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Brownian Motion and Harmonic Analysis on
Sierpinski Carpets
Martin T. Barlow and Richard F. Bass

Abstract. We consider a class of fractal subsets of Rd formed in a manner analogous to the construction of
the Sierpinski carpet. We prove a uniform Harnack inequality for positive harmonic functions; study the heat
equation, and obtain upper and lower bounds on the heat kernel which are, up to constants, the best possible;
construct a locally isotropic diffusion X and determine its basic properties; and extend some classical Sobolev
and Poincaré inequalities to this setting.

1 Introduction

We begin by considering a class of fractal subsets of Rd formed by the following generaliza-
tion of the construction of the Cantor ternary set. Let d ≥ 2 and let F0 = [0, 1]d. Let lF ≥ 3
be an integer and divide F0 into (lF)d equal subcubes. Next remove a symmetric pattern of
subcubes from F0 and call what remains F1. Now repeat the procedure: divide each sub-
cube that is contained in F1 into ld

F equal parts, remove the same symmetric pattern from
each as was done to obtain F1 from F0, and call what remains F2. Continuing in this way
we obtain a decreasing sequence of (closed) subsets of [0, 1]d. Let F =

⋂∞
n=0 Fn; we call F a

generalized Sierpinski carpet (GSC) or simply, a carpet. The standard SC (see [Sie]) is the
GSC for which d = 2, lF = 3, and F1 consists of F0 minus the central square. Let mF be
the number of subcubes remaining in F1, and let d f = log mF/ log lF . Then the Hausdorff
dimension of F is d f . For an example of a GSC in R3, see the picture of the Menger sponge
in [Man, p. 145].

We will also be interested in two other related sets, which have a large-scale structure
similar to the small-scale structure of F. The first, which following [O1] we call the pre-
carpet, is the set F̃0 =

⋃∞
n=0 ln

FFn. (Here and throughout this paper we write λG = {λx : x ∈
G}). Note that F̃0 ⊂ Rd

+, and that F̃0∩[0, lnF]d consists of [0, lnF]d with a number of (possibly
adjacent) cubical holes removed, of sides varying from 1 to ln−1

F . Write Γ = int(F̃0): then
Γ is a (non-empty) domain in Rd with a piecewise linear boundary—see Figure 2. It is
easy to check that Γ satisfies the volume doubling condition. The second related set is the
unbounded GSC F̃ =

⋃∞
n=0 ln

FF.
We may regard these sets as idealized models of a region with obstacles of many different

sizes. Our purpose in this paper is to study the Laplace and heat equations on the spaces F,
F̃0, and F̃. In particular we:
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Figure 1: The first two stages of the construction of the standard Sierpinski carpet in two dimensions.

Figure 2: (Part of) the pre-carpet. The small squares have side 1.

(1) prove a uniform Harnack inequality for positive harmonic functions on F̃0;
(2) study the heat equation on F̃ and F, and obtain upper and lower bounds on the heat

kernel which are, up to constants, the best possible;
(3) construct a locally isotropic diffusion X on F and determine its basic properties;
(4) extend some classical Sobolev and Poincaré inequalities to this setting.

Just as the Euclidean dimension enters the standard heat kernel estimates and Sobolev
inequalities, the Hausdorff dimension d f of F plays a role in the analogues for F. What
makes the fractal case intriguing, however, is that there is another parameter, called the
spectral dimension ds, which is much more significant. For example, the Sobolev inequality
in Rd for d > 2 states that if p = 2d/(d− 2) and f and its gradient are in L2(Rd), then

‖ f ‖p ≤ c1‖∇ f ‖2.(1.1)

The corresponding inequality for a GSC (see Theorem 1.5) has the Lp norm of f on the
left hand side, but now with p = 2ds/(ds − 2); the dimension d f does not enter into the
inequality.

The Hausdorff dimension of F, d f can be calculated easily from lF and the Lebesgue
measure of F1. On the other hand the spectral dimension ds appears to be a “physical”
or “analytic” constant rather than a geometric one; we know of no simple formula for ds

in terms of the geometry of F, and believe that none exists. Rather, ds is defined via the
properties of harmonic functions on the sets Fn. While the exact determination of ds seems



Sierpinski Carpets 675

to be a hard problem, it is quite easy to obtain certain bounds, and we have in particular
that 1 < ds ≤ d f < d.

Any argument based purely on the geometry of F will inevitably lead to results involving
geometric constants. Since all the key inequalities relating to F involve ds, we cannot expect
to be able to derive them by, say, starting with an isoperimetric inequality, as is possible in
Rd. Other methods suited to Rd also fail, and in fact, even very basic tools (like the cut-off
functions used in Moser [M]) do not work.

We therefore had to develop some new techniques. Our basic approach is probabilistic:
we construct a diffusion X on F̃, which, because it is locally isotropic, we call a “Brownian
motion” on F̃. We can then use properties of X to derive bounds on its transition density
(which solves the heat equation on F). Given these bounds, we can then derive Sobolev and
Poincaré inequalities on F̃ and F̃0.

The starting point of our analysis, and the hardest result in this paper, is a uniform
(elliptic) Harnack inequality. Let B be an open set in Rd. We say that h is harmonic on
B ∩ FN if ∆h(x) = 0 for x ∈ B ∩ int(FN ), and the normal derivative of h is 0 on B ∩ ∂FN

almost everywhere with respect to surface measure on ∂FN . Write B(x, r) for the usual open
ball in Rd with centre x and radius r.

Theorem 1.1 There exists c1 not depending on N, such that if x ∈ FN , r > 0, and h is positive
and harmonic on B(x, 2r) ∩ FN , then writing A = B(x, r) ∩ FN ,

sup
A

h(x) ≤ c1 inf
A

h(y).(1.2)

A similar result holds for the pre-carpet F̃0.
Of course, since FN is a Lipschitz domain, for each N the standard Harnack inequality

guarantees there exists c1(N) such that (1.2) holds. The point of this theorem is that c1 can
be taken to be independent of N .

In an earlier paper [BB1] we proved a uniform Harnack inequality in the case
d = 2. The proof used a “path-crossing” argument which cannot be generalized to the
case d ≥ 3. Kusuoka and Zhou [KZ] extended this result to fractals satisfying ds < 2, but
their method is also tied to the low-dimensional case. Standard approaches to Harnack
inequalities in higher dimensions, such as Moser’s iterative technique [M] or the Nash-
Fabes-Stroock method [FS], do not appear to work for GSCs, and we were therefore forced
to use a different approach. Our proof of (1.2) uses the probabilistic technique of coupling.
(See [Lv] for a general introduction to this method). More precisely, given distinct points
x, y ∈ FN , we construct two reflecting Brownian motions on FN , starting at x, y, such that
the two processes meet with a positive probability p which is independent of N . Using this,
we then establish a Harnack inequality with constants independent of N . We believe that
our use of coupling to prove Harnack inequalities is new; it may also be applicable to a
variety of other situations.

Given the Harnack inequality, we modify methods developed by us in earlier work on
two-dimensional Sierpinski carpets (see [BB1]–[BB4]). We can construct the process X as
the limit of (suitably accelerated) reflecting Brownian motions on the sets FN . Let µ be (a
multiple of) the Hausdorff xd f -measure on F̃.

Theorem 1.2 There exists a nondegenerate continuous strong Markov process Xt whose state
space is F̃. Xt has transition densities which have the strong Feller property and which are
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µ-symmetric. The law of the process (Xt , t ≥ 0) is locally invariant under local isometries of
F̃.

Write Pt for the semigroup associated with X, and let
(
L,D(L)

)
be the infinitesimal

generator of Pt ; we call L the Laplacian on F̃. The heat equation on F̃ then becomes

∂u

∂t
(x, t) = Lu(x, t), x ∈ F̃, t > 0.(1.3)

The fundamental solutions to the heat equation are given by the transition densities
p(t, x, y) for the process Xt on F̃. The spectral dimension ds is defined from the sequence
Rn of electrical resistances across the sets lnFFn. Let dw = 2d f /ds; note that as ds ≤ d f we
have dw ≥ 2.

Theorem 1.3 p(t, x, y) is symmetric and jointly continuous on (0,∞)× F̃× F̃, and for each
x, y the function p(t, x, y) is C∞ in t. There exist c1, c2, c3, c4 such that for all x, y ∈ F̃ and
t > 0,

c1t−ds/2 exp

(
−c2

(
|x − y|dw

t

)1/(dw−1)
)

≤ p(t, x, y) ≤ c3t−ds/2 exp

(
−c4

(
|x − y|dw

t

)1/(dw−1)
)
.

(1.4)

Let Wt be Brownian motion on the pre-carpet F̃0, with normal reflection on ∂F̃0, and let
q(t, x, y) be its transition density with respect to Lebesgue measure on F̃0. These transition
densities are the fundamental solutions to the heat equation ∂u/∂t = 1

2∆u on F̃0 with
Neumann boundary conditions.

Since F̃0 is locally similar to Rd, but has a “fractal” global structure, we would expect
q(t, x, y) to have different behavior for small and large t . We would also expect, in view of
standard large-deviation theory for Brownian motion, that, if |x− y| is large in comparison
with t then q(t, x, y) will exhibit Gaussian behavior. (Very roughly, if |x− y| is much larger
than t , then for the process W to move from x to y in time t , it will with high probability
stay close to the shortest path connecting x and y, and it will have no time to feel the fractal
structure of F̃0).

Theorem 1.4 There exist c1, . . . , c8 ∈ (0,∞) such that if x, y ∈ F̃0 and

(a) t ≥ max(1, |x − y|), then

c1t−ds/2 exp

(
−c2

(
|x − y|dw

t

)1/(dw−1)
)

≤ q(t, x, y) ≤ c3t−ds/2 exp

(
−c4

(
|x − y|dw

t

)1/(dw−1)
)

;

(1.5)

(b) if t ≤ 1, then

c5t−d/2 exp(−c6|x − y|2/t) ≤ q(t, x, y) ≤ c7t−d/2 exp(−c8|x − y|2/t).(1.6)
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(c) if t ≥ 1, |x − y| > t, then

c5t−ds/2 exp(−c6|x − y|2/t) ≤ q(t, x, y) ≤ c7t−ds/2 exp(−c8|x − y|2/t).(1.7)

As remarked above, the set F̃0 satisfies the usual volume doubling condition and an ellip-
tic Harnack inequality. However, since q(t, x0, .) is parabolic on the whole space (0,∞)×F̃0

it follows easily from the bounds in Theorem 1.4 that the (usual) parabolic Harnack in-
equality on F̃0 fails for any GSC for which dw > 2. (See Proposition 7.11 for details, and
Remark 5.4 for examples of GSCs for which it is known that dw > 2). This answers a
question raised in Grigor’yan [Gr]. Essentially the point is that whereas an elliptic Harnack
inequality such as Theorem 1.1 contains no information on the space-time scaling of the
process W , this scaling information appears explicitly in the parabolic Harnack inequality.

To obtain the parabolic estimates above from Theorem 1.1 some additional information
on the process W is needed. This is provided by exploiting the close connection between
resistances and crossing times. For graphs this was proved in [CRRST]—see also [Tet],
and for Sierpinski carpets see [BB2], [BB4]. Using this, the resistance bounds in [BB4]
and [McG], and the Harnack inequality, we can obtain good bounds on the time taken by
W to escape from a region of the form B(x, r) ∩ F̃0. These bounds then enable us to derive
estimates for expressions like

∫∞
0 e−λtt pq(t, x, y) dt for suitable p, and using these we prove

the upper bounds in Theorem 1.4. This method is also new and could easily be modified
to give new proofs of the upper bounds of Aronson [A] for the heat kernels of uniformly
elliptic operators in divergence form on Rd.

For the key estimate for the lower bound for q(t, x, y) we again use coupling; this may
also have applications outside the fractal context. The bounds in Theorem 1.3 follow easily
from those in Theorem 1.4

The relationship between bounds on the behavior of the norm of Pt and Sobolev and
other analytic inequalities has been explored very extensively in recent years, following the
basic papers [V1] and [CKS]. Write ‖ f ‖p

p =
∫

F̃ | f |
p dµ. As X is µ-symmetric, we can

associate a Dirichlet form
(
E,D(E)

)
with Pt (see [FOT]). Since Theorem 1.3 implies easily

that
‖Pt f ‖∞ ≤ c1t−ds/2‖ f ‖1,

we can apply the theory mentioned above to immediately deduce a Sobolev inequality on F̃.

Theorem 1.5 Suppose ds > 2. There exists c1 such that for all f ∈ D(E)

‖ f ‖p ≤ c1E( f , f )
1
2 , p = 2ds/(ds − 2).

We also obtain a Sobolev inequality on F̃0, and Poincaré and mass-capacity inequalities
for both F̃ and F̃0; see Section 7.

Let G be the graph whose vertices are the centers of those unit squares that lie in F̃0. Two
vertices x and y will be connected by an edge if |x − y| = 1. G is called the graphical SC.
In [BB6] the results of this paper are used to obtain Poincaré, Sobolev, and mass-capacity
inequalities for G and to obtain transition probability estimates for the symmetric random
walk on G.

Initial interest in the study of random walks or diffusions on fractals came from math-
ematical physicists working in the theory of disordered media—see [RT], [AO], and for a
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survey from a physical viewpoint [HBA]. The initial mathematical work was on the sim-
plest non-trivial regular connected fractal, the Sierpinski gasket, in [Kus1], [Go], [BP]. In
particular, [BP] obtained bounds similar to those in Theorem 1.3 for the transition den-
sities of the Brownian motion on the Sierpinski gasket. The Sierpinski gasket G is finitely
ramified, that is, it can be disconnected by removing a finite number of points. This means
that many subsets of G have a finite boundary, and so a Harnack inequality can be proved in
an elementary way. Subsequently many other finitely ramified fractals have been treated in
a similar fashion—see for example [L], [Kig1], [Kig2], [Kum1], and [Fuk]. Note that while
some of these papers use probability theory, others employ a purely analytic approach, and
construct the Dirichlet form directly. However, no purely analytic derivation of the bounds
on the heat kernel is known in the fractal context. While it possible for a finitely ramified
fractal to have ds > 2 (see [Kum2] or [Ny]) these spaces are in some sense quite inhomo-
geneous. Indeed, Proposition 4.42 of [Bar1] implies that if bounds of the form (1.4) hold
on a finitely ramified fractal then ds < 2. So if one wishes to study regular higher dimen-
sional fractal spaces which are not simple products one is led to consider infinitely ramified
fractals.

Generalized Sierpinski carpets provide a reasonably simple but general family of in-
finitely ramified fractals. See [GAM], [BAH] for early work by mathematical physicists,
and [HHW1], [HHW2] for an approximate approach to the calculation of the spectral
dimension. GSCs in two dimensions have been studied in [BB1], [BB2], [BBS], [BB3],
[BB4], but as ds ≤ d f < d these sets also have ds < 2. There are only a few previous papers
on GSCs with d ≥ 3. The fractals studied by Kusuoka and Zhou in [KZ] include GSCs,
and that paper contains a Harnack inequality similar to Theorem 1.1 above for GSCs with
ds < 2. (They also have some results for more general GSCs). (See Section 9 of this paper
for an example of a GSC with d = 3 but ds < 2.) In addition, Osada [O1] has proved an
isoperimetric inequality, and used it to deduce that

q(t, x, y) ≤ c1t−di/2, x, y ∈ F̃0, t ≥ 1,(1.8)

where di is the “isoperimetric dimension” of F̃0. Comparing (1.8) with (1.5) we see that
ds ≥ di , and we expect that in general the inequality is strict.

For surveys of work on finitely ramified fractals see [Kus2] or [Bar1], and for Sierpinski
carpets see [Bas3].

The layout of this paper is as follows. Section 2 introduces the notation we will use
together with a few basic facts. Section 3 contains the coupling argument: as this is quite
long and hard we give here a very brief summary of the essential ideas. See also [BB5],
where these results were announced.

Let N ≥ 0. Let S∗n be the set of cubes of side length 2l−n
F with vertices in 2l−n

F Zd. Let us

say x
m
∼ y if x ∈ S1 ∈ S∗m, y ∈ S2 ∈ S∗m, and there is an isometry from S1 to S2 that takes x to

y. Given x
m
∼ y, we construct two reflecting Brownian motions W x

t and W y
t on FN starting

from x and y, respectively, such that W x
t

m
∼ W y

t for all t , and such that with some positive

probability c1 > 0 we have W x
σ1

m−1
∼ W y

σ1 , where σ1 is the first time either W x or W y moves
more than a few cubes in Sm away from their starting points. This construction uses the
symmetry of F1 very heavily. If (nm) is a sequence of integers and σn is the n-th time W x

or W y has moved more than a few cubes in Sm, then a renewal-type argument tells us that
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W x(σnm )
m−1
∼ W y(σnm ) with probability at least 1 − (1 − c1)nm . Repeating this argument

for m− 1,m− 2, . . . , we see that there is positive probability that W x 0
∼W y at some time

before either W x or W y hits ∂F0.
In Section 4 we derive the uniform Harnack inequality from the coupling result. Sec-

tion 5 contains the construction of the Brownian motion. In Section 6 we establish the
bounds on the heat kernel for both F̃ and F̃0, and in Section 7 we consider Sobolev and
Poincaré inequalities. In Section 8 we establish a number of basic properties of the pro-
cess Xt . These include transience and recurrence, moduli of continuity, the Hausdorff di-
mension of the range, the existence of local times, self-intersections, rates of escape, and a
zero-one law. The paper is concluded in Section 9 by some examples and open problems.

2 Notation and Preliminaries

We begin by setting up our notation. We use the letter c with subscripts to denote constants
which depend only on the dimension d and the carpet F. We renumber the constants for
each lemma, proposition, theorem, and corollary.

Let d ≥ 2, F0 = [0, 1]d, and let lF ∈ N, lF ≥ 3 be fixed. For n ∈ Z let Sn be the collection
of closed cubes of side l−n

F with vertices in l−n
F Zd. For A ⊆ Rd, set

Sn(A) = {S : S ⊂ A, S ∈ Sn}.

For S ∈ Sn, letΨS be the orientation preserving affine map which maps F0 onto S.
We now define a decreasing sequence (Fn) of closed subsets of F0. Let 1 ≤ mF < ld

F be an
integer, and let F1 be the union of mF distinct elements of S1(F0). We impose the following
conditions on F1:

Hypotheses 2.1

(H1) (Symmetry) F1 is preserved by all the isometries of the unit cube F0.
(H2) (Connectedness) Int(F1) is connected, and contains a path connecting the hyperplanes

{x1 = 0} and {x1 = 1}.
(H3) (Non-diagonality) Let B be a cube in F0 which is the union of 2d distinct elements of S1.

(So B has side length 2l−1
F ). Then if int(F1 ∩ B) is non-empty, it is connected.

(H4) (Borders included) F1 contains the line segment {x : 0 ≤ x1 ≤ 1, x2 = · · · = xd = 0}.

We may think of F1 as being derived from F0 by removing the interiors of ldF−mF squares
in S1(F0). Given F1, F2 is obtained by removing the same pattern from each of the squares
in S1(F1). Iterating, we obtain a sequence (Fn), where Fn is the union of mn

F squares in
Sn(F0). Formally, we define

Fn+1 =
⋃

S∈Sn(Fn)

ΨS(F1) =
⋃

S∈S1(F1)

ΨS(Fn), n ≥ 1.

We call the set F =
⋂∞

n=0 Fn a generalized Sierpinski carpet (GSC). Let dim( · ) denote Haus-
dorff dimension; by [Hu] dim(F) = log mF/ log lF .

Remark 2.2 These conditions are natural higher-dimensional analogues of the ones given
in [BB4, (2.1)]. Since we are interested in constructing continuous processes on F, the hy-
pothesis (H2) is essential. It would be interesting to be able to consider GSCs for which
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the symmetry condition (H1) was either weakened or dispensed with entirely. However,
(H1) plays a vital role in this paper, namely, in the key coupling argument in Section 3. In-
deed, we do not expect the Harnack inequality Theorem 4.3 to remain true without strong
symmetry assumptions on F1.

