic. Let J ⊂ {1, . . . , n} denote the
factors A1 of An for which the projection from X is constant and let a ∈ AJ
be the constant image of X (under the aforementioned projection). After
rearranging the coordinates of An, the discussion from Section 2 gives that
X has the form

{a} ×X1 × . . .×Xr

where r = dim(X) and each Xi is a preperiodic non-fibered curve. By the
assumption on X, the point a must be periodic. Therefore, by working with
each Xi, we now reduce Theorem 3.2 to the case when X is a non-fibered
curve of An. In particular f1, . . . , fn belong to the same equivalence class.
By Lemma 2.2, we may assume that f1 = . . . = fn =: f .

For each i 6= j in {1, . . . , n}, let πi,j denote the projection from X to
the i-th and j-th coordinates A2 and let Xi,j denote the Zariski closure of
πi,j(X). By Theorem 3.1 and Proposition 2.4, Xi,j is given by the equation
xi = g(xj) or xj = g(xi) where g commutes with an iterate of f . Doing this
for all pairs (i, j), we have a permutation (i1, . . . , in) of (1, . . . , n) such that
X satisfies the equations xi2 = g2(xi1), . . . , xin = gn(xin−1) where g2, . . . , gn
commute with an iterate of f . Since such equations describe a periodic
curve, we have that X is periodic. �

4. Proof of Theorem 1.3 for curves

In this Section we prove the following result

Theorem 4.1. Theorem 1.3 holds when X ⊂ An is a curve.

Proof. The case n = 2 follows from Theorem 3.2 (or equivalently, from
Theorem 3.1). We will prove next the result for n ∈ {3, 4} and proceed by
induction for n ≥ 5. We recall the notation and terminology from Section 2.
We are given that the curve X has a Zariski dense (i.e. infinite) set of
points each of which is contained in a periodic subvariety V of codimension
2. Since there are only finitely many possibilities for the weak signature, by
Remark 2.3, we may assume that all of the above periodic subvarieties have
a common weak signature consisting of a (possibly empty) subset J = JV
of In and a partition of In \ J into n − 2 non-empty subsets J1, . . . , Jn−2.
Let h denote the absolute logarithmic Weil height on P1(Q). We also let h
denote the height on An(Q) ⊂ (P1)n(Q) given by

h(x1, . . . , xn) = h(x1) + . . .+ h(xn).
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For each fi, let ĥfi denote the canonical height on P1(Q) associated to fi,

and let ĥ denote the function on An ⊂ (P1)n(Q) given by:

ĥ(x1, . . . , xn) = ĥf1(x1) + . . .+ ĥfn(xn).

Note that ĥ is the canonical height associated to ϕ (which is the coordinate-
wise action of the polynomials fi on An). We refer the readers to [BG06] and
[Sil07, Chapter 3] for more details on height and canonical height functions.

4.1. The case when the ambient space has dimension 3. Without
loss of generality, we have the following possibilities for the weak signature
(J , J1):

Case A: J = ∅ and J1 = {1, 2, 3}. By part (c) of Lemma 2.2, we
may assume that f1 = f2 = f3 =: f . By Proposition 2.4 and Remark 2.3,
we may assume that there are infinitely many points {Pi}∞i=1 such that for
each i, there is a periodic curve Vi defined by the equations x2 = gi,2(x1)
and x3 = gi,3(x2) such that Pi ∈ X ∩ Vi where gi,2 and gi,3 are polynomials
commuting with an iterate of f . If {deg(gi,2)}i≥1 has a bounded subsequence
then Proposition 2.8(d) yields that there exists a polynomial g such that
gi,2 = g for infinitely many i. Hence X is contained in the periodic surface
defined by x2 = g(x1) because it is a curve containing infinitely many points
from this surface. The case when {deg(gi,3)}i≥1 has a bounded subsequence
is treated similarly. We now assume that

lim
i→∞

deg(gi,2) = lim
i→∞

deg(gi,3) =∞.

Write Pi = (ai, bi, ci). Let π1,2 denote the projection from A3 to the first
two coordinates A2 and let Y be the Zariski closure of π1,2(X).

We consider the case when π1,2 is non-constant on X, in other words Y
is a curve in A2. Then there exist positive constants C1 and C2 depending
only on the curve X such that for every point (a, b, c) ∈ X(Q), we have:

(4.2) h(c) ≤ C1 max{h(a), h(b)}+ C2.

