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Let G be a connected real semisimple Lie group with Lie algebra g. Let 
g = f + 5 be the Cartan decomposition and K the maximal compact subgroup 
with Lie algebra f. Let 8 be the character of an irreducible representation. 
Then 8 has an asymptotic expansion at zero (in the sense of Taylor series). 
As consequences of this expansion we obtain results about the asymptotic 
directions in which the K-types occur and about the Gelfand-Kirillov dimension 
of the representation. 

1. INTRODUCTION 

Let G be a connected semisimple Lie group with finite center. Let T be an 
irreducible admissible representation of G on a Hilbert space X, and 0, its 
distribution character: if f~ C,=(G), 

R(f) = Tr (Iof 43 4). 

Harish-Chandra has made an exhaustive analysis of the analytic properties 
of the distribution 0, [5, 61; in particular it is given by integration against a 
function which is locally L1. Our goal is to relate the singularities of 0, at the 
identity to the structure of T. In section 2 and the first part of section 3, we 
apply Harish-Chandra’s results in a simple way to get the following theorem. 

THEOREM 1. I. Let 19~ be the lift of 0, to a neighborhood of the identity on 
g = Lie(G). If f s Ccm(g) and t > 0, define 

f,(x) = t-dim gf(t-1X). 
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Then there are an integer J and tempered distributions {Di}~=-, on g, such that for 

f 6 Cc%), 

&(fd - f tiWf 1 i=-r 

as t - O+. (This asymptotic expansion should be understood in the same sense as a 
Taylor series for a smooth function of t.) Furthermore, the support of D, is a union 
of nilpotent orbits in g*. 

We define AS(O,) C g” to be the union of the supports of the Bi; 4S(O,) 
is a union of nilpotent orbits. (Probably AS(O,,) coincides with the wavefront 
set of 0, at the identity, but we have been unable to prove this.) Let KC G 
be a maximal compact subgroup. Then TJ lK has a distribution character O,K. 
Following Kashiwara and Vergne [8], we identify & with a subset of the orbits 
of K in the dual f* of the Lie algebra of K (via the highest weight theory); and 

we define ([8], Definition 6.1(b)) 

AS(OrK) = {p E f* 1 p = $i t,pn , with pn E f*, 

t, E Rf, pLn occurs in = lK , and t, + O}. 

THEOREM 1.2 (see Theorem 3.5 and its proof). t3,K has an asymptotic expan- 
sion C tiEi in tempered distributions on f  , computable in terms of the Di . In particular 

AS(O,K) = u supp J!?~ C {cl E f* 1 3h E AS(O,) with A If = ~1. 

If  (for example) m is a discrete series representation, then equality holds. 

The last assertion (together with Proposition 3.7, which computes AS(O,) 
when = is in the discrete series) proves a conjecture of Kashiwara and Vergne 
([8], end of Example 6.3). The rest of section 3 is largely devoted to showing 
that these expansions behave well under parabolic induction (Theorem 3.5). 

In section 4 we relate AS(O,) to primitive ideals. Among other things, we 
show 

THEOREM 1.3. The dimension d of AS(@),) is equal to the Gelfand-Kirillov 

dimension of U(g) modulo the annihilator of rr. Furthermore, if 

and D-, # 0, then d = 2r. 

Thus the Gelfand-Kirillov dimension of the annihilator of n measures the 
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singularity of 0, at the identity; this may be regarded as related to the formula 

O,(l) = dimn 

for finite dimensional representations. 
Finally, we study the behavior of the asymptotic expansions under coherent 

continuation (Theorem 4.7). This leads to a proof of Conjecture 5.1 of [I 11, 
describing the asymptotic destribution of eigenvalues of the Casimir operator 
for K in 7r (Corollary 4.8). 

2. ASYMPTOTIC EXPANSIONS OF DISTRIBUTIONS 

Let Q be a neighborhood of zero in R”, and 0 a distribution on C,“(Q). For 

f E C,m(Rn) and t > 0, we define ft E Ccm(Rn) by 

f&v) = tvf(t-lx). 

We say that 8 admits an asymptotic expansion at 0 if there is an integer Y and a 
family of distributions {Di 1 Y ,< i < co} on R”, such that for f E Ccm(Rn) 

d(f,) - f ti%f) as t - o+ 
i=r 

in the following sense. For each positive integer N and compact set K there is a 

constant C = CN,K > 0, a positive integer k = kN,K, and a number E == 
E~,~ > 0, such that if supp f C K, and 0 < t < E, then supp ft C 52 (so that 
O(f,) is defined) and 

(Here O( = (01~ ,..., a,) is a multi-index, 1 01 1 = 1 CQ , and 

De = (&r’ . . . (&,“” 

as usual.) Obviously the Di are unique if they exist. I f  D, # 0, we call Y the 
order of 6 at 0. We write 0 N x2:=, tiDi . 

LEMMA 2.1. Let 6 be a distribution on a neighborhood Sz of 0 in !R”, admitting 
an asymptotic expansion 0 - x tiDi . Then Di is homogeneous of degree i; that is, 
if f e Ccm(W) and s > 0, 

Di(fJ = siD,(f ). 

The trivial proof is left to the reader. 
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We will be interested in the Fourier transforms of asymptotic expansions; 
so we need 

LEMMA 2.2. Every homogeneous distribution on Rn is tempered. 

Proof Let D be a distribution on C,m(‘iRn), homogeneous of degree i. We 
must show that there are integers k, , k 3 0, and a constant C > 0, such that if 

f E G”(W 

To see this, first choose C, > 0 and an integer k, > 0 so that if f is supported 
in the ball of radius 2 about 0, then 

I Wf )I G C, ,w;, sup I D”f I. 

Put k, = max(O, i + k, + II + l}. To get the desired estimate, we need a 
special partition of unity. Choose a positive smooth function v on say (- CO, 1.1) 
satisfying 

(a) v(x) = 0 for x < .6, and v(x) < I always 

(b) p(x) = 1 for .9 < x < 1.1. 

Extending q~ to all of R by defining 

(c) v(x) = 1 - cp(x/2) for 1.1 < x < 1.8 

(d) v(x) = 0 for x > 1.8. 

