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Abstract. We study pencils of hypersurfaces over finite fields Fq such that

each of the q + 1 members defined over Fq is smooth.

1. Introduction

It is a well-known principle in algebraic geometry that “most” hypersurfaces in
Pn of a given degree d defined over some field k is smooth. When the underlying
field is algebraically closed, we can make this precise by asserting that smooth
hypersurfaces of a given degree form a dense open subset of the parameter space
under the Zariski topology. When k = Fq is a finite field, it becomes more subtle to
quantify the principle that the number of smooth hypersurfaces of a fixed degree d
defined over Fq is sufficiently large.

As an application of Lang–Weil theorem [LW54], the proportion of smooth hy-
persurfaces of degree d defined over Fq tends to 1 as q 7→ ∞. While this justifies
the abundance of smoothness over finite fields, it does not answer finer questions on
the distribution of smooth hypersurfaces. In this paper, we consider the following
general question on the existence of smooth hypersurfaces along linear subspaces:

Question 1.1. Fix a prime power q. Let (n, d, r) be any triple of positive integers.
Does there exist a linear subspace L of projective dimension r over Fq parametrizing
degree d hypersurfaces in Pn such that each of the Fq-members of L is smooth?

To be more precise, suppose that we have r+1 hypersurfaces X0, . . . , Xr defined
by Xi = {Fi = 0} for some homogeneous polynomials Fi ∈ Fq[x0, . . . , xn]. We
can consider the vector space L = ⟨F0, . . . , Fr⟩ spanned by Fi. If L has maximal
dimension r + 1, we say that L has projective dimension r. By Fq-members of
L, we mean the elements of L defined over Fq, or equivalently, the hypersurfaces
which are expressible as X = {a0F0 + a1F1 + · · · + arFr = 0} where ai ∈ Fq for
each 0 ≤ i ≤ r. Note that L has exactly #Pr(Fq) = qr + qr−1 + · · · + 1 many
Fq-members.

When r = 1, the space L = ⟨F0, F1⟩ is called a pencil. The main Question 1.1 in
this special case reduces to the following:

Question 1.2. Does there exist a pencil L of hypersurfaces in Pn of degree d over
Fq such that each of the q + 1 members of L defined over Fq is smooth?

Our main result asserts that Question 1.2 has a positive answer when q is suffi-
ciently large compared to d. More precisely, we prove the following effective result.
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Theorem 1.3. Let n, d be positive integers with n ≥ 2 and d ≥ 2. Suppose that

q >

(
1 +

√
2

2

)2

((n+ 1)(d− 1)n)
2
((n+ 1)(d− 1)n − 1)

2
((n+ 1)(d− 1)n − 2)

2
.

Then there exists a pencil of hypersurfaces of degree d in Pn such that each of the
q + 1 members defined over Fq is smooth.

We remark that the case n = 2 and d = 2 in Question 1.2 was investigated in
our previous work [AG22, Example 2.6]. In that example, the smooth conics D1,
D2, . . . , Dq+1 arise from a pencil of conics for a suitably constructed base locus B,
which consists of 3 points Galois-conjugated over Fq3 , and a single Fq-point. The
construction works for any prime power q, and it follows that Question 1.2 has a
positive answer in the case (n, d) = (2, 2) over Fq for each q.

Remark 1.4. It is impossible for Question 1.1 to have a positive answer for all
possible choices of (n, d, r). Indeed, r must be strictly less than the dimension of
the projective space parametrizing all degree d hypersurfaces in Pn. In particular, it
is necessary that r ≤

(
n+d
d

)
− 2. However, this condition is not sufficient in general;

indeed, Example 1.6 below shows that Question 1.1 has a negative answer in the
case (n, d, r) = (2, 2, 3) over F2, and yet r = 3 <

(
2+2
2

)
− 2 = 4. Nevertheless, we

expect that Question 1.2 always has a positive answer. In other words, we believe
that Theorem 1.3 should be true with no additional hypothesis on q and d.