The other two hypotheses, (H3) and (H4), are not so essential. We expect that results
similar to those in this paper still hold for GSCs which do not satisfy (H3). However, the
natural state space of the limiting process X may no longer be F, and the added gener-
ality would significantly increase the complexity of the arguments. We include (H4) for
simplicity—it ensures that the shortest path metric and the Euclidean metric on F are
comparable. See [BB4, Sect. 8] for some remarks on GSCs which do not satisfy (H4),
and [FHK], [Kum1] for constructions of such a shortest path metric in the case of nested
fractals.

We will be interested in unbounded analogues of F. Set Fk = F0 for k < 0 and for n ∈ Z
let

F̃n =
∞⋃

r=0

lr
FFn+r,(2.1)

and F̃ =
⋂∞

n=0 F̃n. In particular we call F̃0 the pre-carpet (see [O1]). Let

µn(dx) = mn
F1F̃n

(x)dx,

and let µ be the weak limit of the µn: µ is a constant multiple of the Hausdorff xlog mF/ log lF -
measure on F̃.

We need notation for a block of cubes that have a point x near the center. For x =
(x1, . . . , xd), let φ(xi) be the integer j such that l−r

F

(
j − ( 1

2 )
)
≤ xi < l−r

F

(
j + ( 1

2 )
)

and let

Dr(x) =

[
φ(x1)− 1

lr
F

,
φ(x1) + 1

lr
F

]
× · · · ×

[
φ(xd)− 1

lr
F

,
φ(xd) + 1

lr
F

]
.(2.2)

Observe that Dr(x) decreases as r increases. Note also that Dr(x) is a cube of side length
2l−r

F .
For distance on the sets F̃n we will frequently find it convenient to use the ‖.‖∞ norm,

since in this norm the unit ball is a cube with sides parallel to the axes. We denote by
B∞(y, ε) the set {x ∈ Rd : ‖x − y‖∞ < ε}, and use B(x, ε) to denote the usual open balls
in Rd. Note the following:

Lemma 2.3

(a) If y ∈ Dn(x) then ‖x − y‖∞ ≤ (3/2)l−n
F .

(b) If ‖x − y‖∞ ≤ (1/2)l−n
F then y ∈ Dn(x).

(c) If x ∈ F̃ and n ∈ Z then m−n
F ≤ µ

(
Dn(x)

)
≤ 2dm−n

F .
(d) If x ∈ F̃0 and n ≤ 0 then m−n

F ≤ µ0

(
Dn(x)

)
≤ 2dm−n

F .
(e) There exist constants c1, c2 such that for x ∈ F̃0,

c1rd ≤ µ0

(
B(x, r)

)
≤ c2rd, 0 < r < 1,

c1rd f ≤ µ0

(
B(x, r)

)
≤ c2rd f , r > 1.
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(f) There exist constants c1, c2 such that for x ∈ F̃,

c1rd f ≤ µ
(
B(x, r)

)
≤ c2rd f , r > 1.

In particular it follows immediately from (e) that (F̃0, | ·− · |, µ0) satisfies the volume doubling
condition (see [Gr]):

µ0

(
B(x, r)

)
≤ cµ0

(
B(x, 2r)

)
, for x ∈ F̃0, r > 0.

A similar volume doubling condition also holds for F̃.
We write

Hi(t) = {x ∈ Rd : xi = t}, t ∈ R.(2.3)

We write B(G) for the Borel subsets of the set G. For a Borel set A and process X on Rd we
write

TA = T(A) = TA(X) = TX
A = inf{t > 0 : Xt ∈ A}(2.4)

for the hitting time of A and

τA = τ (A) = τA(X) = τX
A = T(Ac)(2.5)

for the exit time of A. We also let

σr(x) = σX
r (x) = σr(x,X) = inf{t > 0 : Xt /∈ Dr(x)}.(2.6)

We define the coupling time for two processes:

Definition 2.4 Let Xk
t , k = 1, 2, be processes on Rd. The coupling time of X1, X2 is defined

by

TC = TC (X1,X2) = inf{t ≥ 0 : X1
t = X2

t }.(2.7)

We say the Xk are coupled if X1
t = X2

t for t ≥ TC .
Let D be an (open) Lipschitz domain in Rd. We call a process Xt a reflecting Brownian

motion on D, or RBM(D) for short, if X is a D-valued diffusion which is locally a Brownian
motion on D, with normal reflection on ∂D. If D is a closed set in Rd, D = int(D), and
int(D) satisfies the conditions above, then we say X is a RBM(D) if X is a RBM

(
int(D)

)
. The

existence (and uniqueness in law) of such processes is proved in [BH, Sect. 4], and [Bas1].
In the remainder of this section we will give some basic properties of RBM(D), where D

is a Lipschitz domain. We write W for RBM(F̃0).

In Section 3 we will make frequent use of the following fact.

Lemma 2.5 Let D be a Lipschitz domain in Rd, and let X be a RBM(D). If A ⊂ Rd and A is
polar for standard d-dimensional Brownian motion, then A ∩ D is polar for X.
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Note in particular that subspaces of Rd of codimension greater than or equal to 2 are
polar for X.

Proof Suppose d ≥ 3 and A is polar for d-dimensional Brownian motion. If x ∈ D, then
there exists rx > 0 such that D ∩ B(x, rx) = D ′ ∩ B(x, rx), where D ′ is the region above
the graph of a Lipschitz function in some coordinate system. Since D can be covered by
a countable union of balls of this kind and a countable union of polar sets is polar, it is
sufficient to consider the case when D is the region above the graph of a Lipschitz function
and A is bounded.

Let v be the Green function for X on D, and w be the Green function for Brownian
motion on Rd. By [BH], Corollaries 3.3 and 3.5, there exist c1 and c2 such that

c1|y − z|2−d ≤ v(y, z) ≤ c2|y − z|2−d, y, z ∈ D.(2.8)

Suppose ν is a non-zero measure supported on A with
∫

v(y, z) ν(dz) ≤ 1 for all y. Then∫
w(y, z) ν(dz) is bounded, which implies that A is not polar for d-dimensional Brownian

motion. So no such measure ν exists and A is polar for X.
If d = 2, we consider X̃t = (Xt ,Zt ) in D × R, where Zt is an independent one-

dimensional Brownian motion and use the above argument to show that A × R is polar
for X̃ since it is polar for 3-dimensional Brownian motion.

We need to extend some results that were proved in [BH] for RBM in regions above the
graph of a Lipschitz function to RBM in F̃0. We begin with a support theorem for RBM(F̃0).

Proposition 2.6 Let ε > 0 and let ψ : [0, 1] → F̃0 be a differentiable curve. There exists
c1 > 0 depending only on ε and ‖ψ ′‖∞ such that

Pψ(0)
(
sup
s≤1
|Ws − ψ(s)| < ε

)
≥ c1.

Proof Let x = ψ(0). By Proposition 3.6 of [BH] and scaling, there exist δ1 and δ2 depend-
ing on ε and ‖ψ ′‖∞ such that with probability at least c2 we have sups≤δ1

|Ws−ψ(s)| < ε/3
and dist(Wδ1 , ∂D) > δ2. By the Markov property, it thus suffices to show

Py
(

sup
δ1≤s≤1

|Ws − ψ(s)| < ε
)
≥ c3(2.9)

when |y − ψ(δ1)| < ε/3 and dist(y, ∂D) > δ2/2. However (2.9) follows by applying
the support theorem for standard d-dimensional Brownian motion [Bas2, p. 59] with ε
replaced by ε/3 and ψ replaced by a curve ψ starting at y that is always within ε/3 of ψ but
such that ψ never gets closer than a distance (ε ∧ δ2)/2 to ∂D.

Fix x0 ∈ F̃0. Let m ∈ Z. As F̃0 ∩ Dm(x0) is a bounded Lipschitz domain, by Lemma 4.3
of [BH] and its proof, a RBM

(
F̃0 ∩ Dm(x0)

)
W has a continuous transition density

qDm(x0)(t, x, y) = q(t, x, y) with respect to Lebesgue measure on F̃0 ∩ Dm(x0). By Theo-
rem 2.3 and Remark 3.11 of [BH],

q(t, x, y) ≤ c1(m)t−d/2 exp
(
−c2(x − y)2/t

)
, x, y ∈ F̃0 ∩ Dm(x0), t ≤ 1.(2.10)
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Since q is the transition density of a symmetric process, q(t, x, y) = q(t, y, x). By [Bas2,
Sect. 4], there is an eigenvalue expansion for q:

q(t, x, y) =
∞∑
i=1

e−λi tϕi,m(x)ϕi,m(y),(2.11)

where the convergence is absolute and uniform. This and (2.10) imply

q(t, x, y) ≤ c3t−d/2 exp(−c4t), x, y ∈ F̃0 ∩ Dm(x0), t > 0,(2.12)

where c3 and c4 depend on m. Cauchy-Schwarz and (2.11) imply

q(t, x, y) ≤ q(t, x, x)
1
2 q(t, y, y)

1
2(2.13)

and also that q(t, x, x) is nonincreasing in t for each x ∈ F̃0.

3 Coupling of Brownian Motions

The coupling argument given in this section is the foundation of the results in this paper.
The argument is quite long, and requires several steps. A great deal of notation, especially
for various special subsets of Rd, will be required; however, none of the notation introduced
in this section will be used elsewhere. The reader may find it helpful to focus on the case
d = 3.

Lemma 3.1 (A Reflection Principle) Let D0 be a Lipschitz domain in Rd, let D = D0 and
let W be a RBM(D). Let H be a hyperplane, g : Rd → Rd be reflection across H, and J1, J2 be
the two half spaces determined by H. Let A ⊂ ∂D, and B1, B2 be subsets of A.

Suppose that

(i) g : D→ D

(ii) g(B1) = B2

(iii) Bi ⊆ Ji, i = 1, 2

(iv) g(A ∩ J1) ⊂ A.

(3.1)

Then

Px(WTA ∈ B1) ≥ Px(WTA ∈ B2) for x ∈ J1 ∩ D.(3.2)

Proof Let C2 = A ∩ J2 − B2, and C1 = g(C2). Note that C1 is not necessarily contained
in A. Write ui(x) = Px(WTA ∈ Bi), and v = u2 − u1. Since Wt killed on hitting A has
continuous paths, the maximum principle holds for v. Let β = supx∈ J1∩D v(x). Suppose
β > 0. As v(x) ≤ 0 for x ∈ A ∩ J1, by the maximum principle we have

sup
x∈ J1∩D

v(x) = sup
y∈H∩D

v(y).
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Set S = TB1 ∧ TB2 ∧ TC1 ∧ TC2 . Then for y ∈ H ∩ D,

ui(y) = Py(WS ∈ Bi) + Ey1(WS∈C1)ui(WS), i = 1, 2.

Since by symmetry Py(WS ∈ B1) = Py(WS ∈ B2), it follows that

v(y) = Ey1(WS∈C1)v(WS).

However, again by symmetry, Py(WS ∈ C1) = Py(WS ∈ C2), and so Py(WS ∈ C1) ≤ 1/2.
Hence for y ∈ H ∩ D, v(y) ≤ Py(WS ∈ C1)β ≤ β/2. Thus β ≤ β/2, a contradiction to
our assumption that β > 0.

The following definition of a sequence of stopping times will be used several times.

Definition 3.2 Let H = {Hα, α ∈ I} be a family of closed non-empty subsets of Rd with
the property that {α : Hα ∩ B(x, 1) 6= ∅} is finite for all x. (Note this implies that I is
countable). Write H =

⋃
α∈I Hα. Let (Xt , t ≥ 0) be a continuous process on Rd such that

Hα ∩ Hβ is polar for X, for all α, β ∈ I. Then successive disjoint hits by X on H are the
sequence of stopping times (Tn, n ≥ 0) defined by:

T0 = inf{t ≥ 0 : Xt ∈ H},

Γn = {α ∈ I : XTn ∈ Hα},

Tn+1 = inf
{

t ≥ Tn : Xt ∈ H −
⋃
α∈Γn

Hα

}
.

(3.3)

Lemma 3.3 Let H, X, (Tn) be as above. Then lim
n→∞

Tn = +∞, a.s.

Proof Suppose Tn < ∞. Since B
(
XTn (ω), 1

)
intersects at most finitely many Hα, Γn is a

finite set. (In fact, if Tn > 0 then as Hα ∩ Hβ is polar, Γn contains only one element).
Therefore XTn (ω) is a positive distance from H −

⋃
α∈Γn

Hα. Hence Tn+1 > Tn. Now

suppose lim
n

Tn(ω) = S(ω) < ∞. Then as {α : Hα ∩ B
(
XS(ω), 1

)
6= ∅} is finite, there

must exist α, β ∈ I such that XTn (ω) ∈ Hγ for infinitely many n, for γ = α, β. So
XS(ω) ∈ Hα ∩Hβ , and hence, by the polarity assumption, we deduce P(S <∞) = 0.

Definition 3.4 Let D = Fn0 , for some n0 ≥ 1, and let W be RBM(D). We define

Hi j = {x : xi + x j = 1}

Li = Hi(0) ∩ [0, 1/2]d,

Mi j = {x ∈ [0, 1]d : xi = 0, 1/2 ≤ x j ≤ 1, 0 ≤ xk ≤ 1/2, k 6= j}, for i 6= j,

τ = inf
{

t ≥ 0 : Wt ∈
d⋃

i=1

Hi(1)
}
.
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The hyperplane Hi(t) was defined in (2.3). For any hyperplane H ⊂ Rd, let gH : Rd → Rd

be reflection in H. If x = (x1, . . . , xd) note that

gHi (
1
2 )(x) = (x1, . . . , xi−1, 1− xi , xi+1, . . . , xd),

gH12 (x) = (1− x2, 1− x1, x3, . . . , xd).

We now use the symmetry of D, and the invariance of W under certain isometries
of D, to deduce lower bounds for certain hitting probabilities of W . (These are higher-
dimensional analogues of the “corner” and “knight’s” moves in [BB1]). In what follows we
use qi to denote strictly positive reals which depend only on the dimension d.

Proposition 3.5 Let i, j ∈ {1, . . . , d}. Then

Px(TL j ≤ τ ) ≥ q1 > 0, for x ∈ Li .(3.4)

Proof Set T = T
(
H j(0) ∪

⋃d
k=1 Hk(1)

)
. We will actually prove that Px(WT ∈ L j) ≥ q1 for

x ∈ Li . By the symmetry of D we can take j = 1, i = 2. (If i = j the result is trivial). Fix
x ∈ L2.

Now apply Lemma 3.1 with H = H1(1/2), A =
(
H1(0) ∪

⋃d
k=1 Hk(1)

)
∩ D, B1 =

H1(0)∩D, B2 = H1(1)∩D, J1 = {x : x1 < 1/2}, J2 = {x : x1 > 1/2}. Hypotheses (3.1)(i)–
(iv) are easily verified, L2 ⊂ J1 ∩ D, and so we deduce

Px
(
WT ∈ H1(0)

)
≥ Px

(
WT ∈ H1(1)

)
.(3.5)

We now use Lemma 3.1 again, with H = H1k (k 6= 1), A as before, B1 = H1(0) ∩ D,
B2 = Hk(1) ∩ D, J1 = {x : x1 + xk < 1}, J2 = Rd − (H ∪ J1). Once again (3.1)(i)–(iv) are
easily verified, and so

Px
(
WT ∈ H1(0)

)
≥ Px

(
WT ∈ Hk(1)

)
, k 6= 1.(3.6)

Combining (3.5) and (3.6), and using that fact that

Px
(
WT ∈ H1(0)

)
+

d∑
k=1

Px
(
WT ∈ Hk(1)

)
≥ 1,

we obtain

Px
(
WT ∈ H1(0)

)
≥ (1 + d)−1.(3.7)

Now set Gn =
(
H1(0) ∩ D

)
∩
⋂n

k=2{xk ≤ 1/2}, for 2 ≤ n ≤ d. Write G1 = H1(0).
Let 1 ≤ n ≤ d − 1, set G ′n = Gn−1 − Gn, and apply Proposition 3.1 with H = Hn(1/2),
B1 = Gn, B2 = G ′n, J1 = {x : xn < 1/2}, J2 = {x : xn > 1/2}, and A as before. We deduce
that

Px(WT ∈ Gn) ≥ Px(WT ∈ G ′n).
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Figure 3: A corner move.

Figure 4: A slide.

Hence

2Px(WT ∈ Gn) ≥ Px(WT ∈ Gn) + Px(WT ∈ G ′n) ≥ Px(WT ∈ Gn−1).

Since Gd = L1,
Px(WT ∈ L1) ≥ 2−(d−1)Px

(
WT ∈ H1(0)

)
,

and this proves the proposition with q−1
1 = (1 + d)2d−1.

Remark 3.6 We call a piece of the path of W in which it moves from Li to L j a corner
move. The other kind of move we will need is from Li to Mi j , which we will call a slide.
The next few results lead up to the proof of the following.

Proposition 3.7 Let 1 ≤ i0, j0 ≤ d, with i0 6= j0. Then

Px(TMi0 j0
≤ τ ) ≥ q2 > 0, for x ∈ Li0 .

By symmetry it is sufficient to prove this in the case i0 = 1, j0 = 2. Write Λ0
i =

{0 ≤ xi ≤ 1/2}, Λ1
i = {1/2 ≤ xi ≤ 1}, and let

Kl
1 = D ∩H1(1) ∩ Λl

2, l = 0, 1,

Kl
j = D ∩H j(1) ∩ Λl

1, l = 0, 1, 2 ≤ j ≤ d,

Γ =

d⋃
i=1

Hi(1),

K = H1(0) ∩ Λ1
2 ∩ D.

(3.8)

Lemma 3.8 Px(TM12 ≤ τ ) ≥ 22−dPx(TK ≤ τ ), x ∈ L1.
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Proof Set Gd+1 = K, and let

Gn = K ∩
d⋂

i=n

Λ0
i , 1 ≤ n ≤ d.

So G3 = D ∩ H1(0) ∩ Λ1
2 ∩
⋂d

3 Λ
0
i = M12. Now let 3 ≤ n ≤ d, and apply Proposition 3.1

with H = Hn(1/2), B1 = Gn, B2 = gH(Gn), J1 = {xn ≤ 1/2}, J2 = {xn > 1/2}, and
A = Γ ∪ B1 ∪ B2 = Γ ∪ Gn+1.

We verify (3.1)(i)–(iv). (i) and (ii) are obvious, while (iii) is immediate from the ob-
servation Gn ⊂ Λ0

n ⊂ J1. To prove (3.1)(iv) let x ∈ A ∩ J1. If x ∈ B1, gH(x) ∈ B2, so
suppose x ∈ Γ. Then x ∈

⋃
i 6=n Hi(1), and so gH(x) ∈

⋃
i 6=n Hi(1). Then gH(A ∩ J1) ⊂ A,

as required. Finally, note that L1 ⊂ J1. So by (3.2),

Px(WTA ∈ Gn) ≥ Px
(
WTA ∈ gH(Gn)

)
, x ∈ L1.

Hence, since Gn+1 = Gn ∪ gH(Gn), we deduce

Px(WT(Γ∪Gn+1) ∈ Gn) ≥
1

2
Px(WT(Γ∪Gn+1) ∈ Gn+1) =

1

2
Px(TGn+1 < TΓ).

Since Px(TGn < TΓ) ≥ Px(WTΓ∪Gn+1
∈ Gn), it follows that Px(TGn < TΓ) ≥

(1/2)Px(TGn+1 < TΓ) for 3 ≤ n ≤ d, and the result follows immediately.

Lemma 3.9 Set A = K ∪
⋃d

i=1 Hi(1). For x ∈ L1,

(a) Px(WTA ∈ K) ≥ Px(WTA ∈ K0
2 ),

(b) Px(WTA ∈ K0
2 ) ≥ Px(WTA ∈ K1

2 ).

Proof These follow from Proposition 3.1 with H = H12, for (a), and with H = H1(1/2),
for (b).

Lemma 3.10 Px
(
Wτ ∈ H2(1)

)
≥ q3 > 0 for x ∈ L1.

Proof For 1 ≤ i ≤ d set

Fi = {W hits L2, L3, . . . , Ld in order before τ , and Wτ ∈ Hi(1)}.