Inequality (4.2) is a special case of [GN16, Lemma 3.2 (b)] (see also [GN16,

Corollary 3.4]). Since |h− ĥf | = O(1), there exist positive constants C3 and
C4 depending on X and f such that:

ĥf (c) ≤ C3 max
{
ĥf (a), ĥf (b)

}
+ C4

for every (a, b, c) ∈ X(Q) (see also [GN16, Corollary 3.4]). In particular,
this inequality holds for the points Pi = (ai, bi, ci). On the other hand, we
have:

ĥf (ci) = deg(gi,3)ĥf (bi) and ĥf (bi) = deg(gi,2)ĥf (ai).

Overall, we have:

deg(gi,3) max
{
ĥf (ai), ĥf (bi)

}
≤ ĥf (ci) ≤ C3 max

{
ĥf (ai), ĥf (bi)

}
+ C4.
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Since lim deg(gi,3) = ∞, we get limi→∞(max
{
ĥf (ai), ĥf (bi)

}
) = 0 and so,

Theorem 1.1 yields that the curve Y is preperiodic.
A more careful analysis shows that X is contained in a periodic surface,

as follows. First, consider the case when the projection from X to the first
or second coordinate A1 is constant, then this constant, denoted γ, is nec-
essarily preperiodic since Y is preperiodic. From ci = gi,3(bi) = gi,3(gi,2(ai))
and Corollary 2.10, we have that ci is periodic for all sufficiently large i and
the sequence {ci}i≥1 consists of only finitely many points. Hence there is a
periodic point ζ such that ci = ζ for infinitely many i. We conclude that X
is contained in the periodic surface A2 × {ζ}.

When the projection from X to neither the first nor second A1 is constant,
by Proposition 2.4 and Remark 2.5, the preperiodic curve Y satisfies an
equation of the form g(x1) = G(x2) where g and G commute with an iterate
of f . Therefore the point (ai, bi) satisfies both g(ai) = G(bi) and bi = gi,2(ai).

The following observation will be used repeatedly throughout our proof.

Lemma 4.3. With the above notation, for all i sufficiently large, we have
that bi is periodic.

Proof of Lemma 4.3. When i is sufficiently large so that deg(gi,2) ≥ deg(g),
from Proposition 2.8(d), we can write gi,2 = ui ◦ g where ui is a polynomial
commuting with an iterate of f . Therefore

bi = ui(g(ai)) = ui(G(bi))

and Corollary 2.10(a) implies that bi is f -periodic. �

Using that bi is periodic along with the fact that ci = gi,3(bi), we obtain
that ci is also f -periodic (by Corollary 2.10(b)). Let Y ′ be the Zariski
closure of the projection from X to the second and third coordinates A2.
Since (bi, ci) is periodic for all sufficiently large i, we have that Y ′ is periodic
(according to Theorem 3.1). Hence X is contained in the periodic subvariety
A1 × Y ′.

The case when π1,2 is constant on X is obvious. Indeed, X = {(a, b)}×A1

and since X ∩V1 6= ∅, we have b = g1,2(a) and g1,2 commutes with an iterate
of f . Hence X is contained in the periodic surface defined by x2 = g1,2(x1).

Case B: J = {1} and J1 = {2, 3}. As in Case A, we may assume that
f2 = f3 =: f and there are infinitely many points {Pi = (ai, bi, ci)}i≥1
such that for each i, there is a periodic curve Vi defined by x1 = ζi and
x3 = gi(x2) such that Pi ∈ X∩Vi where ζi is f1-preperiodic and gi commutes
with an iterate of f . By similar arguments in Case A, we may assume
limi→∞ deg(gi) =∞.

When π1,2 is non-constant on X, we can use similar arguments as in Case
A. This time, we have an inequality of the form

(4.4) ĥf (c) ≤ C5 max
{
ĥf1(a), ĥf (b)

}
+ C6
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for every (a, b, c) ∈ X(Q) where C5 and C6 are constants depending only on

X, f1, and f . So we can conclude that limi→∞ ĥf (bi) = 0. Since Y contains
the Zariski dense set {(ai = ζi, bi)}i, we have that Y is preperiodic, by
Theorem 1.1. If the projection π1 from X (and Y ) to the first A1 is constant
then we have ai = ζ1 for every i and X is contained in the periodic surface
{ζ1}×A2. If the projection π2 from X (and Y ) to the second A1 is constant,
then inequality (4.4) combined with the fact that ai = ζi is periodic and the
fact that limi→∞ deg(gi) =∞ yields that bi must be preperiodic. But then,
because bi is constant as we vary i and deg(gi) → ∞, Corollary 2.10(c)
yields that ci must be constant and periodic, thus providing the desired
conclusion in Theorem 4.1. If π1 and π2 are non-constant then Y satisfies
an equation g(x1) = G(x2), where g and G commute with an iterate of f . In
particular g(ζi) = g(ai) = G(bi); so, by Corollary 2.10, G(bi) is f -periodic
(note that ζi is periodic). When deg(gi) ≥ deg(G), by (the proof of) part
(c) of Corollary 2.10, we have that ci = gi(bi) is also periodic. Now the
Zariski closure of the projection from X to the first and third coordinates
A2 contains the Zariski dense set {(ai, ci) : i is large} of periodic points, it
must be periodic thanks to Theorem 3.1. Hence X is contained in a periodic
surface.