Example 1.5. Let q = 2. Consider the polynomials f0 = x2 + y2 + xz, f1 =
xy+xz+z2 and f2 = x2+yz in F2[x, y, z]. One can check that the 7 conics defined
by f0, f1, f2, f0 + f1, f0 + f2, f1 + f2, f0 + f1 + f2 are all smooth. In other words,
the conic defined by

a0f0 + a1f1 + a2f2 = 0

is smooth for each [a0 : a1 : a2] ∈ P2(F2). Thus, Question 1.1 has a positive answer
for the case (n, d, r) = (2, 2, 2) over F2.

Example 1.6. Let q = 2. When (n, d, r) = (2, 2, 3), we are searching for r+1 = 4
conics {f0 = 0}, {f1 = 0}, {f2 = 0}, {f3 = 0} such that {a0f0+a1f1+a2f2+a3f3 =
0} is a smooth conic for each of the 15 values [a0 : a1 : a2 : a3] ∈ P3(F2). There
are q5 − q2 = 28 smooth conics over F2. Checking all possible

(
28
4

)
= 20475 subsets

of size 4 in Macaulay2, we see that no such 4-tuple (f0, f1, f2, f3) exists. Thus,
Question 1.1 has a negative answer for the case (n, d, r) = (2, 2, 3) over F2.

Based on the examples above, it would be interesting to characterize all triples
(n, d, r) for a given finite field Fq such that Question 1.1 has a positive answer.

The present paper is organized as follows. In Section 2 we give a proof of our
main theorem. In Section 3 we give a concrete approach to settle Question 1.2
affirmatively in the special case (n, d) = (3, 2) for all q.
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a Postdoctoral Research Fellowship and an NSERC PDF award at the University of
British Columbia. The second author is supported by an NSERC Discovery grant.
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2. Main result

We begin the section by explaining the strategy behind the proof of Theorem 1.3.
The key observation is that a pencil of hypersurfaces of degree d can be viewed as a
line inside the parameter space PN with N =

(
n+d
d

)
−1 whose points correspond to

degree d hypersurfaces in Pn. It turns out that the singular hypersurfaces of degree
d are parametrized by a hypersurface D inside PN , known as the discriminant. The
singular members of a given pencil L ∼= P1 precisely corresponds to the intersection
L∩D. Thus, it suffices to find an Fq-line that meets the discriminant hypersurface
only at non-Fq-points. We prove a general result that guarantees such a line for
any hypersurface X in Proposition 2.4. The proof of this latter result naturally
reduces (after slicing X by a suitable plane defined over Fq) to the case when X is
a plane curve. The case of plane curves is proved separately in Proposition 2.1 and
contains the novel part of the paper.

Before we proceed with more technical details, we clarify the usage of the word
“irreducible”. Given a hypersurface X ⊂ Pn defined by {F = 0} over Fq, we say
that X is irreducible if F cannot be factored into a product of two polynomials of
smaller degree in Fq[x0, . . . , xn]. We say that X is geometrically irreducible if X is

irreducible when viewed over the algebraic closure Fq.
As alluded above, we begin by proving an effective result that guarantees the

existence of an Fq-line whose intersection with a given plane curve has no Fq-points.

Proposition 2.1. Suppose that C ⊂ P2 is a geometrically irreducible curve of

degree δ ≥ 2 defined over Fq. If q >
(

1+
√
2

2

)2
δ2(δ − 1)2(δ − 2)2, then we can find

an Fq-line L ⊂ P2 such that the intersection C ∩ L has no Fq-points.

Proof. Let (P2)∗(Fq) denote the set of all Fq-lines in P2. Consider the following
finite set:

I = {(L,P ) | L ∈ (P2)∗(Fq) and P ∈ (L ∩ C)(Fq)}
where (L ∩ C)(Fq) stands for the set of Fq-points of the intersection L ∩ C. We
count the cardinality of I in two different ways. First, fixing a point P ∈ C(Fq),
there are exactly q + 1 distinct Fq-lines L passing through P , which yields

(2.1) #I = (q + 1) ·Nq(C)

where Nq(C) denotes #C(Fq). On the other hand, we can fix an Fq-line L, and let
mL denote #(C ∩ L)(Fq). Then

(2.2) #I =
∑

L∈(P2)∗(Fq)

mL

For each 0 ≤ i ≤ δ, we define

Ti := {L ∈ (P2)∗(Fq) | mL = i}.