Put ~Q(x) = ~(24~). Then v? G Ccm( R), supp vi C (2j-l, 2i+i), and Cy=, q+(x) = 1 
for x > .9. Set 

Ddf 1 = D (f (1 - f Vj(I x I))) 
i=O 

Wf 1 = D (f . j@ x 10). 

Obviously Do satisfies an estimate of the desired sort; we need only show that D, 
does. Put fj(x) = f (zc) p)i( / x I). If f E C,m(lRn), obviously 

4(f) = f D(P). 
j=O 

We estimate each term of the sum separately. Fixj, and put t = 2-j. Then 

D(fj) = t+D((f j)J 

= 2”jD(f, p)(i x 1)). 
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Now supp(f, . p’( 1 x I)) is contained in the ball of radius 2 about 0. So 

I D(ft . dl x IN -G CI * sup sup I Yft * PII. IalskZ 

If we use the rule for differentiating products, and the fact that the first k, 
derivatives of v are uniformly bounded, we find that this is bounded by 

c, . 2i(kz+n) sup sup I D”(f )I. 

(The power of two comes from the fact that we are differentiating some dilation 
off, and the range of I x / from the support of p.) So 

1 D(fj)l < C, . 2jfifrcz+) SUP sup I D”(f)l- 
ldik~ 25-~<lzl<2i+1 

For the values of x in question, 

2i(i+kz+n) < (2 . I x I)(i+ke+n+l) . 2-j 

< (2 - 1 x I)“’ . 2-j. 

Hence 

so 

I D(f 9 d G . 2-j ,.T, sup I Xk’Wf )I: 5 

sup sup 1 xklDa(f)l. 
t&k2 x 

This proves the estimate for D, , and hence for D. 

If 01 is a multi-index, let xm = ~2 ... x2. 

Q.E.D. 

LEMMA 2.3. Let 0 be a distribution on a neighborhood Sz of 0 in BP, admitting 
an asymptotic expansion 0 N C tiDi . If 01 and /3 are multi-indices, then 0 0 xa 
(6’ composed with multiplication by xa) and 0 0 De admit asymptotic expansions. 
More precisely: 

e o X0 - 1 ti(D& o X”) 

0 0 De NC ti(Di+,a, 0 De). 

Proof. Formally these are obvious; the necessary estimates of remainders 
are trivial. Q.E.D. 

580/37/1-3 
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COROLLARY 2.4. Let D = Cl,lcNg,Du be a diffential operator on Q, with 
g, E Cm(Q). Let g, - &golsxe be the Taylor expansion of g, at 0 (golB E Y). Let 6 
be a distribution on Q admitting an asymptotic expansion 0 N CFzr tiDi at 0. Then 
0 0 D admits the asymptotic expansion 

Proof. Notice first that the inner sum is finite. So formally the result follows 
from Lemma 2.3; the necessary estimates are a straightforward consequence of 
Taylor’s theorem with remainder, and are left to the reader. Q.E.D. 

DEFINITION 2.5. Let 19 be a distribution on a neighborhood Sz of 0 in R”, 
admitting an asymptotic expansion 0 NC tiDi . The asymptotic support of 8 
at 0, AS(B), is the closure of the union of the supports of the Di . 

It is easy to see that AS(B) is contained in the wave front set of 0 at zero. 

COROLLARY 2.5. In the setting of Corollary 2.4, 

mqe o D) c m(e). 

If D is multiplication by a function which does not vanish at zero, then equality 
holds. 

Proof. I f  T is a tempered distribution on W, then 

(T D xeD”)  ̂ = c,,po Dexa, 

where cUB is an appropriate power of i. In particular, 

supp( T 0 xBD=)~ _C supp F. 

The first statement follows immediately. For the second, note simply that D-1 
is an operator of the same sort, at least in a neighborhood of zero. Q.E.D. 

Of course the second statement can be generalized enormously, using some 
sort of ellipticity condition on D; this is standard for the wavefront set. Since 
we don’t need such results, they are omitted. 

EXAMPLE. Let C C W be a closed cone, Q a neighborhood of 0, and g a 
function on C n !Z’ which is smooth on a neighborhood of C TS Sz. Forf E C,*(G), 

Put 

e(f) = Jcnaf (x) g(x) dx, 

dx being the usual measure on W. Then 0 is a distribution on J& and has an 
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asymptotic expansion 0 N x.2”=, tiD, . Here Di is defined as follows: let g - 
z g,x” be the Taylor expansion of g at 0. Then 

Q(f) = fcfW ( C w”) dx. laj=i 
This is obvious if g = 1, and the general case follows from Corollary 2.4. This 
example will be used in the next section to obtain asymptotic expansions of 
characters. 

3. ASYMPTOTIC EXPANSIONS OF INVARIANT EIGENDISTRIBUTIONS 

Let G be a connected semisimple Lie group with Lie algebra g. Consider an 
invariant eigendistribution 0 on G. Let 3 be the center of the universal en- 
veloping algebra U(gJ. In this section we will lift the distribution 0 to a distribu- 
tion on the Lie algebra and show that it has an asymptotic expansion according 
to the definition in section 2. In particular 0 could be the character of an ir- 
reducible representation. In this case we will use the asymptotic expansion to 
obtain information about the representation. 

We start by collecting some of the facts about invariant eigendistributions that 
we will use later. 

THEOREM 3.1. Let 

Then $2 is a G-invariant neighborhood of 0 in g. 

(1) The exponential map exp: g + G is an analytic diSfeomorphism when 
restricted to Q onto the open set W = exp Sz. Put 

j(X) = det((exp(ad X/2) - exp(-ad X/2))/ad X). 

Define E(X) =j(X)llz, with the square root chosen so that ((0) = 1. Then the 
Haar measure dx and the Euclidean measure dX are related by 

dx = t(X)” dX. 

Let q~ E Cm(Q). Dejine f, E Cm(W) by 

f,(exp X) = E(XY 4x). 

Then 

s ~1~2 dx = s f,,f,, dx- 
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If 0 is a distribution on W we can define 6’ a distribution on Sz by the relation 

If 0 is G-invariant then so is 8. From here on assume 0 is invariant. 