The case π1,2 is constant on X is also obvious. Indeed, X = {(a, b)}×A1

and since X ∩ V1 6= ∅, we have that a = ζ1. Hence X is contained in the
periodic surface {ζ1} × A2.

Case C: J = {1, 2} and J1 = {3}. This time, each periodic curve Vi has
the form {(αi, βi)}×A1 where αi is f1-periodic and βi is f2-periodic. If π1,2
is non-constant on X then Theorem 3.1 implies that Y is a periodic curve in
A2, hence X is contained in the periodic surface Y ×A1. If π1,2 is constant
on X, since X ∩ V1 6= ∅, we have X = V1 is periodic.

4.2. The case when the ambient space has dimension 4. We will need
the following result:

Proposition 4.5. Let f(x), g(x) ∈ Q[x] with deg(f) = deg(g) =: d ≥ 2.
Let C ⊂ A2 be an irreducible Q-curve with the following properties:

• C is non-fibered.
• There exist α, β ∈ Q such that C ∩ (Of (α)×Og(β)) is infinite.

Then C is periodic under the action (x1, x2) 7→ (f(x1), g(x2)).

Proof. As in Cases A and B (see also [GN16, Corollary 3.4]), since C is non-
fibered there exist positive constants C7 and C8 depending on C, f , and g
such that for each (a1, a2) ∈ C(Q), we have

(4.6) max{ĥf (a1), ĥg(a2)} ≤ C7 min{ĥf (a1), ĥg(a2)}+ C8.

Now, since C∩(Of (α)×Og(β)) is infinite and C projects dominantly to both
coordinates, we get that α (respectively β) is not f -preperiodic (respectively

g-preperiodic). Hence ĥf (α) > 0 and ĥg(β) > 0. From this observation,

inequality (4.6) for each point (fm(α), gn(β)) ∈ C(Q), and the fact that
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ĥf (fm(α)) = dmĥf (a) and ĥg(g
n(β)) = dnĥg(β), we conclude that |m − n|

is uniformly bounded as we vary among all points (fm(α), gn(β)) ∈ C(Q).
Therefore, there exists an integer ` such that there exist infinitely many
(m,n) ∈ N0×N0 with the property that (fm(α), gn(β)) ∈ C(Q) and also
m− n = `. Without loss of generality, we assume that ` ≥ 0, and therefore
get that C contains infinitely many points from the orbit of

(
f `(α), β

)
under

the action of (x1, x2) 7→ (f(x1), g(x2)). Since the Dynamical Mordell-Lang
Conjecture (see [BGT16, Chapter 3]) is known in the case of endomorphisms
of A2 (as proven in [Xie]), we conclude that C is periodic under the action
of (x1, x2) 7→ (f(x1), g(x2)), as desired. �

We now return to the proof of Theorem 4.1. We have the following cases
for the weak signature (J , J1, J2):

Case D: |J1| = 1 or |J2| = 1. Without loss of generality, assume |J2| = 1,
more specifically J2 = {4}. Now there are infinitely many points {Pi =
(ai, bi, ci, di)}i≥1 such that for each i, there is a periodic surface Vi such that
Pi ∈ X ∩ Vi. Moreover, we have that Vi = Wi × A1 where Wi is a periodic
curve under the self-map f1 × f2 × f3 of A3.

Let π1,2,3 denote the projection from A4 to the first three coordinates A3.
If π1,2,3 is non-constant on X, then the Zariski closure Y of π1,2,3(X) in A3

is a curve and we can apply Theorem 4.1 to the data (n = 3, f1, f2, f3, Y )
to conclude that Y is contained in a periodic surface S in A3. Hence X is
contained in the periodic hypersurface S×A1. The case π1,2,3 is constant on
X is obvious. We have that X = {(a, b, c)}×A1. Since Pi = (ai, bi, ci, di) =
(a, b, c, di) lies in Vi = Wi × A1, we have that X itself is contained in the
periodic subvariety Vi (for every i).