It is clear that (P2)∗(Fq) is a disjoint union of Ti for 0 ≤ i ≤ δ. Combining (2.1)
and (2.2), we obtain

(2.3) (q + 1) ·Nq(C) =
∑

L∈(P2)∗(Fq)

mL =
∑
L∈T1

mL +
∑
L∈T2

mL + · · ·+
∑
L∈Tδ

mL.

Next, consider the following finite set,

J = {(L, {P1, P2}) | L ∈ (P2)∗(Fq) and {P1, P2} ⊂ (L ∩ C)(Fq)}.
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Note that the notation {P1, P2} implicitly assumes P1 ̸= P2. Since P1 and P2

uniquely determine L, we have #J =
(
Nq(C)

2

)
. On the other hand,

#J =
∑
L∈T2

(
2

2

)
+
∑
L∈T3

(
3

2

)
+ · · ·+

∑
L∈Tδ

(
δ

2

)

because a given element in Ti contributes exactly
(
i
2

)
pairs to its second coordinate.

Let ti = #Ti. Combining the two formulas for the cardinality of J , we obtain:

(2.4)

(
Nq(C)

2

)
=

δ∑
i=2

ti ·
(
i

2

)
Consequently,

Nq(C) · (Nq(C)− 1) =

δ∑
i=2

ti · i(i− 1) ≤ δ

δ∑
i=2

ti · (i− 1)

we obtain

(2.5)

δ∑
i=2

ti · (i− 1) ≥ Nq(C) · (Nq(C)− 1)

δ

After rewriting (2.3) as,

(q + 1) ·Nq(C) =

δ∑
i=1

ti · i =
δ∑

i=1

ti +

δ∑
i=2

ti(i− 1)

and substituting (2.5), we obtain

(q + 1) ·Nq(C) ≥
δ∑

i=1

ti +
Nq(C) · (Nq(C)− 1)

δ

Thus,

δ∑
i=1

ti ≤ (q + 1) ·Nq(C)−
Nq(C) · (Nq(C)− 1)

δ

Using the fact that
∑δ

i=0 ti = q2 + q + 1, we obtain:

(2.6) t0 = (q2+q+1)−
δ∑

i=1

ti ≥ (q2+q+1)−(q+1) ·Nq(C)+
Nq(C) · (Nq(C)− 1)

δ

Our goal is to show that t0 > 0 because t0 exactly counts the Fq-lines where
(L∩C)(Fq) = ∅. We will use the Hasse-Weil inequality for geometrically irreducible
plane curves [AP96, Corollary 2.5], which states that

(2.7) q + 1− (δ − 1)(δ − 2)
√
q ≤ Nq(C) ≤ q + 1 + (δ − 1)(δ − 2)

√
q
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We obtain,

t0 ≥ (q2 + q + 1)− (q + 1) ·Nq(C) +
Nq(C) · (Nq(C)− 1)

δ

= (q2 + q + 1)−Nq(C)

(
δ(q + 1)−Nq(C) + 1

δ

)
≥ (q2 + q + 1)−Nq(C)

(
δ(q + 1)− (q + 1− (δ − 1)(δ − 2)

√
q) + 1

δ

)
= (q2 + q + 1)−Nq(C)

(
(δ − 1)(q + 1) + (δ − 1)(δ − 2)

√
q + 1

δ

)
In order to prove that t0 > 0, we will focus on proving

δ(q2 + q + 1) > Nq(C) ((δ − 1)(q + 1) + (δ − 1)(δ − 2)
√
q + 1)

Using (2.7), it suffices to show that,

δ(q2 + q + 1) > (q + 1 + (δ − 1)(δ − 2)
√
q) ((δ − 1)(q + 1) + (δ − 1)(δ − 2)

√
q + 1)

After simplifying and rearranging the terms, it is enough to prove that,

q2 > δ(δ − 1)(δ − 2)q
√
q + [(δ − 1)2(δ − 2)2 + (δ − 1)]q

+ (δ + 1)(δ − 1)(δ − 2)
√
q.