(2) Let I(gJ be the ring of invariant polynomials on gc . Then there is an 
algebra isomorphism 

between 3 and I&) such that if 0 lifts to 0 then x . 0 lifts to a( ~$9. In particular, if 

z f 0 = x(z)@ for all z E 3 

for some character X: 3 -+ Y, then 

a(P)e = x(PP 

where X(PJ = x(4. 
In other words, if 0 is an eigendistribution for 3 then 0 is an eigendistribution fur 

wklcN* 

Proof. In this form these results are due to Harish-Chandra. A summary can 

be found in [2]. The proofs are in [3], [5], and [6]. 
We will denote by N the set of nilpotent elements in g. By definition 

.N= {X E g: ad X is nilpotent}. 

We will often identify g with its dual g* by the Cat-tan-Killing form B(., .). We 

define the Fourier transform as 

Fof(X) = s eiA(X)f(h) dh 
0' 

for any f  E Ccm(g*) or f  E Y(g*) (the Schwartz space). Sometimes when there 
is no ambiguity in terms of the algebra used we will denote the Fourier transform 
by fi Via the identification mentioned before we can also write 

where f E 9(g). 

Fof(X) = Jo eiB(x*rJf(Y)dY 

THEOREM 3.2. Let 0 be an invariant eigendistribution, 0 the lifting to Ccm(S2) 
according to Theorem 3.1. Then B has an asymptotic expansion. If t3 N x tiDi then 
the Di are tempered, invariant and supp D, C M. 
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Proof. According to [5], 6’ . 1s a function, analytic on g’ /5 Q, locally L1. 

Suppose h ,..., 5, is a complete set of representatives of Cartan subalgebras. 

Let di be the set of roots of gc with respect to lji,e and Pi a positive system. 
We define 

n,(Z) = JJ 4-O 
1 

According to Harish-Chandra, for eachfE Ccm(g) we define 

RYZ) = T(Z) s,:, ,fW x . Z> dx 

where Hi is the Cartan subgroup corresponding to hi and Z E l$ . The main 
property of vj is that it defines a continuous map from 9(g) to Y(lj’) (see for 
example [12], vol. 2, section 8.4). 

Let f 6 C,“(Q). I f  h, j are the connected components of the sets lj; , Weyl’s 
integral formula implies 

where Bij = 8 lg,jno. It is known that ~$3~~ is an analytic function which extends 
to a neighborhood of the closure of I)c n Q; in fact it is a linear combination 
of terms consisting of polynomials multiplied by exponentials. By changing 
variables, 

m<(tZ) &(tZ) p?:(Z) dZ. 

By the example in section 1 this has an asymptotic expansion. By Lemmas 2.1 
and 2.2 the Di’s are homogeneous and therefore tempered. By the uniqueness 
of the asymptotic expansion the D,‘s are also invariant. Due to Theorem 3.1, 

a(P)0 = x(PY for P E 43c). 

Let degp = S, p homogeneous of positive degree. Then 

[a( PYl(ft) = t-“w(P>f It). 

Thus, by the uniqueness of the expansion, 

~(P)Q = X(P)&, 1 

so for Y large enough, 

a(pr)D; = 0. 
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This implies that (letting 1+(gJ denote the ideal of invariant polynomials with 
zero constant term) 

supp Bi C {X: p(X) = 0 for all p 6 1+(g,)}. 

On the other hand, it is well known that 

JV = {X: p(X) = 0 for all p EI+(gJ}. 

We now mention some facts about induced representations which will be 
used later. 

Let P = MAN be a parabolic subgroup and r an irreducible representation 
of M on a Hilbert space ,%?. Let v  E a: where p = m + a + n is the Lie algebra 
of P. Let rr, be the representation of P on 2’ defined by 

n,(man) = eGG-o)(log a) ?T(m) 

where p(X) = 8 tr(ad X I,,). 
Let V, = IndPG rP . 

LEMMA 3.3. Let 0 = tr rr and 0, = tr rr,. I f  f  E Ccm(G) and q~ E C,,(P), then 

tr 94~~) = S,,, e(ptd\/-lv)(log a) O(m) q(man) dm da dn 

O”(f) = jMA - 
e(o+~-l”)(lok! a) 0 ) * (m jK, f  (kmank-I) dk dn dm da 

= j 
MA 

edx(lOg a) O(m) D(ma) jo,MA f  (xmax-l) dx dm da 

where D(exp(X,,, + X,)) = i det(fld(rm+ra)/z - e-ad(xm+xa)lz)lr, 1 for X, E m, 
X, E a. In particular let f  “(2) = f  (Ad x . 2) and f  Ip be the function f  restricted 

tp P. Then 

O,(f) = /,,p tr rp(f 5 IP) dx. 

Proof. This is well known when P is minimal. The proof carries over with 
simple modifications. See [ 13 J. 

Let g = f  -k a be a Cartan decomposition. Let K be the compact group 
corresponding to I. 

LEMMA 3.4. Let ye E C,-(e), q~ > 0, l5 p(X) dX = 1 and f  6 C”(K). Define 

f&(X) = ,-dims q(-1X) 

f,(exp Xk) = vE(X)f (k) 



THE LOCAL STRUCTURE OF CHARACTERS 31 

where X E 5, k E K. Let rr be an irreducible representation with character 0. n jK 
also has a character which we denote by OK. Let 4 E Ccm(.Q n f) be such that 
+(Y) = f (exp Y). Let 0 and OK be the distributions corresponding to 0 and OK. 
Let 5 and tK be the functions in Theorem 3.1 corresponding to G and K. Then 

‘& dfc) = mK(f) (weakly) 

‘$J @(fJ = OK(f 1 

‘I% e(h) = eKc%K#) 

where &(X + Y) = &X) #(Y) and X E S, YE f. 