Let F =
⋃

1≤i≤d Fi . By Proposition 3.5 Px(F) ≥ qd−1
1 . Set q4 = qd−1

1 . Now let N be

a random variable independent of (Wt , t ≥ 0) with P(N = i) = (d − 1)−1 for i ∈
{1, 3, . . . , d}.

Let Λi = {x : x2 = xi} for i 6= 2, let gi = gΛi , and define

W ∗
t =

{
Wt 0 ≤ t ≤ TΛN ,

gN (Wt ) TΛN ≤ t .
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Then W ∗ is also a RBM(D). Note that TΛN ≤ maxi 6=2 TΛi < τ on F, and that on
Fk ∩ {N = k}, W ∗

τ = gN(Wτ ) = gk(Wτ ), so that as gk : Hk(1) → H2(1), we have W ∗
τ ∈

H2(1). Therefore

Px
(
Wτ ∈ H2(1)

)
= Px

(
W ∗

τ ∈ H2(1)
)

≥ Px
(⋃

k6=2

Fk ∩ {N = k}
)

=
∑
k6=2

Px(Fk) · P(N = k)

= (d − 1)−1Px(F) ≥ (d− 1)−1q4.

Proof of Proposition 3.7 From Lemma 3.10 we have, writing A = K ∪
⋃d

i=1 Hi(1),

q3 ≤ Px
(
Wτ ∈ H2(1)

)
= Px

(
Wτ ∈ H2(1),TK < τ

)
+ Px

(
Wτ ∈ H2(1),TK = τ

)
= Px(WTA ∈ K) + Px

(
WTA ∈ H2(1)

)
.

From Lemma 3.9,

Px
(
WTA ∈ H2(1)

)
≤ Px(WTA ∈ K0

2 ) + Px(WTA ∈ K1
2 ) ≤ 2Px(WTA ∈ K).

So Proposition 3.7 follows, with q2 = q3/3.

Definition 3.11 A set A ⊂ Rd is a half-face if there exists i ∈ {1, . . . , d}, a = (a1, . . . , ad) ∈
1
2 Zd with ai ∈ Z such that

A = {x : xi = ai, a j ≤ x j ≤ a j + 1/2 for j 6= i}.

For A as above set ι(A) = i. Let A be the collection of half-faces, and set

A∗ =
⋃
{A : A ∈ A}, A∗0 =

⋃
{A ∩ B; A,B ∈ A,A 6= B}.(3.9)

Note that dim(A∗0 ) = d−2, so that A∗0 is polar for RBM(D) by Lemma 2.5 for any Lipschitz
domain D ⊂ Rd. Recall the definition of F̃0. Set

AF = {A ∈ A : A ⊂ F̃0}.

We define a graph structure on A by taking {A,B} to be an edge if

dim(A ∩ B) = d − 2, and A ∪ B ⊂ C for some C ∈ S0.(3.10)

Let E(A) be the set of edges, and let

E(AF) = {{A,B} ∈ E(A) : A,B ∈ AF}(3.11)

be the edges in the subgraph
(
AF,E(AF)

)
. Write dF for the natural graph distance on AF .

Since F̃0 is connected we deduce immediately

Lemma 3.12 The graph
(
AF,E(AF)

)
is connected.
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We will need terminology for the various types of edges in E(A). We call an edge {A,B}
an i − j corner if ι(A) = i, ι(B) = j, and i 6= j and call {A,B} an i − j slide if ι(A) =
ι(B) = i, and the line joining the centers of A and B is parallel to the x j axis. We say two
edges are of the same type if they are both i − j corners, or both i − j slides, for some pair
(i, j). Note that the move (Li , L j) is an i − j corner, and (Li ,Mi j) is an i − j slide.

Now set

A(2)
F = {(A,B) ∈ AF : ι(A) = ι(B)},

E(A(2)
F ) = {{(A,A ′), (B,B ′)} : {A,B}, {A ′,B ′} are edges

of the same type in E(AF)}.

(3.12)

The graph
(
A(2)

F ,E(A(2)
F )
)

is not connected, and this will cause us some additional trouble.

Write d(2)
F for the graph distance (with values in Z+ ∪ {+∞}) on A(2)

F .
Let gR

i : Rd → Rd be reflection in the hyperplane Hi(0), and let GR be the group gener-
ated by the gR

i ; thus GR is the set of transformations that can be obtained by a sequence of
reflections parallel to the axes. Note that GR is commutative. For n ∈ Z let S∗n be the col-
lection of cubes of side 2l−n

F with vertices in 2l−n
F Zd. For C ∈ S∗n let ψC be the translation

which maps C onto [−l−n
F , l−n

F ]
d
, and let

G(C,D) = {ψ−1
D ◦ g ◦ ψC : g ∈ G}.

For x, y ∈ Rd write x
n
∼ y if there exist C,D ∈ S∗n , and g ∈ G(C,D) such that x ∈ C ,

y ∈ D, and g(x) = y. Similarly, for A, B ∈ A write A
n
∼ B if there exist C,D ∈ S∗n , and

g ∈ G(C,D), such that g(A) = B. We write∼ for
0
∼.

Proposition 3.13 Let A, B ∈ AF, with A ∼ B. Let C0 ∈ S(F̃0) with A ⊂ C0. Suppose
B = B0,B1, . . . ,Bn = A is a chain in AF with {Bi−1,Bi} ∈ E(AF) for 1 ≤ i ≤ n. Then there
exist A0,A1, . . . ,An in AF such that

(a) {(Ai−1,Bi−1), (Ai ,Bi)} ∈ E(A(2)
F ) for 1 ≤ i ≤ n.

(b) Ai ⊂ C0 for 0 ≤ i ≤ n.
(c) Ai ∼ Bi for 0 ≤ i ≤ n.
(d) (A0,B0) = (A,B), (An,Bn) = (A,A).

In particular, d(2)
F

(
(A,B), (A,A)

)
= dF(A,B).

Proof Let C1 be a cube in S0(F̃0) such that B0 ∪ B1 ⊂ C1. For i = 0, 1, let Di be the
unique cube in S∗0 containing Ci . Let A0 = A. As A0 ∼ B0, there exists g ∈ G(D0,D1)
with g(A0) = B0. If g(C0) 6= C1, then since B0 ⊂ C1 ∩ g(C0) there exists an isometry
h ∈ G(D1,D1) mapping g(C0) to C1 and preserving B0. If C1 = g(C0) take h to be the
identity. Let g ′ = h ◦ g: then g ′(A0) = B0, and g ′(C0) = C1. Set A1 = (g ′)−1(B1). Since
A1 ⊂ C0 ⊂ F̃0, A1 ∈ AF . It is clear that the edges (A0,A1), (B0,B1) in AF are of the same
type; therefore {(A0,A1), (B0,B1)} ∈ E(A(2)

F ). Also, since g ′(A1) = B1, we have A1 ∼ B1.
Continuing in this way we can construct a sequence Ai , 0 ≤ i ≤ n, in AF satisfying

conditions (a), (b), (c) above. To prove (d), note that since An ∼ Bn = A, we have An ∼ A.
However, since A and An are both contained in C0, this implies that An = A.
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This argument also proves that d(2)
F

(
(A,B), (A,A)

)
≤ dF(A,B); the reverse inequality is

evident.

Let

F̂N =
⋃

x∈Zd

(x + FN ).(3.13)

Let G ⊂ Rd be a union (finite or infinite) of cubes in S0: we will assume G is connected.
We now construct a reflecting Brownian motion on G∩ F̂N from a driving process ξ on F̂N .
We begin with a deterministic construction.

Let ξ(t), t ≥ 0 be a continuous path on F̂N with ξ(0) = z which satisfies the conditions
ξ(t) /∈ A∗0 for any t ≥ 0. Let x ∈ G ∩ F̂N with x ∼ z, and let η = (η0, η1, . . . ) ∈ {0, 1}

Z+ .
We construct from ξ and η a continuous path w(t) on F̃N , with w(0) = x.

Let Tn, n ≥ 0 be successive disjoint hits by ξ(·) on A. (We can of course take the process
X in Definition 3.2 to be deterministic.) If z /∈ A∗ then T0 > 0. Then each of z, x lies
in exactly one cube in S∗0 : call these cubes Dx, Dz, and let ψ ∈ G(Dz,Dx) be such that
ψ(z) = x. Define

w(t) = ψ
(
ξ(t)
)
, 0 ≤ t ≤ T0.

Let z ′ = ξ(T0), x ′ = w(T0); we have x ′, z ′ ∈ A∗ − A∗0 . Thus each of x ′, z ′ lies in exactly
two cubes in S0: call these cubes Sx

0, Sx
1, Sz

0, Sz
1. Using lexicographic ordering of the cubes in

S0, we can ensure these labels are uniquely specified. As x ′ ∈ G, there are two possibilities:

(i) Exactly one of Sx
0, Sx

1 is contained in G,

(ii) Sx
0, Sx

1 are both contained in G.
(3.14)

For y = x, z, i = 0, 1 let Dy
i ∈ S∗0 satisfy Sy

i ⊂ Dy
i . For i, j = 0, 1 there exists a unique

map ψi j ∈ G(Dz
i ,D

x
j ) such that ψi j(z ′) = x ′, and ψi j(Sz

i ) = Sx
j . The uniqueness is evident;

the existence is proved as in Proposition 3.13. Note that ψ0 j = ψ1 j on Sz
0 ∩ Sz

1.
(i) Let Sx

i ⊂ G, so (int Sx
1−i) ∩ G = ∅. Now define

ϕ : Sz
0 ∪ Sz

1 → Sx
i by ϕ = ψi j |Sz

j
for j = 0, 1,

and let w(t) = ϕ
(
ξ(t)
)

, T0 ≤ t ≤ T1.
(ii) For k = 0, 1 define ϕk : Sz

0 ∪ Sz
1 → Sx

0 ∪ Sx
1 by

ϕk = ψi j |Sz
j
, i = 0, 1;

here j = j(i, k) = i + k (mod 2). Set w(t) = ϕη0

(
ξ(t)
)

, T0 ≤ t ≤ T1.
Note that in either case, for each t ∈ [T0,T1], there exists i, j such that w(t) = ψi j

(
ξ(t)
)
,

so that w(t) ∼ ξ(t) for T0 ≤ t ≤ T1. (We also have w(t) ∼ ξ(t) on the initial segment
[0,T0].)

The same construction can now be repeated on each of the time intervals [Ti−1,Ti],
using, as above, the index ηi−1 to make a choice of maps each time case (ii) arises. The path
w ∈ C(R+,G ∩ F̂N ) is a function of G, ξ, η and x only; we write

w = Γ0(x,G, ξ, η).(3.15)
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We can now define a pair of Brownian motions on F̃. Recall the definition of A∗0 from
(3.9). The following theorem follows in a straightforward fashion from the properties
of Γ0.

Theorem 3.14 Let (Ω,F,Ft ,P) be a probability space carrying a reflecting Brownian motion
ξt on F̂N , and independent sequences (η1

i , i ≥ 0), (η0
i , i ≥ 0) of i.i.d. Bernoulli random

variables. Let each of Gk, k = 1, 2, be a union of cubes in S0. Suppose ξ0 = z /∈ A∗0 , and let
xk ∈ Gk ∩ F̂N , satisfy x1 ∼ x2 ∼ z. Let Ti , i ≥ 0 be successive disjoint hits by ξ on A, and
suppose that ηk

i ∈ FTi , k = 1, 2, i ≥ 0. Set

Xk
t = Γ0(xk,Gk, ξ, η

k), k = 1, 2.(3.16)

Then

(a) Xk is a RBM(Gk ∩ F̂N ), with Xk
0 = xk.

(b) Xk
t ∼ ξt for t ≥ 0.

(c) X1 and X2 are conditionally independent given ξ.
(d) If Ti(Xk), i ≥ 0 denote successive disjoint hits by Xk on A, then Ti(Xk) = Ti for i ≥ 0.

Proof Note that A∗0 is polar for ξt , so that (Ti) and Xk are well-defined. (b), (c), (d) are all
evident from the definition of Γ0.

For (a), let Sx.
j , Sz

j denote the cubes in S0 given in the construction of Γ0. Fix k. We have

Xk
t = ϕ(ξt ), 0 ≤ t ≤ T1,

where ϕ : Sz
0 ∪ Sz

1 → F̃N . In case (3.14)(ii) ϕ is an isometry between (Sz
0 ∪ Sz

1) ∩ F̂N and
(Sxk

0 ∪ Sxk
1 ) ∩ F̂N , so that Xk

t is a RBM(F̂N ) on the time interval [0,T1]. In case (3.14)(i),
if Sx1

k ⊂ F̃0, then ϕ can be written in the form ϕ = ϕ0 ◦ ϕ1, where ϕ1 is reflection in the
hyperplane containing Sxk

0 ∩ Sxk
1 , and ϕ0 is an isometry of Rd. Again, it is clear that Xt is a

RBM(F̂N ) on [0,T1].

Remark We will call a pair of processes defined in this way linked RBMs.
The next sequence of results will extend the lower bounds on the probabilities of certain

moves, given in Propositions 3.3 and 3.7, to joint moves by a pair of RBM Xk, defined
by (3.16). We begin by introducing some further notation.

Definition 3.15 Let J = {−1, 1}d, and let E( J) = {{x, y} ∈ J : |x − y| = 2}. Then(
J,E( J)

)
is the natural graph of vertices of the hypercube. For a = (a1, . . . , ad) ∈ J, let

Ca = {x ∈ [−1, 1]d : 0 ≤ xiai ≤ 1}

be the portion of [−1, 1]d that is in the orthant determined by a. For example, if d = 3 and
a = (1,−1, 1) then

Ca = [0, 1]× [−1, 0]× [0, 1].

Let J1, J2 be non-empty, connected subsets of J, and let

Di =
⋃
a∈ Ji

(Ca ∩ F̂N ), i = 1, 2.
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For e = {a, b} ∈ E( J), let

Ge = Ca ∩Cb, G =
⋃

e∈E( J)

Ge, Le = Ge ∩ [−
1

2
,

1

2
]d.

Thus Le ∈ A; for j 6= ι(Le) let Me j be the unique half face contained in Ge which is obtained
by translating Le a distance 1/2 parallel to the j-axis.

We remark that

Le ∼ L f if and only if ι(Le) = ι(L f ),

Mei ∼ M f j if and only if i = j and ι(Le) = ι(L f ).
(3.17)

Now let xk ∈ Dk, k = 1, 2, satisfy x1 ∼ x2, with xk /∈ A∗0 , let ηk, ξ, (Ft ) be as in Theo-
rem 3.14, and let

Xk = Γ0(xk,Dk, ξ, η
k), k = 1, 2,(3.18)

be a pair of linked RBMs on D1, D2, respectively. Let

τ = inf{t ≥ 0 : ξt ∈ ∂[−1, 1]d},

and let (Tn, n ≥ 0) be successive disjoint hits by ξ on H = {Ge, e ∈ E( J)} ∪ {∂[−1, 1]d}.
Note that τ = TM for some (random) M ≥ 0. Let π : [−1, 1]d → [0, 1]d be defined by
π(x1, . . . , xd) = (|x1|, . . . , |xd|). Since

π(X1
t ) = π(X2

t ) = π(ξt ), 0 ≤ t ≤ τ ,

we see that if (Tk
n, n ≥ 0, k = 1, 2) are successive disjoint hits by Xk on H, then Tk

n = Tn

for 0 ≤ n ≤ M.
We now define a number of processes associated with Xk and ξ. For n < M, let In ∈

{1, . . . , d} be such that ξTn ∈ HIn (0), and for a ∈ J let An(a) be the unique element of
J such that Ca ∩ CAn(a) ⊂ HIn (0). Set Gt = σ(ξs, s ≤ t); note that In and An(a) are GTn

measurable on {n < M}. For each 0 ≤ n < M, Xk
Tn

lies in exactly two of the cubes Ca,

while Xk
TM

lies in exactly one cube, a.s. For 1 ≤ n < M let Zk
n be the unique element of Jk

such that CZk
n
⊃ {Xk

Tn−1
,Xk

Tn
}. Choose ak such that xk ∈ Cak and let Zk

0 = ak.
Set, for n ≥ 0,

pn(a, b) = Px(Z1
n = a,Z2

n = b | GTn )1(n<M),

pk
n(a) = Px(Zk

n = a | GTn )1(n<M).
(3.19)

Lemma 3.16 pn(a, b) = p1
n(a)p2

n(b).

Proof Write F(k)
t for the natural filtration of Xk. Then Zk

n ∈ F(k)
Tn

, while {M < n} ∈

GTn . By (3.18) F(1)
t and F(2)

t are conditionally independent given GTn ; the result follows
immediately.
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Now write

V k
n(a) = 1 Jk

(
Ak

n(a)
)
, a ∈ J.(3.20)

Lemma 3.17 For a ∈ Jk,

pk
n+1(a) = 1(n+1<M)

(
pk

n(a)
(
1−V k

n(a)
)

+
1

2

(
pk

n(a) + pk
n

(
An(a)

))
V k

n(a)

)
, a.s.(3.21)

To simplify notation, in the next two proofs we will omit the superscript k from X,
pn, etc.

Proof Note first that since XTn ∈ CZn ∩ CAn(Zn), we have Zn+1 ∈ {Zn,An(Zn)}. So also
Zn ∈ {Zn+1,An(Zn+1)}, and

{Zn,An(Zn)} = {Zn+1,An(Zn+1)}, on {n + 1 < M}.(3.22)

Suppose first that An(a) /∈ Jk. Then (3.22) implies that Zn+1 = a and n + 1 < M if and
only if Zn = a, and n + 1 < M. So

1(n+1<M)

(
1−Vn(a)

)
pn+1(a) = 1(n+1<M)

(
1−Vn(a)

)
, a.s.(3.23)

Now suppose that An(a) ∈ Jk. Then to have Zn+1 = a it is necessary that XTn ∈ Ca,
while if XTn ∈ Ca then Zn+1 = a if and only if n + 1 < M and XTn+1 ∈ Ca. Since the set
Ca ∪CAn(a) is symmetric about the hyperplane HIn (0), it follows that

1(n+1<M)Vn(a)pn+1(a) = 1(n+1<M)Vn(a)
(1

2
pn(a) +

1

2
pn

(
An(a)

))
.(3.24)

Combining (3.23) and (3.24) gives (3.21).

Now let U k
n = {a : pk

n(a) > 0}, uk
n = #(U k

n), and

qk
n = 1(n<M) min{pn(a) : pn(a) > 0}.(3.25)

Lemma 3.18 For n ≥ 0, qk
n1(n<M) ≥ 2−2d

1(n<M).

Proof Note first that as p0(ak) = 1, q0 = 1. From (3.21) we have that on {n + 1 < M}

either pn+1(a) = pn(a), or pn+1(a) = 1
2

(
pn(a) + pn

(
An(a)

))
.

Suppose n + 1 < M, and Un = Un+1. Choose a ∈ Un+1 such that qn+1 = pn+1(a). If
An(a) /∈ Jk, then pn+1(a) = pn(a) ≥ qn. If An(a) ∈ Jk then pn

(
An(a)

)
> 0, since otherwise

pn+1

(
An(a)

)
= pn(a)/2 > 0, so that An(a) ∈ Un+1 −Un. Therefore

pn+1(a) ≥
1

2

(
pn(a) + pn

(
An(a)

))
≥ qn.
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So if Un = Un+1 we have qn+1 ≥ qn, on {n + 1 < M}.
If n + 1 < M, and Un 6= Un+1, we have un+1 − un ≥ 1. Again choose a such that

qn+1 = pn+1(a); since at least one of a or An(a) must be in Un we deduce qn+1 ≥ qn/2.
So, in all cases we have

qn+1 ≥ 2−(un+1−un)qn on {n + 1 < M},

and since 1 ≤ u1 ≤ un ≤ 2d, for all n, the result follows.

For the RBM(·) Xk defined above, and A1, A2 ∈ A, set

T(A1,A2) = inf{t ≥ 0 : (X1
t ,X

2
t ) ∈ (A1,A2)}.(3.26)

Given two linked processes Xk
t , k = 1, 2, we let P(x1,x2) denote the joint law of the pair

(X1
t ,X

2
t ) with Xk

t started at xk, k = 1, 2. When the starting points are clear, we just write P.
We can now give a lower bound on the probability of certain joint moves.