This is clearly true when δ = 2, so we will assume δ ≥ 3 for the rest of the proof.
Assuming q > 1

2 (δ + 1)(δ − 1)(δ − 2)
√
q, it suffices to prove that,

q > δ(δ − 1)(δ − 2)
√
q + [(δ − 1)2(δ − 2)2 + (δ + 1)]

Using the quadratic formula and δ2(δ − 1)2(δ − 2)2 ≥ 4(δ − 1)2(δ − 2)2 + 4(δ + 1)
for δ ≥ 3, one can check that the desired inequality holds provided that,

q >

(
1 +

√
2

2

)2

δ2(δ − 1)2(δ − 2)2

Finally, we have to make sure that our earlier assumption q > 1
2 (δ+1)(δ−1)(δ−2)

√
q

is valid. This is indeed the case since

q >

(
1 +

√
2

2

)2

δ2(δ − 1)2(δ − 2)2 >

(
1

2
(δ + 1)(δ − 1)(δ − 2)

)2

holds for δ ≥ 3. This completes the proof. □

Remark 2.2. The conclusion of Proposition 2.1 continues to hold when X is irre-
ducible over Fq. Indeed, if X is irreducible but not geometrically irreducible, we can
write X = X1 ∪X2 ∪ · · · ∪Xs where each Xi is geometrically irreducible and s ≥ 2.
Without loss of generality, we have Xi = ϕi(X1) where ϕ : P2 → P2 denotes the
Frobenius map [x : y : z] 7→ [xq : yq : zq]. As a result, each Fq-point of X belongs to
Xi for all 1 ≤ i ≤ s. In particular, each Fq-point of X must belong to the intersec-
tion X1∩X2. Let δ = deg(X), δ1 = deg(X1), and δ2 = deg(X2). Applying Bézout’s

theorem, we obtain that #X(Fq) ≤ δ1δ2 ≤ (δ1+δ2)
2

4 ≤ δ2

4 . Thus, the total number

of Fq-lines passing through some Fq-point of X is at most δ2

4 · (q + 1) < q2 + q + 1

because q >
(

1+
√
2

2

)2
δ2(δ−1)2(δ−2)2 > δ2

4 for δ ≥ 3. For δ = 2, the conclusion is
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still true because δ2

4 = 1 and q ≥ 2. In particular, there exists an Fq-line L which
does not pass through any Fq-point of X, as desired.

Remark 2.3. We remark that an alternative way to prove Proposition 2.1 is to use
the Chebotarev Density Theorem for varieties over finite fields [Ent21, Theorem 3].
From a given plane curve C, one can construct a finite étale map f : X → Y where
Y = (P2)∗ parametrizes lines in P2 and f−1(L) records the intersection L∩C. Thus,
the problem reduces to finding an Fq-point L ∈ Y such that f−1(L) has no fixed
point in its orbit under the Frobenius action. Since the orbit decomposition should
behave uniformly as q → ∞, we obtain the desired conclusion for q ≫ d. Making
the bound q ≫ d effective via this method is much more complex as there are many
implicit constants. We believe that our approach has advantages of being both

elementary and yet providing an explicit bound q >
((

1+
√
2

2

)
δ(δ − 1)(δ − 2)

)2
.

Using a slicing method, we can generalize the previous result to any geometrically
irreducible hypersurface of degree at least 4.