Proof. We have the relations 

4f2 = ~Gf&4 44 dx 

= I W’) v.(X) 4exp X) dx s f (4 +I dk 5 K 

where D(X) is the Jacobian of the map (X, 12) -+ exp X . k. Since nK( f) = 
sx~~~~~~~~~~~~n~~o~)a~~v~ g(f6) - rKK(f) = TKK(f > j-5 LDtx) T(exp x, 

3 

Ii(dfe) - nK(f )b /I < /I “K(f )I1 i // D(x) T(exp x>v - v /I dX) dx. 

By changing variables, 

J’ Ii D(X) rr(exp X)v - v  II y.(X) dX = j I/ D(cX) n(exp EX)V - TI I( y(X) dX. 
5 5 

Since q is compactly supported, 

/I D(EX) 77(exp 6X)w - v  11 < C 

for all X E supp F and E < 1. Thus we can apply the bounded convergence 
theorem to obtain 

‘jg r(f& = TK(f b 

The fact that rrK is of trace class is well known. We need part of the proof of 
this fact to prove the statements in the lemma. Let 

Q=l -(X,“+..‘+X,2)EU(f) 

where XI ,..., X, is an orthonormal basis of f.  Then let A? be the space of the 
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representation x and (wi}iEN an orthonormal basis of K-finite vectors for 2. Then 

w> = 1 (a)% > Vi) 

Similarly to the previous statement, 

4hJ = ~Gh.W 44 dx = lg 5(X> A(X) 4exp X> dx 

converges weakly to .rrK(ffipK6). 
Thus any finite sum occuring in O(fJ or O(#,) converges to the corresponding 

sum in OK( f  ) and P( s/ &#) respectively. 
Let t C f  be a Cartan subalgebra of f  and let A _C t* parametrize 2. For 6 E A, 

let Y8 denote the a-primary subspace of 2’; we may assume that each wi lies in 
some X8. Then for h E Ccm(G), 

where c(6) is the value of 52 on 6. Let m(S) be the multiplicity of 6 in .X and 
d(S) the dimension of the representation 6. Then if Ij rr(x)II < C for x E supp(h), 

converges if s is large enough. 
In order to complete the proof we have to show that jj QyE /]i,o and 11 @f+, I]i,o 

are bounded independently of E. We note 

so by a change of variables 

Q$&) = (1 - C $)” It =” (HWx(~ exp(-GG - .*. - 
t 1 

4-c))~ 
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By using the Campbell-Baker-Hausdorff formula we can write 

log(exp Y exp X exp( -trXr - ... - &X7)) 

= Mt( y, x t&) + M5( y, x, &Xi) 

where Mt E f and MS G s are absolutely convergent infinite series in Lie brackets 
of X, Y, tiXz . We note that each term of M, contains at least one Y. Then 

Ii Qn%, /il,G = 5(M, -t Ms) dM4 Y%%) dY dx. 

By changing variables to Y = EY’ we get 

I;,, il - c &I” /t.=o E(M&cY, X, &Xi) + Mf(,Y, X, tiXi)> 
t 

. P)(~-lMS(~Y, X, tiXi)) #(,Y, X, tiXi) dY dX. 

Then E-~M,(EY, X, tiXi) is analytic at E = t, = .** = t, = 0. The rest of the 
proof is straightforward. 

Let p = nt + a + n be a parabolic subalgebra and p* = m* + a* + n* 
be its dual. 

THEOREM 3.5. Let P = MAN be a parabolic, v  E a$ and v  E iI?l an irreducible 
representation of M on a Hilbert space. Let n,, be the induced representation, 0 and 
0, the corresponding characters. Let 9 and 8, be their lifts to the algebras g and m. 
Let 0, be the character of np dejined earlier and 8, its lifting to p. 

For q~ E C’,%(g) define qx to be 

@(Z) = q(Ad x . 2) 

and q~ lp the restriction of q~ to p. Then 

em = jKepw . vs Ip) dx. 

Let 0, o &.I[ -C tiDi and 0, N C tiE, , Then 

(1) 

and 

0, - c 
@w-diwti K Di(@ Ip) dx 

1‘ (2) 

AS(O,) C Ad K . {X E g*: h ip E AS(O,)}. (3) 

Assume that Ea satisfy the following. Let v  > 0. Then ;f supp v n supp I!& = % 
for j < r and e,(v) # 0, then &(CJJ) > 0. Then equality holds in (3). (This is e.g. 
true for representations which are unitarily induced from limits of discrete series). 
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Finally, 

AS(O,) = {A E p*: X /a+n ‘= 0 and X Im E AS(O)}. (4) 

Proof. We note that 

and 

e,,(X) = 1 det,((@d x/a - e-ad x/z)/ad X)11/2 

= 5&&G) &L + XlP 

whereX=X,+X,+X,Ep and 

R(X, + X,,) = j det,((ead x/2 - e-ad X/2)/ad X)1. 

Then (1) and (2) f  11 o ows from these formulas and Lemma 3.3. Relation (3) 
is a simple consequence of these formulas. We note that if the Ei’s satisfy the 
positivity condition then so do the Di’s by the formula in Corollary 2.4. 

Suppose X $ AS(O,) but h E Ad K . {h E g*: h It, E AS(O,)}. Then for any 
v  E Cem(g*), supp q~ contained in a small enough neighborhood of X, 

s D&” Jp) dx = 0 
K 

for all i. Let Y be such that h E supp B, but Ad K . h $ supp fii with i < r. Then 
there is p E Ccm(g*) such that v  > 0, v(A) # 0 and 

while 

~UPP(YJ~ IP) n supp Q = 0, i <randallxEK. 

Then, it follows 

I &(y’) dx # 0 
K 

since 

D,(@) 3 0 for all x. 

We now relate the support of ~9, with the support of 0. From Lemma 3.3 we 
deduce the relation 
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where 9= is the Fourier transform with respect to a and 

rpn(X) = Sn 94x + Xlt) d-&l 7 XEnt+a. 

Assume 

for 4 E COm(m). Then we have the relation 

where 9 E Ccm(p*) and the three coordinates refer to the decomposition p* = 
m* + a* -t n*. 