Theorem 3.19 There exists a constant p1 = p1(d) > 0, with the following properties. Sup-
pose for k = 1, 2, ek, fk ∈ E( J), xk ∈ Lek , x1 ∼ x2, xk /∈ A∗0 , with ι(L f1 ) = ι(L f2 ) = i, and
G fk ⊂ Dk. Then

(a) P
(
T(L f1 , L f2 ) < τ

)
≥ p1.

(b) If j 6= i, then
P
(
T(M f1 j ,M f2 j) < τ

)
≥ p1.

Proof Let ξt = π(ξt ); note that Ti , 0 ≤ i ≤ M, are also successive disjoint hits by ξ on
H. For r ≥ 1 define sets Br by Br = Hr(0) ∩ [0, 1/2]d, 1 ≤ r ≤ d, and Bkd+r = Br , for
k ≥ 1, 1 ≤ r ≤ d. Let

S0 = 0, Sr+1 = inf{t ≥ Sr : ξt ∈ Br+1}, r ≥ 1.

Thus the stopping times (S0, S1, . . . ) form a subsequence of (T0,T1, . . . ). For r ≥ 0, let Nr

be such that TNr = Sr .
Suppose that Sr < τ , and that U k

Nr
6= Jk. Then (since Jk is connected) there exists

a ∈ U k
Nr

, b ∈ Jk −U k
Nr

such that {a, b} ∈ E( J). Let j = ι(Ca ∩ Cb). If Sr+d < τ , then for

some i ∈ {0, . . . , d − 1}, ξSr+1
lies in the hyperplane H j(0), so that Ak

Nr+1
(a) = b. Hence,

by (3.21), pk
1+Nr+1

(b) > 0, so that b /∈ U k
Nr+d

. So, if Sd2d < τ we must have pk
Nd2d

(a) > 0 for
each a ∈ Jk. Therefore, by Lemmas 3.16 and 3.18,

pNm (a, b) ≥ 4−2d

on {Nm < M},(3.27)

for each a ∈ J1, b ∈ J2, and any m ≥ d2d.
Since each move from Br to Br+1 is a corner move of the type considered in Proposi-

tion 3.3, we also have from (3.4) that

Pxk (TNm < τ ) ≥ qm
1 .(3.28)
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Let d2d ≤ m ≤ (d + 1)2d be such that ι(Bm) = ι(L f1 ). Choose bk ∈ Jk such that L fk ⊂ Cbk .
Then note that Xk

TNm
∈ L fk on the event {Nm < M,Zk

Nm
= bk}, so that, using (3.27)

and (3.28),

P
(
T(L f1 , L f2 ) < τ

)
≥ P(Xk

TNm
∈ L fk ,TNm < τ )

≥ E
(

pNm (b1, b2)1(Nm<M)

)
≥ 4−2d

q(d+1)2d

1 ,

which proves (a).
To prove (b), let S ′ = inf{t ≥ Tm : ξt ∈ Mi j}. Then by Proposition 3.7

P(S ′ < τ | Tm < τ ) ≥ q2.

We have S ′ = TN ′ for some N ′ ≥ m, on {S ′ < τ}. Then Xk
TN ′
∈ M fk j on the event

{N ′ < M,Zk
N ′ = bk}, and so

P
(
T(M f1 j ,M f2 j) < τ

)
≥ P(Zk

N ′ = bk, k = 1, 2,N ′ < M)

≥ 4−2d

P(N ′ < M)

= 4−2d

P(N ′ < M | TM < τ )P(Tm < τ )

≥ 4−2d

q2qm
1 ≥ 4−2d

q2q(d+1)2d

1 ,

proving (b).

For the next result, we recall from Section 2 the definition of the cubes Dn(x) and the
stopping times σn(x).

Corollary 3.20 Let ξ, η1, η2, (Ω,F,Ft ,P) be as above, and let x1 ∼ x2, with xk /∈ A∗0 . Set
Xk = Γ0(xk, F̃N , ξ, η

k). Let xk ∈ Ak ∈ A, and let {(A1,A2), (B1,B2)} ∈ E(A(2)
F ). Then

P
(
T(B1,B2) < σ0(x1,X

1) ∧ σ0(x2,X
2)
)
≥ p1.

Proof This is immediate from (3.17) and Theorem 3.19, by mapping the cubes D0(xi) to
[−1, 1]d.

Given processes X1
t , X2

t on F̃N , set for m ∈ Z,

κm(X1,X2) = inf{t ≥ 0 : X1
t

m
∼ X2

t }.(3.29)

Theorem 3.21 Let N ≥ 0. Let x1
n
∼ x2, with xk /∈ l−n

F A∗0 , xk ∈ F̃N . There exist a pair of
process (W 1

t ,W
2
t ) on F̃N with W k

0 = xk such that

(i) W k are RBM(F̃N ), k = 1, 2.
(ii) W 1

t
n
∼W 2

t for t ≥ 0.
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(iii) Writing κm = κm(W 1,W 2) then

P
(

sup
0≤t≤κn−1

max
k=1,2
‖W k

t − xk‖∞ ≤ (1 + lF)l−n
F , κn−1 <∞

)
≥ p2 > 0(3.30)

for some p2 = p2(d, lF).

Proof By scaling, it is enough to prove the result for n = 0. Let Ak ∈ AF , Ck ∈ S1(F̃−1),
Dk ∈ S∗−1 be such that xk ∈ Ak ⊂ Ck ⊂ Dk. Then there exists g ∈ G(D1,D2) such that

g(C1) = C2. Let x ′1 = g(x1); as x ′1
−1
∼ x1 ∼ x2, we have x ′1 ∼ x2. Set A ′1 = g(A1); we also

have A ′1 ∼ A2.
The restriction of the graph

(
AF,E(AF)

)
to C2 is connected, so A ′1 and A2 are connected

by a chain A ′1 = α ′0, α
′
1, . . . , α

′
m = A2 where α ′i ⊂ C2, α ′i ∈ AF , and where m ≤ c1(d, lF).

Let C ′ ∈ S0(F̃0) be such that A2 ⊂ C ′. Then, as in Proposition 3.13, there exists Bi , 0 ≤
i ≤ m, such that Bi ⊂ C ′, Bi ∈ AF, B0 = Bm = A2, and {(α ′i ,Bi), (αi+1,Bi+1)} ∈ E(A(2)

F )

for 0 ≤ i ≤ m − 1. Set αi = g−1(α ′i ). Then {(αi ,Bi), (αi+1,Bi+1)} ∈ E(A(2)
F ) also, and

(α0,B0) = (A1,A2), (αm,Bm) =
(
g−1(A2),A2

)
, which implies that αm

−1
∼ Bm.

Let ξ, ηk, (Ft ) be as in Theorem 3.14, and let W k = Γ0(xk, F̃N , ξ, η
k). Set for i ≥ 1

S0 = 0,

Si = inf{t ≥ Si−1 : W 1
t ∈ αi and W 2

t ∈ Bi},

Ri = inf{t ≥ Si−1 : W 1
t /∈ D0(W 1

Si−1
) or W 2

t /∈ D0(W 2
Si−1

)}.

By Corollary 3.20 P(Si < Ri | FSi−1 ) ≥ p1, and therefore if G =
⋂m

i=1{Si < Ri} we
have P(G) ≥ pm

1 . Note that on the event G, W k
Si
∈ Ck, so that ‖W k

t − xk‖∞ ≤ lF + 1 for

0 ≤ t ≤ Sm. Write Yk = W k
Sm

; on G we have Y2 ∈ A2, Y1 ∈ αm = g−1(A2), so that g(Y1)

and Y2 both lie in A2. However Y1 ∼ Y2, and Y1
−1
∼ g(Y1), so that g(Y1) ∼ Y2. Hence (since

Yk /∈ A∗0 ) we have g(Y1) = Y2, so that Y1
−1
∼ Y2. Thus κ−1 ≤ Sm, and taking p2 = pc1(d,lF )

1

this proves the theorem.

The following result is used to start off the final coupling given in Theorem 3.25.

Lemma 3.22 Let n ≥ 0, and let xk ∈ F̃n, k = 1, 2. There exists a constant p3 = p3(d) > 0
and processes W k

t on F̃n with W k
0 = xk such that writing κn = κn(W 1,W 2),

(i) W k
t are RBM(F̃n), k = 1, 2,

(ii) P
(
sup0≤t≤κn

maxk ‖W k
t − xk‖∞ ≤ 2l−n

F , κn <∞
)
≥ p3.

Recalling the definition of κn from (3.29), the lemma says that W 1
t

n
∼W 2

t at time t = κn

and neither W 1
t nor W 2

t has moved too far from its starting point.

Proof By scaling it is enough to consider the case n = 0. First we note the following
property of a Brownian motion on Rd, which is connected with “reflection coupling”. Let
B = B(0, 1/4) ⊂ Rd and let y1, y2 ∈ B(0, 1/8) with y1 = −y2. Let H be the hyperplane
through 0 perpendicular to the line connecting y1, y2, and let ψ : Rd → Rd be reflection in
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H. Then if V 1
t , t ≥ 0, is a Brownian motion on Rd with V 1

0 = y1, P
(
TH(V 1) < TBc (V 1)

)
≥

c1(d) > 0. (Here c1 depends only on the dimension d.) So if V 2 = ψ(V 1), we deduce

P
(
TC (V 1,V 2) < TBc (V 1) ∧ TBc (V 2)

)
≥ c1 > 0.(3.31)

Now fix x1, x2 ∈ F̃0, and let S∗k ∈ S∗0 , Sk ∈ S0(F̃0) satisfy xk ∈ Sk ⊂ S∗k . Let g ∈ G(S∗2 , S
∗
1 )

be such that g : S2 → S1. Let zk be the center of Sk, and write Bk = B(zk, 1/8). For k = 1, 2
let U k

t , t ≥ 0 be independent RBM(F̃0) with U k
0 = xk, on a probability space (Ω,F,P). Let

θt be the standard shift operators on Ω: U k
s (θtω) = U k

s+t (ω). Let

Ak = {U
k
1 ∈ Bk, σ(xk,U

k) > 1}.

Note that on Ak we have sup0≤s≤1 ‖U
k
s − xk‖∞ ≤ 3/2. By Proposition 2.6 there exists

c2 = c2(d) > 0, (not depending on xk), such that

Pxk (Ak) ≥ c2.

Let Y1 = U 1
1 , Y2 = g(U 2

1 ). Set Z = (Y1 + Y2)/2, and let B ′ = B(Z, 1/4). On A1 ∩ A2 we
have |Yk − z1| ≤ 1/8, so that |Z − z1| ≤ 1/8, and |Z − Yk| ≤ 1/8. In particular B ′ ⊂ S1.
Let H be the hyperplane containing Z and perpendicular to the direction Y2 − Y1, and let
h : Rd → Rd be reflection in H. Set W 1 = U 1, and let Ũ 2

t = h(U 1
t ), t ≥ 0. Set

W 2
t = U 2

t 1(A1∩A2)c + 1A1∩A2

[
1[0,1](t)U 2

t + 1(1,∞)(t)g−1(Ũ 2
t )
]
.

If S = inf{t ≥ 1 : (W 1
t ,W

2
t ) /∈ S1 × S2} then W 2 is a RBM(F̃0) started at x2 for 0 ≤ t ≤ S.

It is then straightforward to extend W 2 to a RBM(F̃0) on [0,∞).
Write T ′C = TC (U 1, Ũ 2) ◦ θ1, τ ′ =

(
τB ′(U 1) ∧ τB ′(U 2)

)
◦ θ1, and let A3 = {T ′C < τ ′}.

By (3.31) we have
P(T ′C < τ ′ | A1 ∩ A2) ≥ c1,

so that, writing A = A1 ∩ A2 ∩ A3, P(A) ≥ c1c2
2. On A we have, by the definition of W 2,

that W 1
T ′C
∼ W 2

T ′C
, so that κ0 ≤ T ′C . Also, on A, maxk sup1≤t≤T ′C

‖W k
t −W k

1‖∞ ≤ 1/4, so

that maxk sup0≤t≤T ′C
‖W k

t − xk‖∞ ≤ 3/2 + 1/4 < 2.

Recall from (2.6) the definition of the exit times σr(x).

Proposition 3.23 Let N, m, n ∈ Z, m ≥ n + 3, x ∈ F̃N , and z be the center of Dn(x). Suppose
x1

m
∼ x2, xk /∈ A∗0 , and ‖xk − z‖∞ ≤ l−n

F (1− l−1
F ), k = 1, 2. Then there exist RBM(F̃N ) W k

t ,
with W k

0 = xk, such that if n0 = d2d(2lF)(m−n)d, then

P
(
TC (W 1,W 2) < σn(z,W 1) ∧ σn(z,W 2)

)
≥ pn0

1 .

Proof Suppose first that m = 0. (So |n| = −n ≥ 3.) Let xk ∈ Ak ∈ AF , and let Ck ∈ S0(F̃0)

be such that Ak ⊂ Ck. Note that in the ‖ · ‖∞ norm Ck is at least a distance l|n|−1
F − 1 ≥

l2
F − 1 ≥ lF + 1, from Dn(x)c . Hypotheses 2.1 (H1)–(H4) imply we can find a chain of

cubes in S0(F̃0) of length less than or equal to n1 = (2lF)|n|d connecting C1 and C2, and

contained in the cube center z and side 2(l|n|F − 2). If A,B ⊂ C , where C ∈ S0(F̃0), then
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certainly dF(A,B) ≤ d2d, the total number of half-faces contained in C . So we can find a
chain A1 = α0, α1, . . . , αr = A2 in AF , where r ≤ n0 = d2d(2lF)−nd, and where each αi is
a distance at least 2 from Dn(x)c .

We have A1 ∼ A2; we can therefore as in Proposition 3.13 find a chain (αi ,Bi) in A(2)
F

such that (α0,B0) = (A1,A2), (αr,Br) = (A2,A2), and each Bi ⊂ C2. Using Corol-
lary 3.20, we therefore have that if W k = Γ0(xk, F̃N , ξ, η

k), with ξ, ηk as above, then the
process (W 1,W 2) moves along the chain (αi ,Bi) with probability at least pr

1 ≥ pn0
1 . As the

half-faces in the chain are all a distance at least 2 from Dn(x)c , and since C2 ⊂ D0(x2) ⊂
Dn+3(x2), it follows that

P
(
TDn+3(x2)(W

1) < σn(z)(W 1),TC (W 1,W 2) < σ0(z,W 1) ∧ σ0(z,W 2)
)
≥ pn0

1 .(3.32)

This implies the result when m = 0; if m 6= 0, we can scale by lm
F , and replace (N,m, n) by

(N −m, 0, n−m).

The following lower bound on the probability of hitting small cubes is an essential in-
gredient in the Harnack inequality Theorem 4.3.

Corollary 3.24 Let N, n ∈ Z, x ∈ F̃N , and z be the center of Dn(x). There exists δ = δ(lF, d)
such that if y1, y2 ∈ B(z, 1

2 l−n
F ), and W is a RBM(F̃N ), then

Py1
(
σn+ j+2(y2,W ) < σn(z)

)
≥ δ j , j ≥ 1.

Proof We begin with the case j = 1. Take m = n + 3; as in the previous proof we can
suppose m = 0. Let x1 = y1, and choose x2 ∈ D0(y2) such that x1 ∼ x2, and C2 so that
C2 ⊂ D0(y2). Then (3.32) implies that, writing n1 = d2d(2lF)3d, δ = pn1

1 ,

P
(
σ0(y2) < σn(z)

)
≥ δ.

We now iterate. Write Sk = σn+k+2(y2), and let zk be the center of Dk(y2). Since WS1 ,
y2 ∈ B∞(zn+1, l

−n−1
F ), and σn+1(zn+1) ≤ σn(zn), we have

Py1
(
S2 < σn(z)

)
≥ Ey1

(
1(S1<σn(z))PWS1

(
S2 < σn+1(zn+1)

))
≥ δ2.

This gives the case j = 2, and by induction we obtain the general case.

Theorem 3.25 Let N, n ∈ Z, x0, x, y ∈ F̃N , ε > 0. There exist constants p4 = p4(d, lF) > 0,
δ = δ(ε, d, lF) > 0, and coupled RBM(F̃N ) W x

t , W y
t , with W x

0 = x, W y
0 = y, with the

following properties.

(a) If x, y ∈ Dn+2(x0), then

P
(
TC (W x,W y) < σn(x,W x) ∧ σn(x,W y)

)
> p4.(3.33)

(b) If ‖x − y‖∞ ≤ l−n
F δ, then

P
(
TC (W x,W y) < σn(x,W x) ∧ σn(x,W y)

)
> 1− ε.
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Proof By scaling it is sufficient to prove this for n = 0.
Set A∗Z =

⋃
n∈Z l−n

F A∗0 , and note that A∗Z is polar for any RBM(F̃N ); this ensures that the
various sequences of successive disjoint hits below are well-defined. Write x1 = x, x2 = y.
Let m0 ≥ 0 (to be chosen below), and let M ≥ max(N,m0). We construct processes W k

t

successively on the intervals [0, κM], [κM , κM−1], . . . , where the κ are given by (3.29), as
follows.

Suppose first that W k
t , 0 ≤ t ≤ κm = κm(W 1,W 2), k = 1, 2, have been defined. Use

Theorem 3.21 applied conditionally on σ(W k
s , s ≤ κm, k = 1, 2) to define RBM(F̃N ) Xk,m,1

t ,
t ≥ 0, such that

Xk,m,1
0 =W k

κm
, k = 1, 2,

X1,m,1
t

m
∼ X2,m,1

t , t ≥ 0,
(3.34)

and the estimate (3.30) holds. Set

Sm,1 = inf{t ≥ 0 : max
k
‖Xk,m,1

t −W k
κm
‖∞ ≥ (1 + lF)l−m

F }.

If Sm,1 > κm−1(X1,m,1,X2,m,1) we say that “trial (m, 1) succeeds”, and otherwise we say “trial
(m, 1) fails”; (3.30) implies the probability of success is at least p2. We now define W k on
an additional interval in [0,∞) by

W k
κm+t = Xk,m,1

t , 0 ≤ t ≤ Sm,1 ∧ κm−1(X1,m,1,X2,m,1).

If trial (m, 1) succeeds we have defined W k on [0, κm−1], and are ready to repeat the same
construction at level m− 1. If trial (m, 1) fails, we repeat the attempt, using Theorem 3.21
to define RBM(F̃N ), Xk,m,2

t , t ≥ 0, satisfying (3.34), (3.30), and with initial conditions

Xk,m,2
0 = Xk,m,1

Sm,1
, k = 1, 2.

Continuing in this way, we make trials (m, i), i = 1, 2, . . . at achieving coupling at level
m− 1, until one succeeds. As the probability of success (conditional on the past) is at least
p2 for each trial, we have κm−1 <∞ a.s.

We use a similar argument to define W k on the initial segment [0, κM], except that here
we use Lemma 3.22 instead of Theorem 3.21. Finally, we note that TC (W 1,W 2) = κn for
all sufficiently small n, and define W k on

[
TC (W 1,W 2),∞

)
by taking W 1

t to be a RBM(F̃n)
for t ≥ TC (W 1,W 2), and setting W 2

t =W 1
t .

Set p = min(p2, p3), and let a0, a1, . . . , aM, . . . be positive integers, to be chosen below.
Let Yi , 0 ≤ i ≤ M + 1, be the number of the trial at level i that first succeeds. From (3.30)
we have

P(Yi > r | Yi+1, . . . ,YM+1) < (1− p)r.

Let m0 ≥ 0, and let
G = {Yi ≤ ai,m0 ≤ i ≤ M + 1}.

Therefore

P(Gc) ≤
M+1∑
i=m0

(1− p)ai ,
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while on G we have

‖V k
t − xk‖∞ ≤

M+1∑
i=m0

ai(1 + lF)l−i
F , for 0 ≤ t ≤ κm0 .