Proposition 2.4. Suppose X ⊂ Pn is a geometrically irreducible hypersurface of

degree δ ≥ 4 defined over Fq. If q >
(

1+
√
2

2

)2
δ2(δ − 1)2(δ − 2)2, we can find an

Fq-line L ⊂ Pn such that the intersection X ∩ L has no Fq-points.

Proof. Using Kaltofen’s result [Kal95, Theorem 5], which was made explicit in
[CM06, Corollary 3.2], we can find an Fq-plane H ⊂ Pn such that C := X ∩H is
a geometrically irreducible plane curve provided that q > 1

2

(
3δ4 − 4δ3 + 5δ2

)
. We

can use this result since it is straightforward to verify that(
1 +

√
2

2

)2

δ2(δ − 1)2(δ − 2)2 ≥ 1

2

(
3δ4 − 4δ3 + 5δ2

)
holds for all δ ≥ 4. Applying Proposition 2.1 to the curve C inside H ∼= P2, we
immediately obtain the desired result. □

We are now ready to present the proof of the main result.

Proof of Theorem 1.3. We apply Proposition 2.4 to the discriminant hypersurface
X = Dn,d which parameterizes all singular degree d hypersurfaces in Pn. It is
known that X is geometrically irreducible [EH16, Proposition 7.1] and the degree
of X is δ = (n + 1)(d − 1)n by [EH16, Proposition 7.4]. Note that the inequality
δ ≥ 4 always holds except for the case (n, d) = (2, 2) which was already handled in
our previous paper [AG22, Example 2.6]. We obtain an Fq-line L whose intersection

with X has no Fq-points; this line L ∼= P1 corresponds to a pencil of hypersurfaces
of degree d such that each of the q + 1 distinct Fq-members is smooth. □

3. The pencil of quadric surfaces

In this section, we show that Question 1.2 has a positive answer when (n, d) =
(3, 2) for all q. There are at least two approaches to show that there exists a
pencil of quadric surfaces in P3 where each Fq-member is smooth. First, applying
Theorem 1.3 directly with (n, d) = (3, 2), there exists a desired pencil provided that

q >

(
1 +

√
2

2

)2

· 42 · 32 · 22 ≈ 839.3
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Thus, we only need to check the conclusion for all prime powers q ≤ 839. This
can be achieved by randomly sampling a pair of quadrics using a computer algebra
system and searching until one finds a pencil that works. The second method,
presented below, is more conceptual and directly constructs the desired pencil.

We will first focus on the case when q is odd, and afterwards consider the case
when q is even. We begin with an elementary lemma which will help us in showing
the irreducibility of a certain quadratic in the construction later.

Lemma 3.1. Suppose Fq is a finite field with q odd. Then there exists a square
s ∈ Fq such that s+ 1 is a non-square.

Proof. Assume, to the contrary, that for each square s ∈ Fq, the element s + 1 is
also a square. Write q = pr where p is an odd prime number and r ≥ 1. Observe
that for each x ∈ Fq, either all of the numbers x, x+1, . . . , x+ p− 1 are squares, or
none of them is a square. Indeed, once there exists a square in this sequence, our
assumption leads to all of them being squares.

Now, there are exactly

1 +
q − 1

2
= 1 +

pr − 1

2
=
pr + 1

2
squares in Fq. However, the observation above implies that the number of squares

must be a multiple of p. This is a contradiction, as p does not divide pr+1
2 . □

Corollary 3.2. Suppose Fq is a finite field with q odd. Then there exists an element
c ∈ Fq such that c2 − 2c+ 5 is a non-square in Fq.

Proof. By Lemma 3.1, there exists a square s = b2 ∈ Fq such that s + 1 ∈ Fq

is a non-square. Let c = 2b + 1. Then c2 − 2c + 5 = 4(b2 + 1) = 4(s + 1) is a
non-square. □

The following construction shows that Question 1.2 has a positive answer in the
case (n, d) = (3, 2) over Fq for each odd q.