Let 

d.3 tv, 0) - c (~(Ps,409+” 

be the Taylor expansion of 9 in the variable t. 
Thus 

This implies relation (4) in the theorem. 
Let 6 E I? be an irreducible representation of K. Then we can associate to 

each such 6 an orbit of a regular element in t* by the coadjoint action. We 
identify I? with this set of orbits. 

THEOREM 3.6. Let n- be an irreducible representation of G on a Hilbert space X. 
Let 0 be its character and OK be the character of rK = r IK . Then OK has an 
asymptotic expansion at 0. Let 

K(n) = (6 E f*: there is a sequence t,S, --j 6 such that 

t, + 0 and 6 occurs with positive multiplicity in z-~}. 

Then 

AS(BK) = K(r). (1) 

Also 

AS(BK) C (6 E f*: there is h E AS(B) such that h jf = S}. (2) 

I f  rr is a discrete series representation then equality holds. (Related results may be 
found in [8], Theorem 6.2. A weak version of (2) was recently proved by Howe 
and Wallach (unpublished).) 
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Proof. We first show that BK has an asymptotic expansion at zero when 0 
is a discrete series character. Thus we assume rank g = rank f. We identify g 
and g* via the Cartan-Killing form. Then 

and h a regular elliptic element. By the work of Harish-Chandra we may assume B 
is a globally defined (not just on Ccm(Q)) tempered eigendistribution. Its Fourier 
transform is a linear combination of measures supported on orbits of regular 
elliptic elements, in fact by [9] just one such orbit. Let f e Ccm(g*). Choose a 
Cartan subalgebra t C f  and let T be its Cartan subgroup. Then ([9]) 

ec?Lf> = d-(4 

where v f  and its properties were explained during the proof of Theorem 3.2. 
Since 

(..9g)t = t-dimQF*(ft-l), 

e((S$f)J = trd’“Q~(~,(ft-~)) = t-‘dimQ-rankQ)‘2 cp(ffTA). 

As already mentioned, ‘prT E Y(V) where ti are the connected components 
of t”‘. Thus 

where j O(f)] _C am is a seminorm in the Schwartz topology. 
In particular we apply this to I,!J~ defined in Lemma 3.4. We recall that 

so that 

For any function f  E Cca(f*) we definef, E P(g*) by 

fK@) =f@ if)* 

Let f  = 9~~4 where 4 is as in Lemma 3.4. Then 

We show that fK coincides with a Schwartz function along the support of 
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qT(h). Indeed let g* = I* + s * be the Cartan decomposition. Let XE g* 
be such that 

Then 

-7 < --B(X, X) = I B(Xf , Xf)l - qx, , X5) < +17. 

Thus, on the set 

w& T  4) < 7 + I B(Xf 3 Xf)l* 

% = ix: I qx, XII < 71 

for any polynomial p E S(gJ there is p, E S(f,) such that 

I P(WI G I PK(Xf)I for all X E %Yq . 

Let h, E Ccm(lR), h, 3 0 such that supp h, C (-1, +I). Let 

Then 

h(X) = hl(%Y X)). 

and 

if we assume h, = 1 on (-4, +$). 
Thus vTK(tA) makes sense for t small enough and h regular. In addition, for 

any seminorm v6 on .Y(g*) there is a seminorm vE’ on 9’(f*) such that 

v&fd G 4 f 1. 

The set %1,2 contains the G orbit of th for t small enough as well as the set of 
nilpotents .M. This implies that 

‘jz V&l,,@4 = &f&4 

1:~ ~i(~~‘~e> = Ei(hfd all i. 

Finally, since & = vE @ Z/ we get 

We can find a bound on O(&) uniform in E < 1. We conclude 

‘jz &,%,P> = 4&v 
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and 

d&4 - c Ei(fKY* 

Thus by (*) we get 

p(,$/& &) = t-(dimg-ranka)P ,&(th) 

SO 

&(.c/,& &) - C @-(dimg-ranko)/2 ,q(fK) 

where $ = &f. 
Let Si = supp Ei . We have to identify the union of the supports of the 

distributions 

f t-t Ei(fK)- 
Let 

K(B) = (6 E f*: there is h E AS(d) such that /\ I f  = S}. 

We want to show that AS(F) = K(B). Th e inclusion As(ey _C K(e) is clear. 

Assume 6 E K(B) but S #AS(P). Th en there is a neighborhood of 6, V, C f* 

such that for every f E Ccm(f*) with supp f C V, , 

Ei(fK) = 0 for all i. 

On the other hand, there is X such that h Ir = 6 and X E ui supp Ei . Let r be 
the smallest integer such that {h E g*: /I )r = 6} n supp E, # O. Then we can 
shrink V, so that 

{A : h If E V,} n supp Ei = o for i<r. 

Choose f, g E Ccm( V,), f > 0, g < 0, and a neighborhood U, of S so that f 3 E 
and g < -•E on U, . Let X, E supp E, be such that X, Ji E U, . Let UA, be a 
neighborhood of h, such that if X E l-J,,, then h 11 E U, . Let h E Ccm( U,,J be such 
that 1 h / < E. Then Ei(fK - h) and E,(h - gK) = 0 for i < Y. Since $ is 
positive on positive functions, 

E,(fK - 4 2 0, Ev,(h - gK) >, 0. 

Thus E,(gK) < E,(h) < ET(fK) so E,.(h) = 0 for all h E Ccm( UAo) a contradic- 
tion. Thus 

K(e) = kqey. 

The case when 0 is the character of a unitarily induced representation from a 
representation in the limits of the discrete series is identical since in that case 19 
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is the Fourier transform of a pfL with L a non-compact Cartan subgroup. We 
now deal with the case when 0 is not necessarily unitarily induced. Let 0, = 
IndBG(rr @ Y @ 1). If P = MAN then the same proof as in Lemma 3.3 and 
Theorem 3.4 shows that, for I/ E Cm(K), 

Here M, = M n K and mnK is its Lie algebra. For # E Ccm(f n Q) this formula 
reads 

eP(ICI) = s, eMK(S~&tK P In,,) dx (3) 

where & and eMK are the functions defined in Theorem 3.1. Thus if B”~ has 
an asymptotic expansion at 0, eVK also has an asymptotic expansion. The formulas 
mentioned in this theorem plus the ones in Theorem 3.5 imply the following. 
Suppose n is in the limits of the discrete series. Let 

Then for f~ Ccm(f*), 

(This holds for unitary v by the arguments above, and in general by analytic 
continuation.) 