Case E: |J1| = |J2| = 2. Without loss of generality, assume J1 = {1, 2}
and J2 = {3, 4}. As in Case A, we may assume f1 = f2 =: f and f3 = f4 =:
g. By Proposition 2.4 and without loss of generality, we may assume that
there are infinitely many points {Pi = (ai, bi, ci, di)}i≥1 such that for each i,
there is a periodic surface Vi defined by x2 = Ui(x1) and x4 = Ti(x3) such
that Pi ∈ X ∩ Vi and Ui(x) (respectively Ti(x)) commutes with an iterate
of f(x) (respectively g(x)). For such polynomials Ui(x) and Ti(x), and for
any a ∈ Q, we have (see [Ngu13, Lemma 3.3]):

(4.7) ĥf (Ui(a)) = deg(Ui)ĥf (a), ĥg(Ti(a)) = deg(Ti)ĥg(a).

As in Case A, we may assume that limi→∞ deg(Ui) = limi→∞ deg(Ti) =
∞. Let π1,3 denote the projection from A4 to the first and third coordinates
A2 and let Y denote the Zariski closure of π1,3(X).

We consider first the case when π1,3 is non-constant on X, in
other words Y is a curve in A2.

As in Case A, there are positive constants C9 and C10 depending only on
X and f such that for every point (a, b, c, d) ∈ X(Q), we have:

ĥf (b) + ĥg(d) ≤ C9(ĥf (a) + ĥg(c)) + C10.
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Combining with (4.7) and the fact that Pi = (ai, bi, ci, di) ∈ X∩Vi, we have:

(deg(Ui)− C9)ĥf (ai) + (deg(Ti)− C9)ĥg(bi) ≤ C10.

Since limi→∞ deg(Ui) = limi→∞ deg(Ti) = ∞, we get that limi→∞ ĥf (ai) =

limi→∞ ĥg(ci) = 0. By Theorem 1.1, the curve Y is preperiodic under the
map (x1, x3) 7→ (f(x1), g(x3)). A more carefuly analysis shows that X is
contained in a periodic subvariety as follows.

When the projection from X to the first (or respectively the third) coor-
dinate is constant, then this constant is necessarily preperiodic since Y is
preperiodic. Since bi = Ui(ai) (respectively di = Ti(ci)), we can argue as in
Case A to conclude that there is an f -periodic point (respectively g-periodic
point) ζ such that bi = ζ (respectively di = ζ) for infinitely many i. Hence
X is contained in the periodic surface A1×{ζ}×A2 (respectively A3×{ζ}).

Now consider the case when the projection from X to both the first and
third coordinates is non-constant, or equivalently Y is a non-fibered curve
in A2. This implies f ≈ g. By Lemma 2.2, we may assume that f = g (i.e.
f1 = f2 = f3 = f4 = f). Remark 2.5 gives that Y satisfies an equation of
the form g(x1) = G(x3) where g and G commute with an iterate of f . In
particular bi = Ui(ai), di = Ti(ci), and g(ai) = G(ci). When i is sufficiently
large so that deg(Ui) ≥ deg(g) and deg(Ti) ≥ deg(G), we can write:

Ui = U∗i ◦ g and Ti = T ∗i ◦G
where U∗i and T ∗i commute with an iterate of f . Obviously, either deg(U∗i ) ≥
deg(T ∗i ) or deg(T ∗i ) ≥ deg(U∗i ). By restricting to an infinite subsequence of
{Pi} and without loss of generality, we may assume that deg(T ∗i ) ≥ deg(U∗i )
for every i. From Proposition 2.8, we can write T ∗i = Si ◦ U∗i where Si
commutes with an iterate of f . We have:

di = Ti(ci) = T ∗i (G(ci)) = T ∗i (g(ai)) = Si(U
∗
i (g(ai))) = Si(Ui(ai)) = Si(bi).

If {deg(Si)}i has a bounded subsequence then by similar arguments as
before, X would be contained in a periodic surface of the form x4 = S(x2)
and we are done. Now assume limi→∞ deg(Si) = ∞. Since the projection
from X to the first 3 coordinates is non-constant, there exist C11 and C12

such that:

ĥf (di) ≤ C11 max{ĥf (ai), ĥf (bi), ĥf (ci)}+ C12.

On the other hand:
ĥf (di) = deg(Ti)ĥf (ci),

ĥf (di) = deg(Si)ĥf (bi) = deg(Si) deg(Ui)ĥf (ai)

and {deg(Si)}i, {deg(Ti)}i, and {deg(Ui)}i become arbitrarily large; so, we
conclude that

lim
i→∞

ĥf (ai) = lim
i→∞

ĥf (bi) = lim
i→∞

ĥf (ci) = 0.