Proposition 3.3. Let q be an odd prime power. Let c ∈ Fq be such that c2−2c+5
is a non-square. Consider the homogeneous quadratic polynomials

f0 = x2 + y2 + z2 + w2

f1 = xy + yz + zw + cwx

in Fq[x, y, z, w]. Then each of the q + 1 distinct Fq-members of the pencil ⟨f0, f1⟩
is a smooth quadric surface in P3.

Proof. Recall that an arbitrary element of the pencil is defined by a polynomial
h = sf0 + tf1 where [s : t] ∈ P1. We want to show that none of the singular
members of the pencil is defined over Fq. Given h = sf0 + tf1, we have:

hx = 2sx+ t(y + cw), hy = 2sy + t(x+ z),

hz = 2sz + t(y + w), hw = 2sw + t(z + cx).

The singular points of {h = 0} must satisfy hx = hy = hz = hw = 0. We express
these linear equations in matrix notation:

2s t 0 ct
t 2s t 0
0 t 2s t
ct 0 t 2s

 ·


x
y
z
w

 =


0
0
0
0
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In particular, the determinant of the matrix above must vanish. One can check
that the determinant is equal to:(

(1− c)t2 + 2(c+ 1)st− 4s2
) (

(1− c)t2 − 2(c+ 1)st− 4s2
)

We claim that each of the quadratic factors is irreducible over Fq. Indeed, the
discriminant of both quadratics is

4(c+ 1)2 + 16(1− c) = 4c2 − 8c+ 20 = 4(c2 − 2c+ 5)

which is a non-square in Fq by our choice of c. Thus, the four roots of the determi-
nant above are not in Fq, which implies that all the Fq-members of the pencil are
smooth. □

Next, we consider the case when q is even. We begin with a quick lemma on the
irreducibility of quadratic polynomials in characteristic 2.

Lemma 3.4. Let q be an even prime power. Then there exists an element c ∈ Fq

such that t2 + t+ c is an irreducible polynomial in Fq[t].

Proof. Let K be a field extension of Fq with [K : Fq] = 2. Let u ∈ K \ Fq. The
minimal polynomial of u over Fq is given by ϕ(t) = t2 + bx + d ∈ Fq[t] for some
b, d ∈ Fq. Note that b ̸= 0 because ϕ is irreducible and char(Fq) = 2. Observe that

ψ(t) :=
1

b2
ϕ(t) =

(
t

b

)2

+

(
t

b

)
+
d

b2

is an irreducible polynomial too. Letting c = d/b2 ∈ Fq, we see that ψ(tb) = t2+t+c
is also an irreducible polynomial in Fq[t]. □

The following construction shows that Question 1.2 has a positive answer in the
case (n, d) = (3, 2) over Fq for each even q.

Proposition 3.5. Let q be an even prime power. Let c ∈ Fq be such that t2+t+c is
an irreducible polynomial in Fq[t]. Consider the homogeneous quadratic polynomials

f0 = x2 + y2 + xy + yz + czw

f1 = x2 + z2 + yz + xw

in Fq[x, y, z, w]. Then each of the q + 1 distinct Fq-members of the pencil ⟨f0, f1⟩
is a smooth quadric surface in P3.

Proof. Suppose h = sf0+ tf1 defines a singular element of the pencil where [s : t] ∈
P1. We have,

hx = sy + tw, hy = s(x+ z) + tz,

hz = s(y + cw) + ty, hw = csz + tx.

The singular points of {h = 0} must satisfy hx = hy = hz = hw = 0. These linear
conditions on s and t can be expressed in matrix notation:

0 s 0 t
s 0 s+ t 0
0 s+ t 0 cs
t 0 cs 0

 ·


x
y
z
w

 =


0
0
0
0


Consequently, the determinant of the matrix on the left hand side must vanish.
One can check that the determinant is equal to (t2 + st+ cs2)2 in characteristic 2.
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Since t2 + t + c is an irreducible polynomial in Fq[t] by our choice of c ∈ Fq, the

binary form t2 + st + cs2 does not vanish for each [s : t] ∈ P1(Fq). In particular,
each Fq-member of the pencil is smooth. □
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