Now take ai = (2lF/3)i ; then as lF ≥ 3 we have ai ≥ i, so that

P(Gc) ≤ p−1(1− p)m0 ,

while
∞∑

i=m0

ai(1 + lF)l−i
F ≤ 3(1 + lF)(2/3)m0 .

Now choose m0 to be the smallest integer such that m0 ≥ 3, 3(1 + lF)l−m0
F ≤ (2lF)−1, and

p−1(1 − p)m0 ≤ 1/2. Note that m0 depends only on d and lF . Let z be the center of the
cube D0(x). On G we have, for k = 1, 2,

‖xk − z‖∞ ≤ ‖x0 − z‖∞ + ‖xk − x0‖∞ ≤
1

2
+

3

2
l−2
F ≤

2

3
.

Therefore

sup
0≤t≤κm0

‖V k
t − z‖∞ ≤ ‖xk − z‖∞ + (2lF)−1 ≤

2

3
+ (2lF)−1 ≤ 1− l−1

F ,

so that on G, κm0 < σ(z,V 1) ∧ σ(z,V 2).
By Proposition 3.23 there exist RBM(F̃N ) U k

t , with U k
0 = V k

κm0
, such that

P
(
TC (U 1,U 2) < σ0(z,U 1) ∧ σ0(z,U 2)

)
≥ pn1

1 ,

where n1 = d2d(2lF)m0d. Now define

W k
t =

{
V k

t 0 ≤ t ≤ κm0 ,

U k
t−κm0

κm0 ≤ t ,

and let W x
t =W 1

t , W y
t =W y

t 1(t<TC ) + W x
t 1(t≥TC ). We have

P
(
TC (W x,W y) < σ0(x,W x) ∧ σ0(x,W y)

)
≥ P(G)P

(
TC (U 1,U 2) < σ0(z,U 1) ∧ σ0(z,U 2) | G

)
≥

1

2
pn1

1 = p4.

Since p4 depends only on d and lF , this proves (a).
To prove (b), we use (a) iteratively. Let m be the smallest integer divisible by 4 such

that (1 − p4)(m−5)/4 < ε, and let δ = 1
2 l−m

F . We define inductively RBM(F̃N ) W x, W y
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successively on intervals [Ti ,Ti+1], stopping times Ti , and random variables Xi = W x
Ti

,
Yi =W y

Ti
such that Yi ∈ Dm−4i(Xi).

We take X0 = x, Y0 = y; since ‖x− y‖∞ ≤ δ ≤
1
2 l−m

F , we have y ∈ Dm(x). Suppose now
W x, W y are defined on [0,Ti], and Yi ∈ Dm−4i(Xi). Apply (a) with n = m−4i−2 to obtain
RBM(F̃N ) V x,i

t , V y,i
t with V x,i

0 = Xi , V y,i
0 = Yi satisfying (3.33). Set Si = σm−4i−2(Xi ,V x,i)∧

σm−4i−2(Xi ,V y,i) and Ti
C = TC (V x,i,V y,i), and let

Ti+1 = Ti + Si ,

W z
t = V z,i

t−Ti
, Ti ≤ t ≤ Ti+1, z = x, y,

Xi+1 =W x
Ti+1
, Yi+1 =W y

Ti+1
.

Note that as V x,i
t = V y,i

t for t > Ti
C , we have W x

t =W y
t for t > TC = TC (W x,W y). If Ti

C <
Si then Yi+1 = Xi+1 ∈ Dm−4i−4(Xi+1). Otherwise we have, as Xi+1, Yi+1 ∈ Dm−4i−2(Xi),
that

‖Xi+1 − Xi‖∞ ∨ ‖Yi+1 − Yi‖∞ ≤
3

2
l−(m−4i−2)
F ,

‖Xi+1 − Yi+1‖∞ ≤ 2l−(m−4i−2)
F ≤

1

2
4l−2

F l−(m−4i−4)
F ,

(3.35)

so since 4l−2
F < 1 we have Yi+1 ∈ Dm−4(i+1)(Xi+1).

For each i, we have, by (a)

P(Ti
0 < Si | FTi ) ≥ p4.

Let H = {Ti
C < Si for some i ≤ 1

4 (m − 5)}, so that P(Hc) ≤ (1 − p4)(m−5)/4 < ε. On H
we have, using (3.35), and writing l = (m− 5)/4,

‖Xl − x‖∞ ∨ ‖Yl − y‖∞ ≤
l∑

i=0

3

2
l−m+4i+2
F

≤
3

2
l2−m
F l4(l+1)

F (l4
F − 1)

−1

≤
3

2
l2−m
F l−3

F lm−5+4
F =

3

2
l2
F <

1

6
.

So, on H, W x and W y couple before leaving D0(x), and P(H) ≥ 1− ε.

Remark 3.26 Much of the argument above only uses the symmetry of F1 with respect
to reflection in the sets Hi(1/2), which is a strictly weaker condition than Hypothesis 2.1
(H1). We do use (H1) however in the proof of Proposition 3.5, when we reflect in the
hyperplanes Hi j .

Remark 3.27 The arguments above use essentially only three properties of the Markov
process W : its continuity, the fact that W is symmetric with respect to the symmetries of
the cube, and the fact that A∗0 is polar for W . We use this in [BB6], where we couple a “cable
process” associated with the graphical pre-carpet.
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4 Uniform Harnack Inequality

In this section we use the coupling of Section 3 to prove a Harnack inequality for harmonic
functions on F̃N with constants which are independent of N . The proofs use ideas of [LR]
and [Ca]. For a function f and a Borel set A, define

OscA f = sup
A

f − inf
A

f .

Proposition 4.1 There exists θ ∈ (0, 1) independent of n and N such that if x0 ∈ F̃N , and h
is harmonic on Dn(x0) ∩ F̃N , then

OscDn+2(x0) h ≤ θOscDn(x0) h.

Proof There is nothing to prove if OscDn(x0) h is infinite, so we may suppose h is bounded
on Dn(x0). By adding a constant to h, we may suppose infDn(x0) h = 0. Let x, y ∈ Dn+2(x0)∩
F̃N , and let W x, W y be the RBM(F̃N ) given in Theorem 3.25(a). Let U = σn(x0,W x) ∧
σn(x0,W y) and TC = TC (W x,W y); by (3.33) we have

P(TC ≥ U ) ≤ 1− p4,

where p4 depends only on d and lF . Set θ = 1− p4. Since h is harmonic we have

h(x) = Eh(W x
U∧TC

)

= E
[
h(W x

TC
); TC < U

]
+ E
[
h(W x

U ); TC ≥ U
](4.1)

and similarly

h(y) = E
[
h(W y

TC
); TC < U

]
+ E
[
h(W y

U ); TC ≥ U
]
.(4.2)

Since h(W x
TC

) = h(W y
TC

), subtracting (4.2) from (4.1) gives

|h(x)− h(y)| = |E
[
h(W x

U )− h(W y
U ); TC ≥ U

]
|

≤ P(TC ≥ U ) OscDn(x0) h

≤ θOscDn(x0) h.

Theorem 4.2 There exist M and α depending only on d and lF such that if x0 ∈ F̃n and h is
harmonic in Dn(x0) ∩ F̃N , then

|h(x)− h(y)| ≤ M|x − y|αlnα
F sup

Dn(x0)
|h|, x, y ∈ Dn+2(x0).

Proof By iterating Proposition 4.1,

OscDn+2 j (x) h ≤ θOscDn+2( j−1)(x) h ≤ θ j OscDn(x) |h| ≤ 2θ j sup
Dn(x0)

|h|.(4.3)
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Let ‖x − y‖∞ = r, and choose j such that y ∈ Dn+2 j(x)− Dn+2( j+1)(x); by Lemma 2.3

3

2
l−n−2 j
F ≥ r ≥

1

2
l−n−2 j−2
F .

So c1θ
j ≥ (ln

Fr)log(1/θ)/2 log lF ≥ c2θ
j , and hence by (4.3),

|h(y)− h(x)| ≤ OscDn+2 j (x) h ≤ c3lnα
F rα sup

Dn(x0)
|h|,

where α = log(1/θ)/2 log lF .

Theorem 4.3 (Uniform Harnack Inequality) There exists c1 depending only on d and lF
such that if x0 ∈ F̃N and h is nonnegative and harmonic in Dn(x0) ∩ F̃N , then

h(x) ≤ c1h(y), x, y ∈ Dn+4(x0).(4.4)

Proof Let z be the center of Dn(x0). By looking at h + ε and then letting ε ↓ 0, we may
assume h is bounded below by a positive constant in Dn(x0). Multiplying by a constant, we
may assume infDn+4(x0) h = 1. Since F̃N is a Lipschitz domain, h is bounded and continuous
on A = B

(
z, l−n

F (1− l−1
F )
)
; we need to show that we can bound h in Dn+4(x0) by a constant

independent of n and N .
By Corollary 3.24 we have, for x ∈ A, and δ = δ(d, lF),

Py
(
TDn+ j (x) < σn(x0)

)
> δ j , j ≥ 3.

This yields an estimate on the minimum of h on Dn+ j(x); we have

1 = h(y) ≥ Ey
[
h
(
X(TDn+ j (x))

)
; TDn+ j (x) < σn(x0)

]
≥ δ j inf

Dn+ j (x)
h,

so that

inf
Dn+ j (x)

h ≤ δ− j , x ∈ A, j ≥ 3.(4.5)

Now choose M ≥ 3 so that θ−M ≥ δ−2/(δ−1−1). Let j0 = 2M−2. If x ∈ A, Dn+ j−2M(x) ⊂
Dn(x0) for j ≥ j0, and so from Proposition 4.1

OscDn+ j−2M (x) h ≥ θ−M OscDn+ j (x) h

≥
δ−2

δ−1 − 1
OscDn+ j (x) h, j ≥ j0, x ∈ A.

(4.6)

Let K = 2M + 3. Suppose there exists x ′ ∈ Dn+4(x0) such that h(x ′) ≥ δ−K− j0−2. We use
induction to construct a sequence x j , j ≥ j0 such that x j0 = x ′ and

h(x j) ≥ δ
−K− j−1,(4.7)

‖x j − z‖∞ ≤
3

2
l−n−4
F +

3

2
l−n−3
F

j∑
i= j0

l− j
F .(4.8)
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Suppose we have constructed x j0 , . . . , x j . Since by (4.8) x j ∈ A, we have by (4.5) that

inf
Dn+K+ j (x j )

h ≤ δ−K− j ,(4.9)

while by (4.7)
h(x j) ≥ δ

−K− j−1.

Hence
OscDn+K+ j (x j ) h ≥ (δ−1 − 1)δ−K− j .

By (4.6),
OscDn+K+ j−2M (x j ) h ≥ δ−K− j−2.

Since h is nonnegative, this implies that there must exist a point x j+1 ∈ Dn+ j+3(x j) such

that h(x j+1) ≥ δ−K− j−2. As ‖x j+1 − x j‖∞ ≤
3
2 l−n− j−3

F , x j+1 satisfies (4.7) and (4.8).
By induction, we therefore have a sequence x j , j ≥ j0 in A with h(x j) → ∞, which

contradicts the fact that h is bounded on A. It follows that h is bounded on Dn+4(x0) by
δ−K− j0−2.

Remark 4.4 Note that the proofs of the results in this section do not use the symmetry as-
sumption Hypothesis 2.1 (H1) directly, but only through Corollary 3.24 and Theorem 3.25.
So if F̃N is a generalized Sierpinski carpet at level N , for which F1 satisfies Hypothesis 2.1
(H2)–(H4), and in addition we know that Corollary 3.24 and Theorem 3.25 hold for F̃N ,
then all the results in this section hold for F̃N .

Remark 4.5 The proof of Theorem 1.1. is immediate from Theorem 4.3.

5 Constants and Inequalities

Constants

We define the resistance constant Rn by

R−1
n = inf

{∫
lnFFn

|∇ f |2 dx : f = 0 on x1 = 0, f = 1 on x1 = ln
F

}
.(5.1)

Thus Rn is the resistance between two opposite faces of the set lnFFn. In [McG] (see also [KZ]
and for the case d = 2 [BB3]), it is shown that there exists a constant ρF and constants c1,
c2 such that

c1ρ
n
F ≤ Rn ≤ c2ρ

n
F.(5.2)

The proof uses a subadditivity argument, which does not yield the value of ρF . We call ρF

the resistance scale factor of F, and define the time scale factor by tF = (mF)(ρF). We define
the fractal dimension, dimension of the walk, and spectral dimension of F by

d f = log mF/ log lF,

dw = log t f / log lF,

ds = 2d f /dw = 2 log mF/ log tF.

(5.3)
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d f is the Hausdorff dimension (and also the packing dimension ) of F and F̃.
Using standard shorting and cutting arguments (see [DS], and also [BB3, Prop. 5.3]) we

have the following estimates for ρF .

Proposition 5.1

(a) tF ≥ l2
F.

(b) ρF ≤ 21−dlF.

Proof (a) Note that lnFFn consists of mF sets each congruent to ln−1
F Fn−1. For 1 ≤ i ≤ lF

let ai be the number of sets congruent to ln−1
F Fn−1 contained in lnFFn ∩ {x : (i − 1)ln−1

F ≤
x1 ≤ iln−1

F }. Then
∑

ai = mF , and applying shorts on each of the sets {x1 = iln−1
F } we

have from Kirchoff ’s laws

Rn ≥ Rn−1

lF∑
i=1

a−1
i .(5.4)

Using (5.2) it follows that

ρF ≥
lF∑

i=1

a−1
i .

By Cauchy-Schwarz,

l2
F =

( lF∑
i=1

a
1
2
i a
− 1

2
i

)2
≤
( lF∑

i=1

ai

)( lF∑
i=1

a−1
i

)
= mF

( lF∑
i=1

a−1
i

)
.

(a) is now clear.
(b) Using Hypothesis 2.1 (H4) we have that the two sides {x1 = 0} and {x1 = ln

F} of lnFFn

are connected by 2d−1 disjoint blocks, each consisting of lF copies of ln−1
F Fn−1 arranged in

series. (In the case d = 3 we are considering the cubes that touch the four edges connecting
{x1 = 0} and {x1 = ln

F}). Therefore

Rn ≤ Rn−12−(d−1)lF,(5.5)

from which (b) follows immediately.

Remark 5.2 Note that while (a) is true for any GSC satisfying Hypotheses 2.1 (H1) and
(H2), (b) relies on (H4), and does not always hold for more general GSCs.

Corollary 5.3 For GSCs which satisfy Hypotheses 2.1 (H1)–(H4) the following inequalities
hold:

dw ≥ 2, ds ≤ d f < d,(5.6)

dw ≤ 1 + d f − (d− 1)(log 2/ log lF) < 1 + d f ,(5.7)

ds >
2d f

1 + d f
> 1.(5.8)
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Proof (5.6) and (5.7) are immediate from Proposition 5.1 and the definitions of d f , dw, ds.
Hypothesis 2.1 (H2) implies that mF > lF , so d f > 1, and (5.8) follows from (5.7).

Remarks 5.4 1. Note that the proof of Proposition 5.1(a) shows that tF > l2F provided
that the ai are not all equal. In fact we have a proof that strict inequality holds in Propo-
sition 5.1(a) for any GSC. However, the proof is rather longer than that given above. As a
consequence, we know that dw > 2 and ds < d f in (5.6).

2. Let 1 ≤ b ≤ a, d ≥ 2, and consider the GSC given by taking lF = a, and F1 =

F0−
(
(a− b)/2a, (a + b)/2a

)d
. So F1 is obtained by removing a central block of bd cubes of

side a−1. We denote this GSC by SC(a, b, d). We have mF = ad−bd, and the estimates (5.4)
and (5.5) give

a− b

ad−1
+

b

ad−1 − bd−1
≤ ρF ≤

a

ad−1 − bd−1
.(5.9)

In the particular case of the standard 3-dimensional SC, SC(3, 1, 3), this implies that
25/72 ≤ ρF ≤ 27/72, so that

2.0028 < dw < 2.0729, 2.8614 < ds < 2.9615.

This may be compared with the estimate

ds ≥ di =
log 26

log(26/8)
≈ 2.7642

obtained in [O1] using an isoperimetric inequality.

Processes

Let ∂aFn = {x ∈ Fn : x1∨· · ·∨xd = 1}. We let W n
t be Brownian motion on F̃n with normal

reflection on ∂F̃n. Let τW
n = inf{t : W n

t ∈ ∂aFn}. Let Gn = {x ∈ Fn : x1 ∨ · · · ∨ xd ≤
1
2}.

Then there exist c1, c2 such that for all n ≥ 0

c1(tF/l2
F)n ≤ inf

x∈Gn

ExτW
n ≤ sup

x∈Fn

ExτW
n ≤ c2(tF/l2

F)n;(5.10)

this is proved just as in [BB1, Prop. 4.2] and [BB2, Prop. 2.2 and 2.3]. We make the re-
mark that (tF/l2

F)−n is also comparable to the first eigenvalue for the Laplacian on Fn with
Dirichlet boundary conditions on ∂aFn and Neumann boundary conditions elsewhere; see
[BB2, Prop. 2.2].

Let Xn
t =W n

(
(tF/l2

F)nt
)

and let Px
n be the law of Xn

t when Xn
0 = x. We have the following

estimates on the P·n laws of σr(x) = σr(x,X).

Proposition 5.5

(a) For 0 ≤ r ≤ n, x ∈ F̃n,

c1t−r
F ≤ Ex

nσr(x) ≤ c2t−r
F .(5.11)
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(b) Let n ≥ 0. If m ≤ n and t ≥ ln−m
F /tn

F , then

Px
n(σm(x) ≤ t) ≤ c3 exp

(
−c4(t−m

F /t)1/(dw−1)
)
.(5.12)

If m ≤ n and t ≥ ln−m
F /tn

F , or if m > n and t > 0, then

Px
n

(
σm(x) ≤ t

)
≤ c5 exp

(
−c6(l2n

F /tn
F )(l−2m

F /t)
)
.(5.13)

(c) For x ∈ F̃n, λ > l−n
F ,

Px
n(sup

s≤t
|Xn

s − Xn
0 | ≥ λ) ≤ c7 exp

(
−c8(λdw/t)1/(dw−1)

)
.(5.14)

Proof As the proofs are similar to those in [BB1, Prop. 4.4] and [BB4, (3.1), Prop. 3.3 and
Theorem 3.4] we only give a sketch of the argument.

Note that (5.11) follows from (5.10) using scaling, which proves (a).
We turn to the proof of (b). It is easy to see (5.11) holds if r ≤ n + 2. By scaling we may

suppose n = 0 and r > 2. In this case, Dr(x) is a subset of the region above a Lipschitz
function. Let v(y, z) be the Green function for a RBM in F̃0 killed on exiting Dr(x). By
Corollary 3.3 of [BH] and integration,

ExσW
r (x) =

∫
F̃0

v(x, y) dy ≤ c9l−2r
F .

As in the proof of Proposition 2.5, if d ≥ 3, there exists K not depending on r such that
v(y, z) ≥ c10|y − z|2−d for y, z ∈ Dr+K(x). An integration then gives

ExσW
r (x) ≥

∫
Dr+K (x)

v(x, y) dy ≥ c11l−2r
F .

The case d = 2 is similar.
Since Xt is a time change of Wt , we then have

c12t−n
F l−2r+2n

F ≤ Ex
nσ

X
r (x) ≤ c13t−n

F l−2r+2n
F , r > n + 2.

It follows as in [BB1, Lemma 4.3] that for t ≥ 0, x ∈ F̃n,

Px
n

(
σr(x) ≤ t

)
≤ c14 + c15anrt,(5.15)

where c14 ∈ (0, 1) and anr = tn
F if r ≤ n + 2, and anr = l2r−2n

F tn
F if r > n + 2. If x(t)

is a continuous path in F̃n we call an r-crossing a segment of the path t1 ≤ s < t2 where
x(t2) ∈ ∂Dn

(
x(t1)

)
and x(s) ∈ Dn

(
x(t1)

)
for t1 ≤ s < t2. If m ≤ r then any path from

x to Dm(x)c must include at least lr−m
F /4 disjoint r-crossings. So, writing M = lr−m

F /4,
σm(x) ≥

∑M
i=1 Vi , where the Vi satisfy the bounds in (5.15). By [BB1, Lemma 1.1],

log Px
n

(
σm(x) ≤ t

)
≤ 2(anrMt/c14)1/2 −M log(1/c14).
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It therefore follows that for r ≥ m,

log Px
(
σm(x) ≤ t

)
≤ c15

[
(tr

Flr−m
F t)1/2 − lr−m

F

]
for r ≤ n + 2,(5.16)

and

log Px
(
σm(x) ≤ t

)
≤ c16

[
(l2r−2n

F tn
F lr−m

F t)1/2 − lr−m
F

]
for r > n + 2.(5.17)

The bounds in (b) then follow on choosing r to minimize the right hand sides of (5.16)
and (5.17).