Since any character is a linear combination of such 0, the inclusion (2) 
follows from formula (4). Using formula (3) and the statements about A!!?(@,) 
in Theorem 3.5 and the equality in (2) for discrete series we can conclude 
equality in (2) for the character of just one induced representation. 

Finally we show K(T) = AA’( Let 6 EK and x6 be its character. Then 
for p E Cm(K), 

On the other hand 

for 9) E Ccm(f n L?). 

Since the Di are K-invariant we may assume 7 = y for all x G K. Substituting 
9& for y we get 
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W=%) = & w9 w 9Jc9 

w%94 = 8;ke9 43 cpw 
where d(S) is the dimansion of the representation 6. Thus 

Suppose p E K(r) but p $ AS(@). Then there is a neighborhood of V, of ~1 
such that supp v  C V, implies Bi(p)) = 0 for all i. But then 

‘;$I 2 m(6) d(6) ?W = 0. 
6 

Let q~ 3 0. There is a sequence t,S, -+ TV. Assume p E 1 in a small neighborhood 
of II. Then 

for n large enough, a contradiction. Conversely, let p E AS(@) but p # K(r). 
Then there is a set B,(E) = (6 E f*: 116 I/ = 1, 11 6 - (p//i p [I)11 < e} such that, 
with at most finitely many exceptions, if m(8) > 0, then 6 4 V,(e) = {‘y: ocy E BJE) 
for some cz E R+}. Let v  be such that supp ‘p C Ad K * V,(E). Then 

C m(6) d(6) q(tS) = 0 for t small 

so all Bi(v) = 0. Thus p 6 AS(@), a contradiction. The proof is now complete. 

We now determine the asymptotic K-types for the discrete series more 
precisely. Consider G such that rank G = rank K. Assume t _C f  is a Cartan 
subalgebra. Let t’ be the set of regular elements and choose compatible orderings 
for the root systems 4(gc , t,) and d(f, , t,). Let t+ be the set of regular elements 
in a positive chamber for f  and t+ = U,“=, tj where tj are positive chambers 

for g. 
According to [4] the discrete series is parametrized by a lattice L C t*. Using 

the identification between g and g* given by B( , ) we can identify any X EL 
with a 2, E t3 such that, according to [9], the eigendistribution 0, defined before, 
equals the Fourier transform of vj(Z,) (up to a constant). Then as pointed out 
earlier, it is known that ~j E Y(P) so qQ(tZ,) - C tiDiJ f) at t = 0. Clearly, 
m supp Di,A = AS(O,). 

PROPOSITION 3.7. Let 

7 = {X E g: X = lim ti Ad xJ,, where ti -+ O}. 
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Then 7 = AS(O,) and q does not depend on X but only on the chamber tj which 

contains 2, . 

Proof. Consider any XE 7. Clearly X is nilpotent. We may assume X is 
such that X 6 cl Ad G . (Y) - Ad G . (Y) for any other Y E 7. It is enough 
to show O(X) = Ad G . X is contained in the support of some Di,n . We will 
show that the G-invariant measure on O(X) is the limit of ta&(tZ) for some OL 
and a certain class off E C”(g) when t + 0 f. Since AS(O,) C 71 trivially, this 
will complete the proof. We will use the following facts without proof. 

(The transverse described in Lemma 3.8 was first introduced by Harish- 
Chandra. As stated here, Lemma 3.8 was first proved by R. Rao in connection 
with some results (unpublished) on the measures supported on nilpotent orbits.) 

LEMMA 3.8. Let q = dim O(X). Consider the Lie triple (X, H, Y). Let 
3v=CentgYand%=X++3,. Then the map #: G x %! --f g given by 4(x, v) 
= Ad x . v  is a submersion. In particular, for any v E %?, @ is transverse to O(v) 
and aG = Ad G . @ is open. O(X) n @ is a jinite set. Let ,6 E Ccm(G x 42). 
Then there is fB E C,m(%‘G) such that p H fa is well dejined and onto Ccm(‘+‘/G). 
Then 

s 
f,(Ad x - c) dx = 

GIG, .cs G ma(v) B(x, 4 d44 dx. 

For v  semisimple, O(v) n % is closed and dl?(u) is a measure defined by some Cm- 
form. For v  = X it is a linear combination of delta functions. 

If t > 0 then 

fa(tv) = t-(n-q)‘2 ffl,(v) 

dx, x + 4 = (4, x + 4 yt = exp(-$ log tH) 

and ut = ty,u. 

We get back to the proof of Proposition 3.7. 
Assume 2, E tj such that O(t2,) contains X in its closure. Then we may 

assume O(Z) n @ # O. Assume 

Then 

O(Z) n 42 = (X + u: u in some closed submanifold of 3r). 

O(tZ)n% =(X+ tAdy, .u:X+uEO(Z)n%}. 

We claim that Ij u /I has to be bounded. Indeed, the set O(t2) n 3% can have 
only elements in its closure such that dim O(v) = q. Otherwise there would be 

5937/1-4 
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YE 7 such that cl O(Y) - O(Y) contains X. By dimension considerations and 
the fact that such a set is algebraic, the boundary of O(tZ) n 9 is finite. Assume 
that I/ u /I is unbounded. Let jr = &a Vi where Vi are eigenspaces for ad H 
with eigenvalue -i. Then if u = x ui , 

t Ad ytu = C tl+‘i/2’ui . 