By Theorem 1.1, the Zariski closure Z of the projection from X to the first
2 coordinates A2 is preperiodic. We are assuming that the projection from
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X to the first coordinate is non-constant. If the projection to the second
coordinate is constant then it must be preperiodic (since Z is preperiodic),
denoted γ. Now di = Si(bi) = Si(γ) and we can argue as in Case A to
conclude that X is contained in a periodic hypersurface of the form A3×{ζ}.
It remains to treat the case when the projection to the second coordinate is
non-constant. Then Z satisfies an equation g∗(x1) = G∗(x2) where g∗ and
G∗ commute with an iterate of f . By similar arguments as in Case A (see
Lemma 4.3), we conclude that bi is f -periodic when i is sufficiently large,
and so, di = Si(bi) is also f -periodic. Then Theorem 3.1 implies that the
projection from X to the second and fourth coordinates axes is a periodic
curve and we are done since we obtain that X is contained in the periodic
(irreducible) hypersurface in A4, which is the pullback of the aforementioned
periodic plane curve under the projection map (x1, x2, x3, x4) 7→ (x2, x4).

Finally, we treat the case when π1,3 is constant on X.
Write {(α, γ)} = π1,3(X), hence (ai, ci) = (α, γ) for every i. If α is

f -preperiodic then for all i sufficiently large, we get that bi = Ui(ai) =
Ui(γ) must be some given periodic point β and thus, X is contained in the
periodic hypersurface A1 × {β} × A2 and hence, we are done. Therefore
we may assume that α (respectively γ) is not f -preperiodic (respectively

g-preperiodic). Hence ĥf (α) > 0 and ĥg(γ) > 0. From (4.7) and the fact
that

lim
i→∞

deg(Ui) = lim
i→∞

deg(Ti) =∞,

we conclude that limi→∞ ĥf (bi) = limi→∞ ĥg(di) = ∞. Consequently, X
projects dominantly to both the second and fourth coordinates of A4. Let
X ′ be the curve in A2 which is the Zariski closure of the image of X under
the projection to the second and fourth coordinates.

From Proposition 2.8, we can write

Ui = fmi ◦ ui, Ti = gni ◦ ti

where mi, ni ∈ N0, ui (respectively ti) commutes with an iterate of f (re-
spectively g) and max{deg(ui),deg(ti)} ≤ deg(f) = deg(g). From Proposi-
tion 2.8 again, there are only finitely many possibilities for the pair (ui, ti).
Hence there exists u(x) and t(x) such that (ui, ti) = (u, t) for infinitely many
i. Overall, the curve X ′ in A2 satisfies the following properties:

• X ′ is non-fibered.
• X ′ ∩ (Of (u(α))×Og(t(β))) is infinite.

By Proposition 4.5, X ′ is periodic under the map (x2, x4) 7→ (f(x2), g(x4)).
Therefore X is contained in the periodic hypersurface

{(x1, x2, x3, x4) : (x2, x4) ∈ X ′}

and we finish the proof of this case.
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4.3. The case when the ambient space has dimension larger than
4. Let N ≥ 5, assume Theorem 4.1 holds for n ≤ N − 1. We now consider
n = N . Note that the common weak signature (J , J1, . . . , Jn−2) of the Vi’s
is a partition of {1, . . . , n} for which J could possibly be empty while each
Jj is non-empty. Since 2(n−2) > n, there must be some j such that |Jj | = 1.
Without loss of generality, assume Jn−2 = {n}. We can now proceed as in
Case D: if the projection from X to the first (n − 1) coordinates is non-
constant then we reduce to n = N − 1 and apply the induction hypothesis,
otherwise we can easily conclude that X is contained in Vi for every i. This
finishes the proof of Theorem 4.1. �

5. Proof of Theorem 1.3 for subvarieties of codimension 2

Theorem 1.3 is proven once we deal with the last case of it, which is
contained in the following result:

Theorem 5.1. Theorem 1.3 holds if X ⊂ An has codimension 2.

Proof. Here we are assuming that the intersection between X and the union
of all periodic curves is Zariski dense in X and we need to prove that X is
contained in a periodic hypersurface of An. We argue by induction on n;
the case n = 2 is trivial while the case n = 3 was proven in Theorem 3.1.
We assume n ≥ 4 from now on.

By using Remark 2.3 as in the proof of Theorem 4.1, we can assume that
all of the above periodic curves have a common weak signature J1 which is
assumed to be {1, . . . , s} where 1 ≤ s ≤ n. By Lemma 2.2, Remark 2.3,
and Proposition 2.4, we may assume that f1 = . . . = fs =: f and there are
periodic curves {Vm}m≥1 (in An) such that the following hold:

(a) there is a Zariski dense set of points {Pm}m≥1 in X such that Pm ∈
X ∩ Vm for every m, and

(b) each Vm is defined by equations x2 = gm,1(x1), . . . , xs = gm,s−1(xs−1)
where the gm,i’s are polynomials commuting with an iterate of f ,
along with equations xs+1 = am,s+1, . . . , xn = am,n where each am,i
is fi-periodic for s+ 1 ≤ i ≤ n.