(c) follows easily from (b); for a similar proof see, for example, [BB4, Theorem 3.4(b)].

Definition 5.6 Let A and B be Borel sets. For A ⊂ F̃ write ∂F̃A for the relative boundary
of A in F̃. A local isometry of F̃ is a triple (ϕ,A,B) where A,B ⊂ F̃ and ϕ is an isometry
between A and B and also between ∂F̃A and ∂F̃B. A Markov process Y = (Qx,Yt ), x ∈
F̃, t > 0, is said to be invariant with respect to the local isometries of F̃ if for every local
isometry (ϕ,A,B) and x ∈ A,

Qx
(
ϕ(Yt∧τ (A)) ∈ · , t ≥ 0

)
= Qϕ(x)(Yt∧τ (B) ∈ · , t ≥ 0).(5.18)

We will also say that Y is locally isotropic.
As in [BB1] we have the theorem

Theorem 5.7 There exists a strong Markov process X = (Px,Xt ), x ∈ F̃, t ≥ 0, with state
space F̃ such that X has a Feller transition semigroup which is µ-symmetric, X has continuous
paths, and the process X is invariant with respect to the local isometries of F̃.

As a consequence of our results on the transition densities of Xt later on, we shall see
that Xt actually has a strong Feller transition semigroup.

The proof of Theorem 5.7 is the same as that in [BB1, Sect. 6]. We briefly review the
outline of the proof and refer the reader to that paper for details. Define

U λ
n f (x) = Ex

∫ ∞
0

e−λt f (Xn
t ) dt.

By the Harnack inequality and the modulus of continuity estimates for harmonic functions
proved in Section 4 of this paper, it is not hard to see that when f is bounded and continu-
ous, then {U λ

n f }∞n=1 is equicontinuous on compact sets. By a diagonalization and limit ar-
gument, there exists a subsequence n ′ such that U λ

n ′ f converges uniformly on compacts, say
to U λ f , for all λ > 0 and f bounded and continuous. Since {Px

n ′} is tight, for each x there
exist convergent subsequences. Any limit point Px satisfies Ex

∫∞
0 e−λt f (Xt ) dt = U λ f (x)

for f bounded and continuous, from which one deduces that Px
n ′ converges. If one calls the

limit Px and lets Xt be the canonical process on F, one then can show that (Px,Xt ) has the
strong Markov property as well as the other required properties. It is then straightforward
to extend (Px,Xt ) to a process on F̃.
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Many properties of X follow almost immediately from the corresponding properties of
the Xn. Thus from Proposition 5.5 we deduce

Proposition 5.8 For r ∈ Z, t > 0,

Px
(
σr(x) ≤ t

)
≤ c1 exp

(
−c2(tr

Ft)−1/(dw−1)
)
,(5.19)

c3t−r
F ≤ Exσr(x) ≤ c4t−r

F ,(5.20)

and

Px(sup
s≤t
|Xs − X0| ≥ λ) ≤ c5 exp

(
−c6(λdw/t)1/(dw−1)

)
, λ > 0.(5.21)

We also have the weak scaling property: the PlrFx law of l−r
F X(tr

Ft) satisfies the estimates
(5.19)–(5.21).

Let Pt be the semigroup of the process Xt (acting on L2(F̃, µ)), and
(
L,D(L)

)
be the

infinitesimal generator of (Pt ). Since X is µ-symmetric, we have for f , g ∈ L2(F̃, µ),∫
f (x)Pt g(x)µ(dx) =

∫
Pt f (x)g(x)µ(dx).

By [FOT] there exists a Dirichlet form E with domain D(E) ⊂ L2(F̃, µ) associated with
the semigroup (Pt ). See [FOT, Chapter 1] for details of the relations between X, Pt and(
E,D(E)

)
; here we just note that D(L) is dense in D(E) and that

E( f , g) = −

∫
L f (x)g(x)µ(dx), f ∈ D(L), g ∈ D(E).(5.22)

If h : F̃ → R we say h is harmonic (with respect to X) if h ∈ D(L) and Lh = 0, or,
equivalently, if h(Xt ) is a local martingale.

Theorem 5.9 Let x0 ∈ F̃, n ∈ Z, and h be nonnegative and harmonic in Dn(x0) ∩ F̃. There
exist c1, c2 and α, depending only on d and lF such that

(a)

h(x) ≤ c2h(y), x, y ∈ Dn+4(x0).(5.23)

(b)

|h(x)− h(y)| ≤ c1|x − y|αlnα
F sup

Dn(x0)
|h|, x, y ∈ Dn+2(x0),(5.24)

Proof (a) By (5.19) we have that Xt leaves a point x immediately. It follows from the
symmetry of X that if x ∈ ∂Dm(0), then Px(τDm(0) > 0) > 0, and by the Blumenthal 0-1 law
this probability must be 1. This shows that if f is a continuous function on ∂Dm(0), then
f (Xσm(0)) is a continuous functional of the path except for a null set, so un(x) = Ex

n f (Xσm(0))
converges (along a subsequence) to u(x) = Ex f (Xσm(0)). By Theorem 4.3 the functions un
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satisfy (5.23) with constants independent of n, and therefore u also satisfies (5.23). This
proves the result when u is non-negative and continuous on Dn(x0)∩F̃; by a limit argument
we then obtain the result for all positive harmonic functions.

(b) This is standard using an argument of Moser [M].

Remark 5.10 By very analogous methods, we can construct a process X̂ on domains of the
form F̃ ∩Dn(x0) with normal reflection on ∂Dn(x0). We let Ŵ m

t be RBM
(
F̃0 ∩Dm(x0)

)
, set

X̂t = Ŵ m
(
(tF/l2

F)nt
)

, and proceed as in the proof of Theorem 5.7.
For use in Section 6 we note the estimates,

Px
(
σr(x, X̂) ≤ t

)
≤ c1 exp

(
−c2(tr

Ft)−1/(dw−1)
)
, t > 0, r ≥ n,(5.25)

and

Exσr(x, X̂) ≤ c3t−r
F , r ≥ n.(5.26)

Remark 5.11 Note that the process X in Theorem 5.7 is only obtained as a subsequential
limit of the processes Xn. If we had X = lim Xn then it would follow easily that X was
self-similar, that is, that the Px law of l−1

F Xt would be equal to the Px/lF law of Xt/tF
. See

Section 9 for some further remarks on this point.
However, a self-similar process Yt on F̃ can be constructed as follows. By Proposition 5.1

we have ρFmF ≥ l2F , so that ρF ≥ ldFm−d
F l2−d

F ≥ l1−d
F . So F satisfies the “good borders”

hypothesis in [KZ], and we may now follow the argument of [KZ] to construct a diffusion
Yt on F̃ that is also self-similar. We refer the reader to [KZ] for details. Briefly, in that paper
En is defined to be the Dirichlet form for a graphical approximation to Y n, 1

n

∑n
j=1 E j

is shown to have subsequential limit points, and if E is one of those subsequential limit
points, it is shown that E is a closable Dirichlet form. The process Yt is then the Markov
process associated with E.

6 Transition Density Estimates

Let (Px,Wt ) be a RBM(F̃0). We have the following estimates on the transition densities
of Wt .

Proposition 6.1 Wt has continuous transition densities q(t, x, y) with respect to Lebesgue
measure µ0 on F̃0, which satisfy

q(t, x, y) = q(t, y, x) ≤ q(t, x, x)
1
2 q(t, y, y)

1
2 ,(6.1)

q(t, x, x) is nonincreasing in t for each x ∈ F̃0, and for each t0

q(t, x, y) ≤ c1(t0)t−d/2, 0 ≤ t ≤ t0, x, y ∈ F̃0.(6.2)

Proof Fix x, y ∈ F̃0 and select m < 0 so that x, y ∈ Dm+4(x0) ∩ F̃0. Let C be a small subset
of Dm+4(x0) ∩ F̃0 containing y. Let S1 = σm(x0), Ui = inf{t > Si : Wt ∈ Dm+2(x0)}, and
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Si+1 = inf{t > Ui : Wt /∈ Dm(x0)}. Then

Px(Wt ∈ C) = Px(Wt ∈ C, t < S1) + Px(Wt ∈ C,U1 < t < S2)

+ Px(Wt ∈ C,U2 < t < S3) + · · · .
(6.3)

If q(t, x, y) is the transition density for Wt killed on exiting Dm(x0), the first term on the
right of (6.3) is ∫

C
q(t, x, z) dz.

The second term is ∫
C

Ex

[∫ t

0
q(t − s,WU1 , z); U1 ∈ ds

]
dz.

Note that this is less than

sup
w∈∂Dm+2(x0)

sup
z∈Dm+4(x0)

sup
r≤t

q(r,w, z)Px(U1 ≤ t)µ0(C),(6.4)

and the succeeding terms of (6.3) are bounded similarly. Provided t is small enough, (5.13)
and (2.10) imply that the i-th term of (6.3) is bounded by c2ρ

it−d/2µ0(C), where ρ < 1.
Therefore Px(Wt ∈ dy) is absolutely continuous with respect to Lebesgue measure, the
density q(t, x, y) satisfies

q(t, x, z) = q(t, x, z) + Ex

[∫ t

0
q(t − s,WU1 , z); U1 ∈ ds

]
+ · · · ,(6.5)

and the series is uniformly convergent in a neighborhood of y. Since for each w we know
that q(t,w, z) is continuous in z, this implies that q(t, x, z) is continuous in z for z in a
neighborhood of y.

Taking y = x, we obtain from (6.5) that

q(t, x, x) ≤ c3t−d/2, t ≤ t1, x ∈ F̃0.(6.6)

Since q(t, x, y) <∞ for t small enough, the semigroup property shows that q(t, x, y) <∞
for all t . Letting m → −∞, (2.13) implies (6.1). Finally, (6.2) is implied by (6.6), (6.1),
and the semigroup property.

Proposition 6.2 There exist c1 and c2 such that q(t, x, y) ≥ c1t−d/2 if |x− y| ≤ c2t
1
2 , t ≤ 1.

Proof Let q(t, x, y) be the transition density for W killed on exiting F̃0 ∩ D4(x0). Let D ′

be the region above the graph of a Lipschitz function in some coordinate system such that
D ′ ∩D4(x0) = F̃0 ∩D4(x0). Let q ′(t, x, y) be the transition densities for RBM in D ′. Let Si

and Ui be defined as in Proposition 6.1, and as in (6.5),

q ′(t, x, y) = q(t, x, y) + Ex

[∫ t

0
q ′(t − s,WU1 , y); U1 ∈ ds

]
, x, y ∈ D8(x0).
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By [BH], Theorem 3.4,

q ′(t, x, y) ≥ c3t−d/2 exp(−c4|x − y|2/t), x, y ∈ D8(x0),

while [BH], Theorem 3.1 says that

q ′(t − s,w, y) ≤ c5t−d/2 exp
(
−c6|w − y|2/(t − s)

)
.

Since Px(U1 ≤ t) ≤ c7 exp(−c8/t) by (5.13) for t sufficiently small and x ∈ D8(x0), then if
we take t0 sufficiently small

q(t, x, y) ≥ c9t−d/2 exp(−c10|x − y|2/t), x, y ∈ D8(x0), t ≤ t0,

and so
q(t, x, y) ≥ c11t−d/2, x, y ∈ D8(x0), |x − y| ≤ c12t

1
2 , t ≤ t0.

The proposition now follows by repeated applications of the semigroup property.

Lemma 6.3 Let x ∈ F̃0. Then writing σ−n(x) = σ−n(x,W ),

Px
(
σ−n(x) ≤ t

)
≤ c1 exp

(
−c2(tt−n

F )−1/(dw−1)
)
, t ≥ ln

F, n ≥ 0,(6.7)

Px
(
σ−n(x) ≤ t

)
≤ c3 exp(−c4l2n

F /t), 0 ≤ t ≤ ln
F, n ∈ Z,(6.8)

Py
(
σ−n(x) ≥ t

)
≤ c5 exp(−c6tt−n

F ), t > 0, x ∈ F̃0, y ∈ D−n(x), n ≥ 0.(6.9)

Proof (6.7) and (6.8) are just restatements of (5.12) and (5.13). To prove (6.9), note first
the estimate Eyσ−n(y) ≤ c7tn

F given in (5.11). Let t0 = 2c−1
7 t2

F . Then Py
(
σ−n−2(y) >

t0tn
F

)
≤ 1

2 for y ∈ F̃0. If y ∈ D−n(x), then σ−n−2(y) ≥ σ−n(x), so Py
(
σ−n(x) > t0tn

F

)
≤ 1

2 .
Iterating and using the strong Markov property we deduce that Py

(
σ−n(x) > kt0tn

F

)
≤ 2−k

for k ≥ 1, and (6.9) follows easily.

Integrating these bounds we obtain:

Lemma 6.4

(a) There exists c1 = c1(p) such that

Eyσ−n(x)p ≤ c1t pn
F , y ∈ D−n(x), p > 0, n ≥ 0.(6.10)

(b) There exist constants c2, c3, such that

Exe−λσ−n(x) ≤ c2 exp
(
−c3(λtn

F )1/dw
)
, 0 ≤ λ ≤ 1, n ≥ 0.(6.11)

Lemma 6.5 There exists c1 such that if x0 ∈ F̃0 and A ⊂ D6(x0) then

Ey

∫ σ−n(x0)

0
1A(Ws) ds ≤ c1µ0(A)tn(1−ds/2)

F , n ≥ 0,

y ∈
(
D−n(x0)− D−n+2(x0)

)
∩ F̃0.
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Proof Let n, x0 be fixed, let qn(t, x, y) be the transition density of W killed on exiting
D−n(x0), and let v(x, y) =

∫
qn(t, x, y) dt . So

Ey

∫ σ−n(x0)

0
1A(Ws) ds =

∫
A

v(y, z)µ0(dz).(6.12)

Let z ∈ A. Then v(·, z) is harmonic on
(
D−n(x0)− {z}

)
∩ F̃0, and is zero on the boundary

of D−n(x0). Thus it is sufficient to bound (6.12) in the case y ∈ ∂D−n+2(x0). So let y0 ∈
∂D−n+2(x0) ∩ F̃0. Note that if m = −n + 3 then Dm(y0) ⊂ D−n(x0), and Dm(y0) ∩
D−n+4(x0) = ∅. So v(·, z) is harmonic on Dm(y0) and applying Theorem 4.3 in Dm(y0) we
have

v(y0, z) ≤ c2v(y, z), y ∈ Dm+2(y0).

Therefore

v(y0, z) ≤ c2µ0

(
Dm+2(y0)

)−1
∫

Dm+2(y0)
v(y, z)µ0(dy)

≤ c3m−n
F

∫
D−n(x0)

v(y, z)µ0(dy)

= c3t−nds/2
F Ezσ−n(x0) ≤ c4t−nds/2

F tn
F .

As this estimate holds for any z ∈ A, using (6.12) proves the lemma.

Lemma 6.6 Let p > 0. There exists c1 = c1(p) such that if x0 ∈ F̃0 and A ⊂ D6(x0) then

Ey

∫ σ−n(x0)

0
t p1A(Wt ) dt ≤ c1µ0(A)tn(1+p−ds/2)

F , n ≥ 0, y ∈ ∂D−n+1(x0).

Proof Fix x0 and A, and let qn(t, x, y) be the transition density of W killed on exiting
D−n(x0). Set

w(x, y) =

∫ ∞
0

qn(t, x, y)t p dt ;

note that w(x, y) = w(y, x). Set

g(y) = Ey

∫ σ−n(x0)

0
t p1A(Wt ) dt =

∫
A

w(y, z)µ0(dz).

Let y0 ∈ ∂D−n+2(x0). Then D−n+4(y0) ∩ A = ∅, and so if y ∈ D−n+4(y0), then writing
T = σ−n+4(y0), and using Lemmas 6.4 and 6.5,

g(y) = Ey

∫ σ−n(x0)

T
t p1A(Wt ) dt

≤ c2Ey

(
T pEWT

∫ σ−n(x0)

0
1A(Wt ) dt

)
+ c3Ey

(
EWT

∫ σ−n(x0)

0
t p1A(Wt ) dt

)
≤ c4µ0(A)(tn

F )p+1−ds/2 + c3Eyg(WT).

(6.13)
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Now let
h(y) = Eyg(WT).

h is harmonic on D−n+4(y0), so applying Theorem 4.3 in D−n+4(y0), we have

h(y0) ≤ c5h(y), y ∈ D−n+6(y0).

Using the definitions of g and h and the strong Markov property,

h(y) = Eyg(WT)

= EyEWT

∫ σ−n(x0)

0
t p1A(WT) dt

= Ey

∫ σ−n(x0)

T
(t − T)p1A(Wt ) dt

≤ Ey

∫ σ−n(x0)

0
t p1A(WT) dt = g(y).

We deduce that

h(y0) ≤ c5µ0

(
D−n+6(y0)

)−1
∫

D−n+6(y0)
g(y)µ0(dy)

≤ c6m−n
F

∫
D−n(y0)

∫
A

w(y, z)µ0(dz)µ0(dy)

= c6m−n
F

∫
A
µ0(dz)

∫
D−n(y0)

w(z, y)µ0(dy).

However,∫
D−n(y0)

w(z, y)µ0(dy) = Ez

∫ σ−n(x0)

0
t p dt = c7Ezσ−n(x0)p+1 ≤ c8(tn

F )1+p.

Therefore
h(y0) ≤ c9µ0(A)(tn

F )1+p−ds/2,

and using (6.13) it follows that

Ey0

∫ σ−n(x0)

0
t p1A(Wt ) dt ≤ c10µ0(A)(tn

F )1+p−ds/2(6.14)

for y0 ∈ ∂D−n+2(x0) ∩ F̃0. Now if y1 ∈ ∂D−n+1(x0), then applying (6.14) in the case n + 1
we have

Ey1

∫ σ−n(x0)

0
t p1A(Wt ) dt ≤ Ey1

∫ σ−n−1(x0)

0
t p1A(Wt ) dt

≤ c11µ0(A)(tn
F )1+p−ds/2,
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proving the lemma.

Choose p > d > ds, and for λ > 0 write

gλ,p(x, y) =

∫ ∞
0

q(t, x, y)t pe−λt dt.

Proposition 6.7 There exists c1 = c1(p) such that

gλ,p(x, x) ≤ c1λ
−p−1+ds/2, x ∈ F̃0, λ ≤ 1.

Proof (In this proof, we suppress the dependence of the constants ci on p.) Fix x ∈ F̃0, and
write σ−n = σ−n(x). Let A ⊂ D6(x), and set

V (A) = Ex

∫ ∞
0

1A(Ws)spe−λs ds

= Ex

∫ σ0

0
1A(Wt )t

pe−λt dt +
∞∑

n=0

Ex

∫ σ−n−1

σ−n

1A(Wt )t
pe−λt dt.

(6.15)

Write q(t, x, y) for the transition density of W killed at σ0(x). Then by (2.12)

q(t, x, y) ≤ c2t−d/2e−c3t , t > 0.

Therefore

Ex

∫ σ0(x)

0
1A(Wt )t

pe−λt dt =

∫
A

∫ ∞
0

q(t, x, y)t pe−λt dt µ0(dy)

≤ c2

∫
A
µ0(dy)

∫ ∞
0

t p−d/2e−c3t dt = c4µ0(A).

