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“One fish,

Two fish,

Red fish,

Blue fish”

Modeling a Fresh Fish Detector

PIMS Modeling Group 1

Simon Fraser University, Canada
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Response of a Plaice to the Freshness Detector 
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Presentation Outline

• Overview of model

• Digital Signal Processing: De-noising the raw data

• Analysis of distinct phases

– Phase B

– Phase A

– Phase C

• Conclusions
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Overview of Model

This project models the dynamics of a device for measuring
fish freshness. A needle–like probe applies a constant force to
the surface of a fish and is then released. The dynamics of the
fish–probe system change during the experiment, giving rise to
three distinct phases:

• Phase A: The response resembles an oscillating decaying
exponential function, which might be modeled as a
mass–spring system with damping.

• Phase B: A linearly (or exponentially) decaying response
is observed.

• Phase C: A second oscillating decaying exponential
behavior.

The approach involved modeling the separate phases as
independent processes. These were then combined to produce
a working model for the entire fish–probe system.
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De-noising the Raw Data

• Why De-noising?

1. The signal contains noise.

2. Increase the modeling accuracy by increasing the SNR.

3. Numerical computation of the velocity and acceleration
of the probe.

• De-noising methods:

– FFT approach

– Wavelet approach ← Better!
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Phase A

We attempted to model the fish skin as a visco-elastic system
described by a damped linear oscillator:

Mẍ+ βẋ+ αx+Mg = 0, (1)

whereM = 10 grams (mass of probe), g =gravity, and
x = x(t) is the position of the probe. With constant
coefficients, the solution to Equation (1) is:

x(t) = e−δt[A cos(ωt) +B sin(ωt)] +D (2)

where

ω =

√

α

M
− δ2 and δ =

β

2M

Also, D represents a vertical shift. We then fit this functional
form to the data using a nonlinear least squares algorithm
(Matlab). The results show that Phase A can indeed be
modeled by a damped linear oscillator.
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Phase B

We model Phase B using the linear model

αẋ = F, (3)

derived from Darcy’s Law relating the velocity of the probe to
the constant pressure gradient resulting from the migration of

the fluid away from the probe.
This ODE has solution

x(t) = X0 +
F

α
t (4)

and we fit the parameters X0 and
F
α
.
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Phase C

Phase C also indicates damped oscillations.

• A damped linear oscillator was first implemented but did
not fit the data.

• We considered a damped oscillator with nonlinear damping
and restoring coefficients:

α = α0 +α1x+α2x
2 and β = β0 + β1ẋ+ β2ẋ

2

• The equation was solved using Matlab, then the nonlinear
least squares routine fit the resulting solution to the
original fish data. The Figure reveals that a damped
nonlinear oscillator cannot accurately describe the
dynamics of Phase C.

• For some insight we turn to the acceleration data obtained
earlier.
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Phase C

From the graph we can see:

• A section where the probe is in free fall.

• Therefore we propose a loss of contact model where the
probe and fish skin separate.

• There are 3 distinct sections:

– Section I — The force is released and the probe and
skin move together in contact.

– Section II — The probe and skin lose contact and move
separately.

– Section III — The probe and skin come back into
contact and move together.
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Model the fish–probe system as an impact

oscillator

• Sections I and III can be modeled with the same dynamics

– With a damped linear oscillator:

(M +m)ẍ+ βẋ+ α+ (M +m)g = 0 (5)

wherem = mass of fish skin in contact with the probe.

– The oscillatory behavior is interrupted by Section II.

– The solution in Section III is simply shifted in time with
slight change in amplitude.

• In Section II the fish–probe system is uncoupled; probe is in
free fall while the skin continues to oscillate.

• We used continuity in position and velocity to connect
Sections I and II.

• The data fit well indicating an accurate model.