Write

Pm = (bm,1, . . . , bm,n)

with bm,j+1 = gm,j(bm,j) for 1 ≤ j ≤ s−1 and bm,j = am,j for s+1 ≤ j ≤ n.
By restricting to a subsequence, we may assume that {Pm}m≥1 is generic

which means that every subsequence is Zariski dense in X. This is possible,
as follows. First we enumerate all the countably many strictly proper irre-
ducible Q-subvarieties of X as {Z1, Z2, . . .}. Then we let m0 := 0, let Pm1

be the first point in the sequence {Pm}m>m0 which is not contained in Z1,
let Pm2 be the first point in the sequence {Pm}m>m1 that is not contained
in Z1 ∪ Z2, and so on. The subsequence {Pmk

}k≥1 is generic in X.
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If for some i ∈ {s+1, . . . , n}, the projection from X to the i-th coordinate
axis A1 is constant, thenX is contained in the periodic hypersurface xi = a1,i
and we are done.

So, from now on, we may assume that each projection of X on
the coordinate axes xs+1, . . . , xn is not constant.

In particular, this means that for every i ∈ {s + 1, . . . , n} and any fi-
periodic point ζ, there are at most finitely many m’s such that am,i = ζ;
otherwise an infinite subsequence of {Pm} is contained in the hypersurface
xi = ζ. Since {Pm}m is generic, X is also contained in xi = ζ, violating our
assumption.

Claim 5.2. Theorem 5.1 holds when s = 1.

Proof. Since s = 1, each Vm is of the form

A1 × (am,2, . . . , am,n).

We project X to the last n−1 coordinate axes and thus obtain a subvariety
X1 ⊂ An−1 of codimension 1 or 2. Furthermore, according to our hypoth-
esis, X1 contains a Zariski dense set of periodic points (ai,2, . . . , ai,n); thus
Theorem 3.2 yields that X1 is periodic, hence X is contained in a periodic
subvariety. �

From now on, we assume 2 ≤ s ≤ n. Furthermore, as argued in the
proof of Theorem 4.1, we may assume that for j = 1, . . . , s − 1, we have
deg(gm,j)→∞ as m→∞.

Claim 5.3. Theorem 5.1 holds if X does not project dominantly onto the
s-th coordinate A1 of An.

Proof of Claim 5.3. Let bs be the image of the constant projection from
X to the s-th coordinate A1 and let π(s) be the projection from X to the

remaining n−1 coordinates An−1. Let X(s) be the Zariski closure of π(s)(X).
For each m we have that Vm∩X contains some point (bm,1, . . . , bm,n) such

that for i = 1, . . . , s− 1, we have

ĥf (bm,i) =
ĥf (bs)∏s−1

j=i deg(gm,j)
→ 0 as m→∞.

Since also for i = s+ 1, . . . , n we have ĥf (bm,i) = ĥf (am,i) = 0, we conclude
that X(s) contains a Zariski dense set of points of canonical height converging
to 0. Thus Theorem 1.1 yields that X(s) is preperiodic. A more careful
analysis shows that X is contained in a proper periodic subvariety, as follows.

Since dim(X(s)) = dim(X), we have that X(s) is a hypersurface in An−1.
By Remark 2.6, there exist i < j in {1, . . . , s − 1, s + 1, . . . , n} and an
irreducible curve C in A2 that is preperiodic under (xi, xj) 7→ (fi(xi), fj(xj))
such that X(s) = π−1(C) where π is the projection to the i-th and j-th
coordinate axes, i.e.,

(5.4) (x1, . . . , xs−1, xs+1, . . . , xn) −→ (xi, xj).
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We have several cases (note that the projection from X to each of the `-th
coordinate A1 for ` ∈ {s+ 1, . . . , n} is non-constant):

(i) i, j ∈ {s + 1, . . . , n}. Then the curve C contains the Zariski dense
set of periodic points {(am,i, am,j)}m. By Theorem 3.1, C is pe-
riodic. Hence X(s) is periodic and X is contained in the periodic

hypersurface π−1(s)(X(s)).

(ii) i, j ∈ {1, . . . , s − 1} and the curve C is fibered. Hence there exists
an f -preperiodic point γ such that X is contained in the hyper-
surface xi = γ, say. From bs = bm,s = gm,s−1 ◦ . . . ◦ gm,i(γ) and
Corollary 2.10, by choosing sufficiently large m, we have that bs
is f -periodic. Hence X is contained in the periodic hypersurface
xs = bs.