Write Jn for the n-th term of the sum in (6.15), and note that

Jn = Ex

(
e−λσ−n EWσ−n

∫ σ−n−1

0
1A(Wt )(σ−n + t)pe−λt dt

)
≤ c5

(
Exe−λσ−nσ

p
−nEWσ−n

∫ σ−n−1

0
1A(Wt ) dt

)
+ c5Ex

(
e−λσ−n EWσ−n

∫ σ−n−1

0
t p1A(Wt ) dt

)
.

Using the bounds in Lemmas 6.4–6.6, we therefore have

Jnµ0(A)−1 ≤ c5Ex(σp
−ne−λσ−n )tn(1−ds/2)

F + c5Ex(e−λσ−n )tn(1+p−ds/2)
F

≤ c5tn(1−ds/2)
F

((
Ex(σ2p

−n)
)1/2(

Ex(e−λσ−n )
)1/2

+ tnp
F Exe−λσ−n

)
≤ c6tn(1+p−ds/2)

F exp
(
−c7(λtn

F )1/dw
)
.
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Writing β = 1 + p − ds/2, we deduce from the calculations above that

V (A) ≤ c8µ0(A)
(

1 +
∞∑

n=0

(tβF )n exp
(
−c9(λtn

F )1/dw
))
.

Let m0 be such that tm0
F ≥ 1/λ > tm0−1

F . Then, as β > 0, the sum above is bounded by
c10µ0(A)tm0β

F . So

V (A) =

∫
A

gλ,p(x, y)µ0(dy) ≤ c11µ0(A)λ−1−p+ds/2,

and as gλ,p(x, y) is continuous, this proves the proposition.

Theorem 6.8 For x ∈ F̃0,

q(t, x, y) ≤

{
c1t−d/2, 0 < t ≤ 1,

c1t−ds/2, 1 ≤ t <∞.

Proof The bound for t ∈ (0, 1] is given by (6.2). If t ≥ 1, let λ = t−1. Since q(t, x, x) is
non-increasing in t ,

c2t1+p−ds/2 ≥ g1/t,p(x, x)

≥

∫ t

t/2
q(s, x, x)spe−s/t ds

≥ q(t, x, x)

∫ t

t/2
spe−s/t ds = c3t1+pq(t, x, x).

This proves the theorem if x = y, and the general case now follows from (6.1).

Theorem 6.9 There exist c1, . . . , c8 ∈ (0,∞) such that if x, y ∈ F̃0 and

(a) t ≥ 1, |x − y| ≤ t, then

c1t−ds/2 exp

(
−c2

(
|x − y|dw

t

)1/(dw−1)
)

≤ q(t, x, y) ≤ c3t−ds/2 exp

(
−c4

(
|x − y|dw

t

)1/(dw−1)
)

;

(6.16)

(b) if t ≥ 1, |x − y| ≥ t, or if t ≤ 1, then writing D(t) = d, t ≤ 1, D(t) = ds for t > 1,

c5t−D(t)/2 exp(−c6|x − y|2/t) ≤ q(t, x, y) ≤ c7t−D(t)/2 exp(−c8|x − y|2/t).(6.17)
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Proof The argument for the upper bounds in (a) and (b) follows that of [BB4] quite closely.
Fix x, y, t , and choose small neighborhoods Cx, Cy of x and y. Let Ax = {z ∈ F̃0 :

|x − z| ≤ |x − y|}, and define Ay similarly. Let νx = µ0|Cx , νy = µ0|Cy , and let

S = inf{t ≥ 0 : |Wt −W0| >
1

3
|x − y|}.

As µ0(Ax ∩ Ay) = 0,∫
Cy

∫
Cx

q(t, x ′, y ′)µ0(dx ′)µ0(dy ′) = Pνx (Wt ∈ C y)

= Pνx (Wt ∈ C y,Wt/2 ∈ Ax)

+ Pνx (Wt ∈ C y,Wt/2 ∈ Ay).

(6.18)

We begin with the second term in (6.18).

Pνx (Wt ∈ C y,Wt/2 ∈ Ay) = Pνx (S < t/2,Wt ∈ C y,Wt/2 ∈ Ay)

≤ Pνx (S < t/2) sup
y ′∈Ay

Py ′(Wt/2 ∈ C y)

≤ µ0(Cx) sup
x ′∈Cx

Px ′(S < t/2) sup
y ′∈Ay

Py ′(Wt/2 ∈ C y).

(6.19)

For the first term in (6.18) we have, using the symmetry of W ,

Pνx (Wt ∈ C y,Wt/2 ∈ Ax) = Pνy (Wt ∈ Cx,Wt/2 ∈ Ax),

which can be bounded in exactly the same way as (6.19). Therefore, as q is continuous it
follows from (6.18), (6.19) and (6.1) that

q(t, x, y) ≤ 2 sup
x ′

Px ′(S < t/2) sup
z

q(t/2, z, z).(6.20)

The upper bounds in (a) and (b) now follow immediately from (6.20) on using the bounds
given in Lemma 6.3 and Theorem 6.8.

We now turn to the lower bounds in (a) and (b). Using a standard chaining argument
such as in the proof of Theorem 7.4 of [BB4], these can be proved once we establish the
estimates

q(t, x, y) ≥ c9t−ds/2, |x − y| ≤ c10t1/dw , t ≥ 1,(6.21)

q(t, x, y) ≥ c11t−d/2, |x − y| ≤ c12t1/2, t ≤ 1.(6.22)

(6.22) is proved in Proposition 6.2, so we just prove (6.21).
We deduce from the upper bound (6.16) that there exists c13 such that

q(t, x, x) ≥ c13t−ds/2, x ∈ F̃0, t ≥ 1;(6.23)
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the proof is as follows (cf. Lemma 7.1 in [BB4]). By (5.19)

Px
(
σr(x) ≤ t

)
≤ c14 exp

(
−c15(tr

Ft)−1/(dw−1)
)
.

Pick a such that c14 exp(−c15a−1/(dw−1)) ≤ 1
2 and let r = [log(2a/t)/ log tF]. Then

Px
(
Ws ∈ Dr(x)

)
≥ Px

(
σr(x) > t/2

)
≥

1

2

and
µ0

(
Dr(x)

)
≤ c16m−r

F ≤ c17tds/2.

By Cauchy-Schwarz,

1/4 ≤
[

Px
(
Wt/2 ∈ Dr(x)

)]2
=

(∫
Dr(x)

q(t/2, x, y)µ0(dy)

)2

≤ µ0

(
Dr(x)

) ∫
Dr(x)

q(t/2, x, y)2 µ0(dy)

≤ µ0

(
Dr(x)

)
q(t, x, x).

(6.23) now follows immediately.
By (6.16) there exists c18 such that

q(t, x, y) ≤ c18t−ds/2, x, y ∈ F̃0.

Now fix t ≥ 1 and x ∈ F̃0. Take c19 = (c13 ∧ c18)/2 and let A = {y : q(t/2, x, y) >
c19t−ds/2}. Then

c13t−ds/2 ≤ q(t, x, x) =

∫
q(t/2, x, y)q(t/2, x, y)µ0(dy)

≤

∫
A

c18t−ds/2q(t/2, x, y)µ0(dy) +

∫
Ac

c19t−ds/2q(t/2, x, y)µ0(dy).

Therefore

c13 ≤ c18Px(Wt/2 ∈ A) + c19Px(Wt/2 ∈ Ac)

= c19 + (c18 − c19)Px(Wt/2 ∈ A).

So, if c20 = (c13 − c19)/(c18 − c19), then Px(Wt/2 ∈ A) ≥ c20.
Let ε = c20/4, and choose m such that

Py
(
σm(x) ≥ t/2

)
< ε, y ∈ Dm(x).

By (6.9) this will hold if m is chosen so that ttm
F ≥ c21 ≥ ttm−1

F , for a suitable c21. Write
D = Dm(x). As ε depends only on d and lF, by Theorem 3.25(b) there exists δ > 0,
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depending only on d and lF , such that if |x − y| ≤ δl−m
F , then there exist RBM(F̃0), W x,

W y , starting at x, y, respectively, such that

P
(
TC (W x,W y) < TD(W x) ∧ TD(W y)

)
> 1− ε.

Therefore, writing TC = TC (W x,W y),

1− ε < P
(
TC < TD(W x) ∧ TD(W y)

)
≤ P(TC ≤ t/2) + P

(
TD(W x) ≥ t/2

)
+ P
(
TD(W y) ≥ t/2

)
,

so that
P(TC ≤ t/2) ≥ 1− 3ε.

Thus

P(W y
t/2 ∈ A) ≥ P(W x

t/2 ∈ A,TC ≤ t/2)

≥ P(W x
t/2 ∈ A)− P(TC > t/2)

≥ c20 − 3ε = c20/4.

So if |x − y| ≤ δl−m
F , then

q(t, x, y) ≥

∫
A

q(t/2, x, z)q(t/2, z, y)µ0(dz)

≥ c19t−ds/2Py(Wt/2 ∈ A) ≥ c19c20t−ds/2/4.

Since l−m
F ≤ c21t1/dw and δ depends only on d and lF , the estimate (6.21) follows.

Observe that Theorem 6.9 is the same as Theorem 1.4.
For λ ≥ 0 let

vλ(x, y) =

∫ ∞
0

q(t, x, y)e−λt dt

be the λ-potential kernel density for W . Let v = v0; v is the Green function for W . Inte-
grating the bounds in Theorem 6.9 we have:

Corollary 6.10 Let ds > 2. Then

c1|x − y|d−2 ≤ v(x, y) ≤ c2|x − y|d−2 if |x − y| ≤ 1,

c3|x − y|dw−d f ≤ v(x, y) ≤ c4|x − y|dw−d f if |x − y| ≥ 1.

Recall that for n ≥ 0 the process Xn on F̃n is given by

Xn
t = l−n

F Wt(tn
F ), t ≥ 0.(6.24)
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Let pn(t, x, y) be the transition density of Xn with respect to µn. Then from (6.24) we have
the scaling relation

pn(t, x, y) = mn
Fq(tn

Ft, ln
Fx, lnF y).(6.25)

Theorem 6.9(a) therefore implies:

Corollary 6.11 There exist c1, c2, c3, c4 ∈ (0,∞) such that if n ≥ 0, x, y ∈ F̃n and t ≥ t−n
F ,

|x − y| ≤ ln(dw−1)
F t, then

c1t−ds/2 exp

(
−c2

(
|x − y|dw

t

)1/(dw−1)
)

≤ pn(t, x, y) ≤ c3t−ds/2 exp

(
−c4

(
|x − y|dw

t

)1/(dw−1)
)
.

(6.26)

Remark 6.12 Taking a limit along a subsequence shows that the density p(t, x, y) of Xt

with respect to µ exists and gives the bounds in Theorem 1.3.
Define the λ-resolvent of X by U λ f (x) = Ex

∫∞
0 e−λs f (Xs) ds for λ ≥ 0 and write U for

U 0. Set also

uλ(x, y) =

∫ ∞
0

e−λt p(t, x, y) dt,

and write u(x, y) = u0(x, y). Then uλ is the density of the U λ, and u is a Green function
for X. The following bounds for uλ(x, y) are obtained by integrating those for p(t, x, y);
in (b) and (c) below one uses Laplace’s method.

Corollary 6.13

(a) If ds > 2 then

c1|x − y|dw−d f ≤ u(x, y) ≤ c2|x − y|dw−d f , x, y ∈ F̃.(6.27)

(b) If ds < 2 then for λ > 0, x, y ∈ F̃,

c3λ
ds/2−1 exp(−c4λ

1/dw |x − y|) ≤ uλ(x, y) ≤ c5λ
ds/2−1 exp(−c6λ

1/dw |x − y|).

(c) If ds = 2 then writing r = λ1/dw |x − y|,

c7

(
log+(1/r) + e−c8r

)
≤ uλ(x, y) ≤ c9

(
log+(1/r) + e−c10r

)
.

Since there are only countably many GSCs, and (as far as we know) there is no simple
expression for ds, it is unlikely that any GSC actually satisfies case (c) above. However, we
include it for completeness.

We now show that p(t, x, y) is C∞ in t and each of the partial derivatives is Hölder
continuous in x and y. Let m < −2 be fixed and let Pt be defined on Dm(0) by

Pt f (x) = Ex
[

f (Xt ); t < σm(0)
]
.
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Let p(t, x, y) be the corresponding transition density for Xt killed on exiting Dm(0). Since
p(t, x, y) ≤ p(t, x, y), we have

p(t, x, y) ≤ c1t−ds/2, x, y ∈ Dm(0) ∩ F̃, t ≥ 0.(6.28)

Let uλ(x, y) =
∫∞

0 e−λt p(t, x, y) dt and let U
λ

be the corresponding resolvent operator.

Write U for U
0
.

Proposition 6.14

(a) There exist c1 and β not depending on m such that if f is bounded, then

|U
λ

f (x)−U
λ

f (y)| ≤ c1(1 + λ−1)|x − y|β ‖ f ‖∞, x, y ∈ Dm+2(0) ∩ F̃.

(b) U
λ

f is continuous in Dm(0) ∩ F̃ with a modulus of continuity that depends only on λ, m
and ‖ f ‖∞.

Proof (a) Let U Dn(x0) be the Green operator for Xt killed on exiting Dn(x0). If x0 ∈ Dm(0)
and Dn(x0) ∩ F̃ ⊂ Dm(0) ∩ F̃, then for bounded h

U h(x) = U Dn(x0)h(x) + ExU h(Xσn(x0)), x ∈ Dn(x0).(6.29)

The second term is harmonic in Dn+2(x0), and so by Theorem 5.9 there exist c2 and α
(independent of m) such that

|ExU h(Xσn(x0))− EyU h(Xσn(x0))| ≤ c2|x − y|αlnα
F ‖U h‖∞

if x, y ∈ Dn+2(x0). On the other hand, by (5.20),

‖U Dn(x0)h‖∞ ≤ c3t−n
F ‖h‖∞.

Taking x = x0 we therefore deduce that if n, y satisfy

Dn(x) ∩ F̃ ⊂ Dm(0) ∩ F̃, y ∈ Dn+2(x)(6.30)

then

|U h(x)−U h(y)| ≤ 2c3t−n
F ‖h‖∞ + c2|x − y|αlnα

F ‖U h‖∞,

≤ c4(‖h‖∞ + ‖U h‖∞)(t−n
F + l−n

F |x − y|α).
(6.31)

Now suppose x ∈ Dm+2(0) and |x − y| ≤ l−2
F /2. Then if n ≥ 0, (6.30) is satisfied.

Choosing n be the greatest integer less than α log |x − y|−1/
(

(α + dw) log lF
)

it follows
from (6.31) that

|U h(x)−U h(y)| ≤ c5(‖h‖∞ + ‖U h‖∞)|x − y|β,

where β = αdw(α + dw)−1.
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By the resolvent identity,

U
λ

f = U ( f − λU
λ

f ).

Set h = f − λU
λ

f ; as ‖U
λ

f ‖∞ ≤ λ−1‖ f ‖∞, we deduce ‖h‖∞ ≤ 2‖ f ‖∞. As U h = U
λ

f ,
‖U h‖∞ ≤ λ−1‖ f ‖∞, and so ‖h‖∞ + ‖U h‖∞ ≤ (2 + λ−1)‖ f ‖∞. Therefore

|U
λ

f (x)−U
λ

f (y)| ≤ c6(1 + λ−1)|x − y|β‖ f ‖∞.

Finally, if |x− y| ≤ 1 then we can find a chain x = x0, x1 · · · xk = y with |xi−1−xi | ≤ l−2
F /2

and k ≤ c7(d, lF). So, using the triangle inequality (a) follows.
(b) Let A = ∂rDm(0) be the relative boundary of Dm(0) ∩ F̃ in F̃. Write D = Dm(0) ∩

F̃ − A. If x ∈ D then there exists n0 ≥ 2 such that Dn0 (x) ∩ F̃ ⊂ D. If y ∈ Dn0+2(x) ∩ F̃ and
y 6= x choose n so that y ∈ D2n(x)− D2n+2(x). Then (6.30) holds, and so by (6.31)

|U h(x)−U h(y)| ≤ c8(‖h‖∞ + ‖U h‖∞)(t−n
F + l−nα

F )

≤ c9(‖h‖∞ + ‖U h‖∞)|x − y|γ

for some γ > 0. Thus U h is continuous on D.
We now show U h vanishes continuously on A. For n ≥ 1 set Bn =

⋃
z∈A Dn(z) ∩ F̃,

bn = supx∈Bn
|U h(x)|. Note that by (5.20) b1 ≤ c3t−m

F ‖h‖∞.
By Corollary 3.24, there exists δ depending only on lF , d such that

Px
(
Xσn(x) /∈ Dm(0)

)
≥ δ, x ∈ Bn+2.

Since U h = 0 outside Dm(0),

|U h(x)| ≤ c3t−n
F ‖h‖∞ + |ExU h(Xσn(x))|

≤ c3t−n
F ‖h‖∞ + (1− δ)bn−2, x ∈ Bn+2.

Thus
bn+2 ≤ c3t−n

F ‖h‖∞ + (1− δ)bn.

Thus bn → 0 as n → ∞. We therefore have that U h is continuous on Dm(0) ∩ F̃ with a
modulus of continuity depending on m and ‖h‖∞. Using the resolvent identity as in (a),
we obtain (b).

Proposition 6.15 There exist reals 0 ≤ λ1 ≤ λ2 ≤ · · · and bounded continuous functions
ϕi on Dm(x0) such that

(a) the only subsequential limit point of {λi} is∞;
(b) the ϕi form a complete orthonormal system for L2

(
Dm(x0), µ

)
;

(c) we have the expansion

p(t, x, y) =
∞∑
i=1

e−λi tϕi(x)ϕi(y)(6.32)

where the convergence is absolute and uniform for each t > 0.
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Proof We first show that if Pt f = 0 a.e. for f ∈ L2, then f = 0 a.e. By [FOT], Lemma 1.4.3
the semigroup (Pt ) is strongly continuous on L2(F, µ), so that ‖Pt f − f ‖2 → 0 as t ↓ 0. If
Pt f = 0, then

0 =

∫
f (Pt f ) =

∫
(Pt/2 f )(Pt/2 f ),

or Pt/2 f = 0 a.e. By induction Pt/2n f = 0 a.e., and so f = 0 a.e.
p(t, x, y) is symmetric and bounded. Since µ

(
Dm(x0)

)
<∞, then∫

Dm(x0)

∫
Dm(x0)

p(t, x, y)2 µ(dx)µ(dy) <∞.

By [RS-N], Pt is a self-adjoint completely continuous operator on L2, and by the proofs in
[Bas2, Sect. II.4], there exist ϕ̃i that form a complete orthonormal system of functions in
L2 with

p(t, x, y) =
∞∑
i=1

e−λi t ϕ̃i(x)ϕ̃i(y)

forµ2 a.e. pair (x, y). Moreover the convergence is absolute and takes place in L∞
(
Dm(x0)×

Dm(x0)
)
, and (a) holds.

Next note Pt ϕ̃i = e−λi t ϕ̃i a.e., so U
λ
ϕ̃i = (λ + λi)−1ϕ̃i a.e. Setting ϕi = (λ + λi)U

λ
ϕ̃i ,

we have ϕi = ϕ̃i a.e., while by Proposition 6.14 ϕi is continuous.
If s < t ,

eλi t Pt ϕ̃i(x) = eλi sPs(eλi (t−s)Pt−sϕ̃i)(x) = eλi sPsϕ̃i(x)

because eλi (t−s)Pt−sϕ̃i = ϕ̃i a.e. and Ps has a density. It follows that for each x and i,
eλi t Pt ϕ̃i(x) is constant in t . Writing wi(x) for eλi t Pt ϕ̃i(x),

U
λ
ϕ̃i(x) =

∫ t

0
e−λt Pt ϕ̃i(x) dt =

∫ ∞
0

e−λt e−λi t wi(x) dt = (λ + λi)
−1wi(x).

Hence
eλi t Pt ϕ̃i(x) = wi(x) = ϕi(x)

for all t and x. Since
∫
ϕ̃2

i (x)µ(dx) = 1, from Cauchy-Schwarz and Remark 6.12,

ϕi(x) = eλi t Pt ϕ̃i(x) ≤ eλi t

(∫
ϕ̃2

i (y)µ(dy)

) 1
2
(∫

Dm(x0)
p(t, x, y)2 µ(dy)

) 1
2

,

and so ϕi is bounded in x.
Let

r(t, x, y) =
∞∑
i=1

e−λi tϕi(x)ϕi(y).