I f  11 u j/ is unbounded, we can find sequences u, and t, + 0 such that I/ tsu, jj + co. 
This gives a contradiction. It follows that, since O(Z) n 42 is also closed, that 
O(Z) n @ is conpact. Thus 

t(n-q)/2 j 
G/Gz 

fs(t AdxZ)dx = j &,(AdxZ)dx 
G:GZ 

= J’s G ma(z) B&G 4 d44 dx 

=s.c G Qf-lO(Z) B(x, X + tytu) d+) dx. 
Since % n O(Z) is compact and X + ty,u -+ X as t - 0, it follows at once 

that O(Z) n % = {X} and 

lim t(n-q)ll 

s 
fs(t Ad x2,) dx = cz, 

s 
fa(Ad x . X) dx 

t+o+ G&T, G/GX 

and cz, > 0. In terms of the function v f  we can write 

, 
lim t-“y+(tZ,) = cz, 

J 
f(Ad x . X) dx 

t-o+ G/GX 

if suppf C eG. Or we can write 

q’rj(O; Z”“) = czo s f(Ad x . X) dx, suppf c w. 
GlGx 

But now since CJ+ is a Schwartz function, it follows that 

lim q+(tZ; Z,“) = czO 
t+o+ 

f(Ad x . X) dx, supp f c w. 

This is enough to conclude that X E cl O(tZ) for any other Z E tj as well. 
These arguments complete the proof. 

COROLLARY 3.9. Let 8 be an invariant distribution supported on a set of 

nilpotent elements 7. Suppose 0 is homogeneous of degree n - cz. Let n - Y be the 
largest dimension of an orbit contained in 7. Then a 3 (n - r)/2. In particular, 
if CY = (n - r)/2 then 6’ is a linear combination of measures. 
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Proof. Let X E q. It is enough to consider what happens when we consider 
0 I@G . Let dx be the Haar measure on G, dZ and du the Euclidean measures on 

g and 3r respectively. We can lift 13 to a distribution dx @ T@ where 70 is a 
distribution on QZ! by 

Then, if 0 is supported on O(X), 70 is supported on 

O(X) n e = (X) 

by the previous argument. Thus 70 = Ds6, where s is a multiindex and D” a 

differential operator on CR&). Let /3(x, X + U) = fir(x) /$(X + u). We have 
the relations 

e(&fB) = qfs) = P s, B,(x) dx * 4%)~ 

q&f,) = e(t-(n-r)‘2fst) = t~~-~)‘~ s, P&t) dx . 70(&t) 

where 

p2,,(x + u) = p2 (x + c tl+“‘q. 
i>o 

Thus 

7(&J = Pi-(-r)/2 T&T2) 

for all p2 E Ccm(%). By using the fact that 70 is a derivative of the delta function 

and the relation 

DjS3(j32,t)(u=0 = (t1+‘ji2))‘sj’ Djs/3 luso 

for any multiindex si and Dj a differential operator on C?( I’,), we get the relation, 

c I sj I (1 + +j = (y. + (n - r)/2. 

Thus, 01+ (n - r)/2 > 0 if one of the 1 sj j > 0 and 01 + (n - r)/2 = 0 if and 
only if 1 si I = 0 for all j. This completes the proof. 

The set described in Proposition 3.7 is being computed on a case-by-case 
basis by D. Peterson; his results are complete at least for SU(p, 4). 
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4. RELATIONS WITH PRIMITIVE IDEALS AND COHERENT CONTINUATION 

Let r be an irreducible admissible representation of G, 0, its character, and 
0, the corresponding distribution near 0 on g. In this section we will relate the 
asymptotic expansion of 6, to the primitive ideal 1, associated to r. Suppose (as 
we may without changing 0, or 1,) that v  is realized on a Hilbert space 2, and 
that rr il: is unitary. Let X C 2 denote the subspace of K-finite vectors, Then X 
is a module for the (complexified) enveloping algebra U(ge) of g; we denote this 
action by r also. The ideal 1, C U(g,) is defined to be the annihilator of X. We 

have a homogeneous ideal gr(l,) C S(g,), the symmetric algebra of gC . The 
associated cone ^tr(l,,) is defined to be the zero variety of gr(1,) inside gt (which 
is in a natural way the maximal spectrum of S(gJ. The Gelfand-Kirillov dimen- 
sion d(I,) may be defined to be the (complex) dimension of Y-(1,,). One knows 
that Y(I,) is a finite union of nilpotent orbits of the complex adjoint group Gc 
in gC . (For all this see [I].) In interpreting the following theorem, one should 
bear in mind the (easily verified) fact that if XE g*, then 

dimc(Gc . X) = dimc(G X). 

THEOREM 4.1. With notatio?z as above, 

AS(O,) c: ,‘“(I,) n g*. 

Furthermore, 

d(I,,) = dim, AS(O,) = dim, V(l,,) = dim, $“(I,) n g*. 

The$rst term in the asymptotic expansion of the lift 6, of 0, to g is a linear com- 
bination of Fourier transfmms of invariant measures on nilpotent orbits of dimension 
d(I,), and hence has homogeneity degree -&d(&). 

Proof. Write 6, N Cr=-, tiDi . To prove the first assertion, it suffices to 
show that if p E S(g) is a polynomial function on gb vanishing on Y/(1,,), and 
i > -r, then there is some integer N = *U(p, ;) 3 I such that 

i+pN = 0. 

Since such a polynomial lies in qgr(1,,) by the Nullstellensatz, we may as well 
assume p E gr(l,,). By a standard argument, if this holds for p, and p, , then it 
holds for p, + p,; so we may assume p is homogeneous, say of degree s. Let a(p) 
be the constant coefficient linear differential operator on g associated to p; then 
what we must show is 

Di c a(p)” = 0. (4.2) 
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Let {Uj}& be the canonical filtration of U(gJ, so that Uj/Uj-i g Sj(gJ. Choose 
an element u E I, n U, such that p = u + U,-, E U,/U,-, s S”(g,). Consider 
u as a left invariant differential operator on G. If Pm is the space of smooth 
vectors in Z, then T(U) is a well defined operator on TX’“, and if f~ Ccm(G), 
then 

Choosing an orthonormal basis {Us> of 2 consisting of K-finite vectors, we 
find 

since u E I,,; so O,o u = 0. Let E be the lift of the distribution u to g defined as 
in section 3; then 

4 oE=O. (4.3) 

Clearly u’ is a differential operator of order s. Write 

with 

fii = c c,,X@D” 
‘%\4$=i 

OL s 

in terms of some basis {Xi} of g. By the Campbell-Baker-HausdorfI formula, 
one sees easily that 

li-, = a(p). 

