Mathematics 215 (3 credits) Elementary Differential Equations I Term 2 (2008/09) Pre-requisite: Mathematics 101 (integral calculus) or equivalent

Co-requisites: Mathematics 200 (multivariable calculus) or equivalent; Mathematics 221 (linear algebra) or equivalent

Textbook: Boyce & DiPrima, Elementary Differential Equations and Boundary Value Problems, 9th Edition (2008) or 8th Edition (2005). In the Course Outline, references are given to the 9th Edition (corresponding changes in the 8th Edition indicated in brackets).

Location and times: MWF 10:00am, Room: Buchanan 104.

Instructor: George Bluman, Math Annex 1112, bluman@math.ubc.ca

Office Hours: by appointment. You can also try to drop-in.

Problem Assignments: due each week *at the beginning* of the Friday class.

Midterms: There will be two in-class midterms tentatively scheduled to be held on Feb 25 (Wed) based on Weeks 1-5, March 25 (Wed) based on Weeks 6-9.

Grading: 50% from the Midterms + homework assignments; 50% from the Final Exam. You must pass the Final Exam to pass the course! No notes, books or calculators will be allowed for in-class midterms or the Final Exam.

COURSE OUTLINE—tentative

I. Introduction

1. Week of January 5: what is a DE, order, linear and nonlinear, solution, general solution, particular solution

Reading: Chapter 1.

Suggested Problems: p.15: 1(a), 3, 4, 8, 13, 15, 17, 18; p.24: 18, 20.

II. First order equations

1. Week of January 5 cont'd: solution of linear ODE, direction field *Reading*: 2.1

Problems: p.39: 5, 11, 14, 21, 24, 32.

2. Week of January 12: existence and uniqueness, integrating factors, separable equations, symmetry, homogeneous equations, applications

Reading: 2.4, 2.6, 2.2, 2.3, 2.5

Suggested Problems: p.75: 3, 25, 27; p.99: 13; p.47: 1, 6, 30, 34; p.59: 8, 9, 10, 16, 18, 32; p.88: 15, 20, 22, 24, 28.

III. Second order linear equations

3. Week of January 19: linear operator, existence and uniqueness, linear independence, linear homogeneous equation, linear nonhomogeneous equation *Reading*: 3.1, 3.2.

Suggested Problems: p.144(142): 1, 9, 13, 17, 23, 28; p.155(151): 1, 2, 46(33), 51(38).

4. Week of January 26: Wronskians and linear independence (fundamental set of solutions), constant coefficient linear homogeneous equations (characteristic equation: real roots, double roots, complex roots), linear nonhomogeneous equation (method of undetermined coefficients when the homogeneous equations has constant coefficients) *Reading*: 3.2-3.5(3.2-3.6)

Suggested Problems: p.163(164): 2, 7, 17, 25, 29, 32, 34(38); p.171(172): 1, 14, 23; p.183(184): 1, 8, 17, 28, 29.

5. Week of February 2: linear nonhomogeneous equation (method of variation of parameters), applications to electrical circuits and mechanical vibrations

Reading: 3.6-3.8(3.7-3.9)

Suggested Problems: p.189(190): 1, 5, 19, 21, 28, 29; p.202(203): 5, 15, 16, 19, 20, 30; p.215(214): 1, 5, 17.

IV. The Laplace transform

6. Week of February 9: definition and examples, solution of initial value problems, discontinuous functions

discontinuous functions

Reading: 6.1-6.4 *Suggested Problems*: p.311(312): 5, 6, 14, 18, 26, 27; p.320(322): 2, 11, 20, 24, 27(a,b), 28, 30, 37; p.328(329): 13(7), 25(19), 29(23), 30(24), 33(27), 34(28); p.336(337): 1, 10,

19.

7. Week of February 23: *midterm #1 on Wed*, *Feb 25th*. Impulse functions, convolutions.

Reading: 6.5, 6.6

Suggested Problems: p.343(344): 1, 25; p.350(351): 1, 7, 13, 21, 22, 29.

V. Systems of first order linear equations

8. Week of March 2: homogeneous case

Reading: 7.5, 7.6, 7.8

Suggested Problems: p.398: 1, 15, 29, 32, 33; p.409(410): 1, 26, 28; p.428: 1.

9. Week of March 9: nonhomogeneous case

Reading: 7.9

Suggested Problems: p.439: 1, 3.

VI. Nonlinear systems

9. Week of March 9 cont'd: introduction.

Reading: 9.1, 9.2

Suggested Problems: p.494(492): 1(a-c), 17, 20, 21; p.506(501): 1, 3, 17, 21, 23.

10. Week of March 16: example of simple pendulum, critical points, linearization, physical examples

Reading: 9.3-9.5

Suggested Problems: p.516(511): 1-6, 19(17), 21(19), 22(20), 27(25).

VII. Numerical solutions to initial value problems

11. Week of March 23: midterm #2 on Wed, Mar 25th. Euler's method. Reading: 8.1

Suggested Problems: p.451(449): 1, 18, 25.

12. Week of March 30: other methods

Reading: 8.2-8.4

Suggested Problems: p.458(456): 1, 14; p.463(461): 1; p.469(467): 1.

VIII. Catch-up? and/or review?

13. Week of April $\overline{6}$: may be used for lectures to catch-up on schedule—otherwise for review