(iii) i, j ∈ {1, . . . , s−1} and the curve C is non-fibered. By Remark 2.5,
C satisfies an equation g(xi) = G(xj) where g and G commute with
an iterate of f . As in Case A in Section 4 (see Lemma 4.3), we have
that bm,j is f -periodic when m is sufficiently large (see Lemma 4.3).
Then bs = bm,s = gm,s−1 ◦ . . . ◦ gm,j(bm,j) is f -periodic and we are
done.

(iv) i ∈ {1, . . . , s−1}, j ∈ {s+1, . . . , n}, and the curve C is fibered. We
can use the same arguments as in Case (ii) above since we know C
must project dominantly onto the xj coordinate axis and therefore,
we must have that the curve C is given by an equation of the form
xi = γ, for a preperiodic point γ.

(v) i ∈ {1, . . . , s−1}, j ∈ {s+1, . . . , n}, and the curve C is non-fibered.
Then fi ≈ fj . By Lemma 2.2, we may assume that fj = fi = f .
Now C satisfies an equation g(xi) = G(xj) as in Case (iii). Hence
g(bm,i) = G(am,j) is f -periodic. By choosing m sufficiently large
such that deg(gm,s−1 ◦ . . . ◦ gm,i) ≥ deg(g), we conclude that bs =
bm,s = gm,s−1 ◦ . . . ◦ gm,i(bm,i) is periodic.

This finishes the proof of Claim 5.3. �

From now on, in the proof of Theorem 5.1 we assume that X
projects dominantly onto the s-th axis.

Let π(s) and X(s) be as in the proof of Claim 5.2. We still have 2 more
cases: dim(X(s)) = n− 3 or dim(X(s)) = n− 2.

Claim 5.5. Theorem 5.1 holds if dim(X(s)) = n− 3

Proof of Claim 5.5. In this case, we have that X = X(s) × A1 (where the

factor A1 comes from the s-th coordinate). Furthermore, by our assumption,
we know that X(s) has a Zariski dense intersection with periodic curves of

An−1 given by the equations:

x2 = gm,1(x1), x3 = gm,2(x2), · · · , xs−1 = gm,s−1(xs−2)
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and the equations

xs+1 = am,s+1, xs+2 = am,s+2, · · · , xn = am,n.

In other words, X(s) has a dense intesection with Per[n−2] ⊂ An−1. By the
inductive hypothesis, we conclude that X(s) is contained in a strictly proper

periodic subvariety of An−1, and so is X. �

From now on, in the proof of Theorem 5.1 we may assume
dim(X(s)) = n− 2 = dim(X).

Then there is a strictly smaller Zariski closed subset Y(s) of X(s) such

that for Y := π−1(Y(s)), the induced morphism from X \ Y to X(s) \ Y(s) is
finite. At the expense of removing finitely many pairs (Pm, Vm)’s for which
Pm ∈ Y , we may assume that Pm ∈ Vm ∩ (X \ Y ) for every m (note that
the sequence of points {Pm} is generic in X).

Since the map from X \Y to X(s) \Y(s) is finite, by [GN16, Corollary 3.4]
there are constants c0, . . . , cs−1, cs+1, . . . cn such that for each m ∈ N we
have the inequality:

(5.6) ĥf (bm,s) ≤ c0 +
∑

1≤i≤n
i 6=s

ciĥf (bm,i).

Using the fact that for each i = 1, . . . , s− 1, we have

(5.7) ĥf (bm,i) =
ĥf (bm,s)∏s−1

j=i deg(gm,j)
,

while for each i = s + 1, . . . , n, we have that ĥf (bm,i) = ĥf (am,i) = 0.
Combining (5.7) with (5.6) and with the fact that deg(gm,i)→∞ as m→∞
for each i = 1, . . . , s− 1, we conclude that

(5.8) lim
m→∞

ĥf (bm,i) = 0 for each i = 1, . . . , s− 1.

So, X(s) contains a Zariski dense set of points of small height, i.e., the points
(bm,1, . . . , bm,s−1, bm,s+1, . . . , bm,n). Then Theorem 1.1 yields that X(s) is
preperiodic.

As in the proof of Claim 5.3, there exist i < j in {1, . . . , s−1, s+1, . . . , n}
and a preperiodic curve C in A2 such that X(s) = π−1(C) where π is the
projection to the i-th and j-th coordinate axes, as in (5.4). We have cases
(i)-(v) as in the proof of Claim 5.3. Case (i) can be handled by the exact
same arguments. On the other hand, cases (ii) and (iv) cannot occur under
the hypothesis that X projects dominantly onto the s-th coordinate axis.
Indeed, in both those two cases (ii) and (iv) we would have that C is fibered,
given by some equation xi = γ (or xj = γ) for some i (or j) in {1, . . . , s−1}
and some preperiodic point γ. But then (without loss of generality) bm,i = γ
for each m and so,

bm,s = (gm,s−1 ◦ · · · ◦ gm,i) (bm,i) = (gm,s−1 ◦ · · · ◦ gm,i) (γ)
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takes only finitely many values as we vary m by Corollary 2.10. However,
the points {Pm} are dense in X and X projects dominantly onto the s-
th coordinate axis, contradiction. Therefore, we are left to analyze only
cases (iii) and (v) appearing in the proof of Claim 5.3.