We now establish (4.2) by induction on i. By (4.3) and Corollary 2.4, 

where 

0 = 8,o ii - 1 tjEj, 
j--r-s 

E, = c D, 0 i&. 
m+i=j 

Since Ej = 0, we have for each i an equation of the form 

i-l 
Di 0 a(p) = Di o a-, = - C Dj o Q+ . 

j--r 
(4.4) 
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Suppose then that (4.2) is known for j < i. Choose N = N(p, ;) so large that 
for --Y <j < i- I, 

22i_j-, 0 a(p)-1 = a(p)“‘“*j’Qj , 

for some differential operator Qi; this is possible since zZ-~-,~ has polynomial 
coefficients. Applying a(p)“-’ to both sides of (4.4), we get 

i-l 

Di o a(p)” = - c 0, o iiiejms a(p)“-’ 
j-q 

=o 

by induction. This proves the first assertion of the theorem. By the remarks 
preceding the theorem, it follows that 

d(&) = dim, V(I,) > dim, V(I=) n g* > dim, AS(O,). (4.5) 

Write 2d’ = dim, AS(O,). By Corollary 3.9, rZS(0,) cannot support a homo- 
geneous invariant distribution of degree less than -d’, so the order -Y of 6, 
at 0 (recall that 6, N ~~=-, tiDi; to say that 0, has order --I means D-,. # 0) 
satisfies Y < d’. Suppose we can show that 2r 3 d(1,). This will force equalities 
in (4.5), proving the second assertion; and the last will follow from Corollary 3.9. 
So it is enough to show 2r > d(IT). Let O,K be the K-character of r’, and enK 
its lift to f.  By Theorem 3.6, 

0 K - f ti&; n 
i---s 

we assume E-, # 0. The proof of Theorem 3.6 shows how to compute the E, 
from the Di; in particular we have s < Y, so it suffices to show that 2s > d(Iw). 
Choose f~ Ccm(f), invariant under Ad(K), so that { >, 0, and f(p) > 1 for 
/ p 1 < 1 (in some norm on f*). Then (ft)” > 1 for ) p 1 < t-l. With notation 
as in the proof of Theorem 3.6, this gives 
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By Theorem 1.2 of [I 11, this last term satisfies 

Thus --s f  -?$(I,) as desired. Q.E.D. 

We turn now to the behavior of asymptotic expansions under coherent 
continuation. For more details of the definitions, see [7], [lo], or [II]. 
Fix a Cartan subalgebra h of g, and some translate fl C lj$ of the lattice of 
weights of finite dimensional representations of G. Let (O(X) 1 X E A} be a 
coherent family of virtual characters of G. This means that each O(h) is an 
integral combination of irreducible characters of infinitesimal character X, and 
if F is a finite dimensional representation of G with weights d(F) _C bt (counted 
with multiplicity) then 

O(X) . O(F) = 2 @(A + I*). (4.6) 
ILEd 

Fix a system A+ C A(g, , h,) of positive roots. We will assume in addition that 
whenever h is dominant (i.e. 2(01, h)/( (Y, 01 ) is not a negative integer for 01 E A+) 
then O(X) is either 0 or the character of an irreducible representation r(X), and 
that the latter is the case whenever X is nonsingular. Any irreducible representa- 
tion r occurs as some r(h) in such a coherent family, which is unique up to 
obvious equivalences. In this case the non-zero n(h) have annihilators Incn) with 
a common Gelfand-Kirillov dimension 2d; and every constituent of each virtual 
character O(h) has Gelfand-Kirillov dimension at most 2d (cf. [l I]). Accordingly 
we can write 

0, - f  tiD#). 
2=--d 

Now the Di(h) were constructed in section 3 from the formulas for 0, . Since 
these formulas depend nicely on X (cf. [7], [lo]), we deduce 

PROPOSITION 4.7. Let (0, 1 h E fl} be a coherent family of virtual characters as 
above, with 0, the character of an irreducible representation r(h) such that d(I,,(,)) = 
2d whenever h is dominant and regular. For jixed i, the distributions 

span a jinite dimensional space. Let {Eij} be a basis of this space. Then 
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with pij a polynomial function on t, *, homogeneous of degree i + =$ dim(g/b). If 
i = -d, then the pij are harmonic. 

Proof. Everything but the last statement follows from the remarks preceding 
the proposition and straightforward computation. For the last statement, notice 
that if F is a finite dimensional representation of G, lifting (4.6) to g gives 

e(h) - T(F) = C 0th + CL); 
ttadw) 

here T(F) is a smooth function near 0 of g, and 

T(F)(O) = dim(F). 

Applying Corollary 2.4, we get 

D-,(h) * dim(F) = c D-,(h + CL), 
MA(F) 

(dim F) ’ 1 P-,,#)E-,,j = 1 1 P-c(A -I- cc)E-,A . 
crELl(F) j 

Since the E-,,j are linearly independent, this gives 

By Lemma 4.3 of [I 11, it follows that p-,.i is harmonic. (Since P-,,~ is already 
known to be a polynomial function, one could give a simple direct proof.) Q.E.D. 

COROLLARY 4.8. With notation as in Proposition 4.7, there is a harmonic 
polynomial c, homogeneous of degree 4 dim(g/h) - d, such that for h dominant, 

F+i tmd 2 dim p * m*(p) = c(p). 
IolG 

Here m,&) is the multiplicity of p in n(h). 

Proof. Write 0x(X) -XL=_, tiEi . By (4) in the proof of Theorem 3.6, 
Theorem 4.1, and Proposition 4.7, E-d is a linear combination of homogeneous 
measures on I*, with coefficients homogeneous harmonic polynomials in X of 
degree -& dim(g/b) - d. In particular, if f  E C,“(f) is Ad(K) invariant, there is a 
harmonic polynomial c, of the specified degree, such that 

viny t-a c dim /J * m-(p)f(t-lp) = c,(h). 
IulQ 

The corollary follows by an obvious approximation argument. 

This corollary establishes Conjecture 5.1 of [I I]. 

Q.E.D. 
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