In cases (iii) and (v), we have that bm,s is periodic when m is large; by
removing finitely many m’s, we may assume that bm,s is periodic for every
m. For any k ∈ {1, . . . , s− 1}, from bm,s = gm,s−1 ◦ . . . ◦ gm,k(bm,k), we have
that bm,k is f -preperiodic. Therefore, using again that each bm,k = am,k
is periodic for k > s, Theorem 1.1 yields that X is preperiodic becaue
it contains a Zariski dense set of preperiodic points. From the discussion
in Section 2, we know that X is a product of preperiodic curves. Since
dim(X) = n− 2 and X(s) = C × An−3 (the factor An−3 comes from all the
`-axes where ` ∈ {1, . . . , n} \ {i, j, s}), we only have two possibilities.

Case F: The first possibility is that X = C ′×An−3 where C ′ is a prepe-
riodic curve in A3 which is also the projection from X to the i-th, j-th, and
s-th axes (hence C is the projection from C ′ to the i-th and j-th axes A2).
Now in both cases (iii) and (v) from the proof of Claim 5.3, we have that
bm,j is periodic for all (sufficiently large) m. Consequently, the projection
from X to the j-th axis together with the s-th axis is a curve containing the
Zariski dense set of periodic points (bm,j , bm,s)m. Therefore this projection
is a periodic curve by Theorem 3.1. Hence X lies in the periodic hypersur-
face which is the inverse image in An of this periodic plane curve under the
projection map (x1, . . . , xn) 7→ (xj , xs).

Case G: The second possibility is that there exist ` ∈ {1, . . . , n}\{i, j, s}
such that X = C ×C ′′ ×An−4 where C ′′ is a preperiodic curve in A2 which
is also the projection from X to the s-th and `-th axes and the factor An−4
comes from the k-th axes for k ∈ {1, . . . , n} \ {i, j, s, `}. Now if ` ∈ {s +
1, . . . , n} then we have bm,` = am,` is periodic, hence the curve C ′′ contains
the Zariski dense set of periodic points (bm,s, bm,`)m. From Theorem 3.1, we
have that C ′′ is periodic and we are done since then X is contained in the
periodic hypersurface A2 × C ′′ × An−4.

From now on, in the proof of Theorem 5.1 we assume that ` ∈
{1, . . . , s}.

If the projection from C ′′ to the `-th coordinate is constant then we derive
a contradiction. Indeed, then x` = γ where γ is f -preperiodic. From bm,s =
gm,s−1 ◦ . . . ◦ gm,`(γ), we obtain that the s-th coordinates bm,s of the points
Pm must belong to a finite set, contradicting thus the fact that these points
are dense in X, which is a variety projecting dominantly onto the s-th
coordinate axis.

So, from now on, we may assume that C ′′ is non-fibered (note that
we are already working under the assumption that X projects dominantly
onto the s-th coordinate axis).

Therefore C ′′ satisfies an equation U(xs) = T (x`) where U and T com-
mute with an iterate of f . It remains to treat case (iii) or case (v) in the
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proof of Claim 5.3. In either case, we may assume that fj = f and C satis-
fies an equation g(xi) = G(xj) where g and G commute with an iterate of
f . As in the proof of Claim 5.3, we have that bm,j is f -periodic for all large
m. Hence both T (bm,`) = U(bm,s) and g(bm,i) = G(bm,j) are f -periodic for
all large m.

If i < `, we have bm,` = gm,`−1 ◦ . . . ◦ gm,i(bm,i). Therefore when m is
large enough so that deg(gm,`−1 ◦ . . . ◦ gm,i) ≥ deg(g), we have that bm,` is
periodic (see Lemma 4.3). Consequently, the curve C ′′ is periodic since it
contains a Zariski dense set of periodic points (bm,`, bm,s). Similarly, if ` < i,
when m is large so that deg(gm,i−1 ◦ . . . ◦ gm,`) ≥ deg(T ), we have bm,i is
periodic (again using Lemma 4.3), hence C is periodic because it contains
a Zariski dense set of periodic points (bm,i, bm,j). This finishes the proof of
Theorem 5.1. �
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