As the ϕi are orthonormal, then∫
r(t/2, x, z)r(t/2, z, y)µ(dz) =

∞∑
i=1

e−λi t/2e−λi t/2ϕi(x)ϕi(y) = r(t, x, y).(6.33)
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If f =
∑

aiϕi ∈ L2, ∫
f (y)r(t, x, y)µ(dy) =

∑
e−λi t aiϕi(x),

while
Pt f (x) =

∑
aiPt ϕ̃i(x) =

∑
aie
−λi tϕi(x).

Thus r(t, x, ·) is a transition density for Pt and r(t, x, ·) = p(t, x, ·) a.e. We then have
by (6.33) that

p(t, x, y) =

∫
p(t/2, x, z)p(t/2, z, y)µ(dz)

=

∫
r(t/2, x, z)r(t/2, z, y)µ(dy)

= r(t, x, y).

From [Bas2, Sect. II.4], the sum in (6.33) is absolutely and uniformly convergent; conse-
quently p(t, x, y) = r(t, x, y) is jointly continuous in x and y.

Fix t0 > 0, write λ = t−1
0 , and let

sk(x, y) =
∞∑
i=1

(λ + λi)(−λi)
ke−λi t0ϕi(x)ϕi(y), k = 0, 1, 2, . . . ,

Sk f (x) =

∫
f (y)sk(x, y)µ(dy).

Proposition 6.16 There exist constants c1(k) independent of m such that if f ∈ L1 then

‖Sk f ‖∞ ≤ c1(k)t−k−1−ds/2
0 ‖ f ‖1.

Proof Note first that supr≥0(λ+r)rke−rt0/2 = c1(k)t−k−1
0 for some function c1(k). So, using

Cauchy-Schwarz,

|sk(x, y)| ≤
∞∑
i=1

(λ + λi)λ
k
i e−λi t0 |ϕi(x)| |ϕi(y)|,

≤
( ∞∑

i=1

(λ + λi)λ
k
i e−λi t0ϕi(x)2

)1/2( ∞∑
i=1

(λ + λi)λ
k
i e−λi t0ϕi(y)2

)1/2

≤ sup
x

(
sup

i
(λ + λi)λ

k
i e−λi t0/2

∞∑
i=1

e−λi t0/2ϕi(x)2
)

≤ c1(k)t−k−1
0 sup

x
p(t0/2, x, x)

≤ c2(k)t−k−1−ds/2
0 .
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The result is now immediate.

Let ∂t be an abbreviation for ∂/∂t and ∂k
t an abbreviation for ∂k/∂tk.

Proposition 6.17 For each k ≥ 0, t > 0, ∂k
t p(t, x, y) is continuous in x and y on Dm(0)∩ F̃.

Further there exist constants c1(k), c2(k), β, not depending on m, such that

|∂k
t p(t, x, y)| ≤ c1(k)t−k−ds/2, x, y ∈ Dm(0) ∩ F̃,(6.34)

|∂k
t p(t, x, y)− ∂k

t p(t, x ′, y)| ≤ c2(k)(1 + t)|x − x ′|βt−k−1−ds/2(6.35)

for x, x ′, y ∈ Dm(0) ∩ F̃, |x − x ′| ≤ 1.

Proof Let f (z) = p(s, z, y). Then

Pt0 f (x) =

∫
p(t0, x, z)p(s, z, y)µ(dz) = p(t0 + s, x, y).

Therefore, using the eigenvalue expansion,

∂k
t p(t0 + s, x, y) = ∂k

t Pt0 f (x) = U
λ
Sk f (x).

Thus ∂k
t p(t0 +s, x, y) is continuous on Dm(0) by Proposition 6.14(b). As ‖ f ‖1 = 1 we have,

using Proposition 6.16,

|∂k
t p(t0 + s, x, y)| ≤ ‖U

λ
Sk f ‖∞

≤ λ−1‖Sk f ‖∞

≤ λ−1c3(k)t−1−k−ds/2
0 .

If x, x ′ ∈ Dm+2(0) ∩ F̃ and |x − x ′| ≤ 1 then by Proposition 6.14(a)

|∂k
t p(t0 + s, x, y)− ∂k

t p(t0 + s, x ′, y)| ≤ |U
λ
Sk f (x)−U

λ
Sk f (x ′)|

≤ c4(1 + λ−1)|x − x ′|β‖Sk f ‖∞

≤ c5(k)(1 + t0)|x − x ′|βt−1−k−ds/2
0 .

The result follows immediately from these bounds.

Theorem 6.18 There exist constants c1(k), c2(k), depending only on k, and β > 0 such that
for x, x ′, y ∈ F̃, t > 0, k ≥ 0

|∂k
t p(t, x, y)| ≤ c1(k)t−k−ds/2.(6.36)

Writing R = |x − x ′|t−1/dw ,

|∂k
t p(t, x, y)− ∂k

t p(t, x ′, y)| ≤ c2(k) max(Rβ,Rdw )t−k−ds/2.(6.37)
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Proof As the bounds in Proposition 6.17 are independent of m it follows by the argument
of [BB4, Sect. 4], that ∂k

t p(t, x, y) is continuous and satisfies the bounds (6.34) and (6.35).
This proves (6.36).

To prove (6.37) we use weak scaling. Let X ′t = ln
FX(t/tn

F ), and let p ′(t, x, y) be the
transition density of X ′. Then p ′ also satisfies (6.34) and (6.35), and

p(t, x, y) = mn
F p ′(tn

Ft, ln
Fx, lnF y).

Write θ = ln
F ; if θ|x − x ′| ≤ 1, then using (6.35) it follows that

|∂k
t p(t, x, y)− ∂k

t p(t, x ′, y)| ≤ c3(k)(θ−dw + t)θβ |x − x ′|βt−k−1−ds/2.

Optimizing over θ ∈ {ln
F, n ∈ Z} we obtain (6.37).

Proof of Theorem 1.3 The continuity and symmetry of p(t, x, y) follow from Proposi-
tions 6.15 and 6.17, while the bounds in (1.4) follow from Corollary 6.11.

Proof of Theorem 1.2 Combine Theorem 1.3 and Theorem 5.7.

Remark 6.19 We can use the spectral theorem to obtain an expansion of p(t, ·, ·) on F̃× F̃.

Proposition 6.20 Suppose p(t, x, y) = pD0(x0)(t, x, y) is the transition density for Xt killed on

exiting D0(x0). Let t0 ∈ [1, ldF] and c1 > 0. Then there exists c2 such that p(t, x, y) ≥ c2t−ds/2
0

if |x − y| ≤ c1t1/dw

0 and x, y ∈ D2(x0).

Proof We have p(t, x, y) ≤ p(t, x, y) ≤ c3t−ds/2 by Theorem 1.3. Just as in the proof
of (6.23) there exists r > 2 such that

p(t, x, x) ≥ c4t−ds/2

provided x ∈ Dr(x0). Just as in the proof of (6.21), we have

p(t, x, y) ≥ c5t−ds/2, |x − y| ≤ c6t1/dw , x, y ∈ Dr+2(x0).

Finally we obtain our proposition by using the chaining argument in the proof of Theo-
rem 7.4 of [BB4].

Proposition 6.21 Suppose p̂(t, x, y) = p̂D0(x0)(t, x, y) is the transition density for Xt with
reflection on ∂D0(x0). There exists c1 such that

p̂(t, x, y) ≥ c1t−ds/2, t ≥ 1.

Proof The proof is very similar to that for the unreflected process. In view of (5.26), if
x ∈ Dr+2(y), then Dr+4(y) ⊆ Dr(x) and

Exσr+4(y) ≤ Exσr(x) ≤ c2t−r
F .
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If x /∈ Dr+2(y), then Exσr+4(y) = 0. Therefore,

Exσr(y) ≤ c2t−(r−4)
F ≤ c3t−r

F , x, y ∈ F.(6.38)

σr(y) is an additive functional for Xt and by (6.38) and subadditivity (see [BK]),

Exσr(y)p ≤ c4(p)t−rp
F , p ≥ 1, x, y ∈ F.(6.39)

Proceeding just as in the proofs of Lemma 6.8, Proposition 6.7, and Theorem 6.8, we deduce

p̂(t, x, y) ≤ c5t−ds/2.

Just as in the proof of (6.23),

p̂(t, x, x) ≥ c6t−ds/2, x ∈ F,

and as in the proof of (6.21),
p̂(t, x, y) ≥ c7t−ds/2

if |x − y| ≤ c8t1/dw . An application of the chaining argument of Theorem 7.4 in [BB4]
completes the proof.

7 Inequalities

In this section we apply the estimates obtained in Section 6 to deduce a number of Sobolev
and related inequalities for the processes X and W . Let U be the potential operator for
Xt , and

(
E,D(E)

)
be the Dirichlet form defined in Section 5. From [CKS] and the upper

bound p(t, x, y) ≤ c1t−ds/2 given in Theorem 1.3, we deduce immediately

Theorem 7.1 (Nash Inequality) There exists c1 such that

‖ f ‖2+4/ds

2 ≤ c1E( f , f )‖ f ‖4/ds

1 , f ∈ D(E).

Theorem 7.2 (Sobolev Inequality) Suppose ds > 2. Let q = 2ds/(ds− 2). Then there exists
c1 such that

‖ f ‖q ≤ c1E( f , f )
1
2 , f ∈ D(E).

Thus Theorem 1.5 is proved.
Recall from Remark 5.11 the construction of Brownian motion on Dn(x0)∩F̃ with reflec-

tion on the boundaries of Dn(x0). Let p̂(t, x, y) be the transition densities for this reflecting
Brownian motion. Normalized Lebesgue measure on Dn(x0) ∩ Fm is an invariant measure
for the approximating processes Xm

t , and a limit argument shows that µ|Dn(x0) is an invari-
ant measure for reflecting Brownian motion. We write EDn(x0)( f , f ) for the Dirichlet form
of this process, and let Dn,x0 be its domain. For A ∈ B(F̃) let fA = µ(A)−1

∫
A f dµ.

We now give a proof of the Poincaré inequality, modeled after the proof in [SC].

Theorem 7.3 (Poincaré Inequality) There exists c1 such that∫
Dn(x0)

| f − fDn(x0)|
2 ≤ c1l−ndw

F EDn(x0)( f , f ), f ∈ Dn,x0 .
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Proof Let t = l−ndw
F . By Proposition 6.21 and weak scaling,

p̂(t, x, y) = p̂Dn(x0)(t, x, y) ≥ c2l
nd f

F .(7.1)

Let P̂t f (x) =
∫

f (y)p̂(t, x, y)µ(dy). Since µ|Dn(x0) is an invariant measure for p̂(t, x, y),
then

∫
Dn(x0)

P̂t f (x)µ(dx) =

∫ ∫
p̂(t, x, y) f (y)1Dn(x0)(x)µ(dy)µ(dx) =

∫
Dn(x0)

f (y)µ(dy).

(7.2)

Now from (7.1), for x ∈ Dn+1(x0),

P̂t ( f − P̂t f )2(x) ≥ c2l
nd f

F

∫
Dn+1(x0)

| f − P̂t f |2 ≥ c2l
nd f

F

∫
Dn+1(x0)

| f − fDn+1(x0)|
2.

Integrating both sides over Dn+1(x0),∫
Dn+1(x0)

P̂t ( f − P̂t f )2(x)µ(dx) ≥ c3

∫
Dn+1(x0)

| f − fDn+1(x0)|
2.(7.3)

The left-hand side of (7.3) is equal to∫
Dn(x0)

P̂t ( f 2)−

∫
Dn(x0)

(P̂t f )2 =

∫
Dn(x0)

f 2 −

∫
Dn(x0)

(P̂t f )2

= −

∫ t

0

∫
Dn(x0)

∂s(P̂s f )2 µ(dy) ds

= c4tEDn(x0)( f , f ).

The conclusion of Theorem 7.3 now follows by applying the techniques of Jerison [Je].

Suppose ds > 2. For A ⊂ F̃ define C(A), the capacity of A, by

C(A) = sup{ν(A) : Uν ≤ 1}.

It is standard [FOT] that C(A) can also be defined as

C(A) = inf{E( f , f ) : f = 1 on A, f (x)→ 0 as x→∞}

if all points of ∂A ∩ F̃ are regular for Ac.

Theorem 7.4 (Mass-Capacity Inequality) Let ds > 2. Then for A ∈ B(F̃)

µ(A) ≤ c1C(A)ds/(ds−2).
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Proof Choose n ∈ Z such that m−n
F ≤ µ(A) ≤ m−n+1

F . Write µA = µ|A. Then

U (µA)(x) =

∫
A

u(x, y)µ(dy) =

∫
Dn(x)

u(x, y)µ(dy) +

∫
A−Dn(x)

u(x, y)µ(dy).(7.4)

Now µ
(
Dm(x)− Dm+1(x)

)
≤ c2m−m

F , while by Corollary 6.13 we have

u(x, y) ≤ c3(l−m
F )dw−d f = c3t−m

F mm
F , y ∈ Dn(x)c.(7.5)

Therefore ∫
Dm(x)−Dm+1(x)

u(x, y)µ(dy) ≤ c4t−m
F .

Summing over m ≥ n to bound the first term in (7.4) and using the estimate (7.5) in the
second, we deduce that

U (µA)(x) ≤ c5t−n
F + c3t−n

F mn
FµA(A)

≤ c6t−n
F ≤ c7µ(A)2/ds .

So if ν =
(
c7µ(A)2/ds

)−1
µA, then Uν ≤ 1, and therefore C(A) ≥ ν(A) = c−1

7 µ(A)1−2/ds .

We now proceed to obtain the Sobolev, mass-capacity, and Poincaré inequalities for the
pre-carpet. We start with the mass-capacity inequality. We let C0(A) denote the capacity of
A with respect to RBM(F̃0). Recall that µ0 is Lebesgue measure restricted to F̃0.

Theorem 7.5 Suppose ds > 2. There exists c1 such that if A ∈ B(F̃0) and µ0(A) ≥ 1, then

C0(A) ≥ c1µ0(A)(ds−2)/ds .

Proof This is very similar to the proof of Theorem 7.4, except that we use Corollary 6.10
instead of Corollary 6.13. Let A ⊂ F̃0, with µ0(A) ≥ 1. Then choosing n such that m−n

F ≤
µ0(A) ≤ m−n+1

F , we have n ≤ 1. Corollary 6.10 implies that∫
D0(x)

u(x, y)µ(dy) ≤ c2,

and the remainder of the proof follows that of Theorem 7.4.

Remark 7.6 Write

E0( f , f ) =
1

2

∫
F̃0

|∇ f |2 dx

for the Dirichlet form associated with W . By [FOT, Sect. 2.2], the capacity of A is equal to

inf{E0( f , f ) : f ≥ 1 on A, f → 0 as ‖x‖∞ →∞}.

We now proceed to the Sobolev inequality.

Theorem 7.7 Suppose ds > 2. Let q = ds/(ds − 2).
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(a) There exists c1 such that if f is nonnegative and r is such that µ0

(
{x : f (x) > r}

)
≥ 1,

then
‖ f ‖2q ≤ c1E0( f , f )1/2 + ‖( f − r)+‖2q.

(b) There exists c2 such that if r and s are such that µ0

(
{x : f +(x) > r}

)
≥ 1 and

µ0

(
{x : f−(x) > s}

)
≥ 1, then

‖ f ‖2q ≤ c2E0( f , f )1/2 + ‖( f + − r)+‖2q + ‖( f− − s)+‖2q.

Proof We have
‖ f ‖2q ≤ ‖ f ∧ r‖2q + ‖( f − r)+‖2q.

So if we show

‖ f ∧ r‖2q ≤ c1E0( f ∧ r,∧r)1/2,(7.6)

(a) will follow since E0( f ∧ r, f ∧ r) ≤ E0( f , f ).
We follow the proof of [Ma, pp. 110–112]. Let Φ(x, ξ) = |ξ| and p = 2; then the

(p − Φ)-capacity of Maz’ja is, using Remark 7.6, the same as our capacity. Let Nt = {x :
f (x) ∧ r > t}. By our assumption on r, Nt is either empty or µ0(Nt ) ≥ 1. So using
Theorem 7.5, µ0(Nt ) ≤ c3C0(A)q. We now obtain (a) by the proof in [Ma].

To prove (b), we write
‖ f ‖2q ≤ ‖ f +‖2q + ‖ f−‖2q

and apply (a) to f + and f−, observing that f + = −(− f ∧ 0), so

E0( f +, f +) = E0(− f ∧ 0,− f ∧ 0) ≤ E0(− f ,− f ) = E0( f , f )

and similarly for E0( f−, f−).

Remark 7.8 The Sobolev inequality for E0 is more complicated than that for E, as q(t, x, x)
behaves differently at 0 and∞. We give here two other Sobolev inequalities for E0, both of
which follow from the bounds in Theorem 6.9.

First, from [V2] we have

‖ f ‖2q ≤ c1

(
E0( f , f ) + ‖ f ‖∞

)
.(7.7)

We also have, from [Co],

‖P1 f ‖2q ≤ c2E0( f , f ).(7.8)

Here P1 can be replaced by other “regularizing” operators which smooth out short range
fluctuations in f .

From [CKS, Theorem 2.9] we have the following conditional Nash inequality for E0.

Theorem 7.9 For each c1 > 0 there exists c2 such that

‖ f ‖2+4/ds

2 ≤ c2E0( f , f )‖ f ‖4/ds

1 whenever E0( f , f ) ≤ c1‖ f ‖2
1.
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Finally we give a Poincaré inequality for F̃0. Write

E0,Dn(x0)( f , f ) =

∫
Dn(x0)∩F̃0

|∇ f (x)|2 dx.

Theorem 7.10 There exists c1 such that if x0 ∈ F̃, n ≤ 0, then∫
Dn(x0)

| f − fDn(x0)|
2 ≤ c1t−n

F E0,Dn(x0)( f , f ).

The proof is very similar to that of Theorem 7.3.
As remarked in the introduction, the bounds in Theorem 6.9 are sufficient to show

that, while (by Theorem 4.3) an elliptic Harnack inequality holds for F̃0, the usual type of
parabolic Harnack inequality fails for any GSC for which dw > 2. (See Remark 5.4.)

Let B ⊂ Rd be open, and 0 < t1 < t2 ≤ ∞. A function u = u(t, x), t ∈ (t1, t2),
x ∈ B ∩ F̃0, is parabolic on (t1, t2)× (B ∩ F̃0) if

∂u

∂t
=

1

2
∆u on (t1, t2)× (B ∩ F̃0),

and ∂u/∂n = 0 almost everywhere on B ∩ ∂F̃0. Let x ∈ F̃0, r > 0, t > 4r2, and set

Q− = [t − 4r2, t − 3r2]×
(
B(x, 2r) ∩ F̃0

)
Q+ = [t − r2, t]×

(
B(x, r) ∩ F̃0

)
.

The standard parabolic Harnack inequality (see for example [FS]) would assert that if u is
parabolic and non-negative then

sup
Q−

u ≤ c1 inf
Q+

u,(7.9)

where the constant c1 is independent of x, r, t and u.

Proposition 7.11 Suppose the GSC F is such that dw > 2. Then the parabolic Harnack
inequality (7.9) fails for F̃0.

Proof Fix x ∈ F̃0, and let r > 1. Let y ∈ F̃0 be chosen so that |x − y| = r, and let
u(s, z) = q(s, y, z). Take t = 5r2. Then by (6.16)

sup
Q−

u ≥ q(r2, y, y) ≥ c1r−ds ,

while (since |x − y| = r < r2 < t)

inf
Q+

u ≤ q(5r2, x, y)

≤ c2r−ds exp
(
−c3(rdw/5r2)1/(dw−1)

)
= c2r−ds exp(−c4r(dw−2)/(dw−1)).
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Taking r sufficiently large, (7.9) fails.

We can, however, give a different form for a parabolic Harnack inequality for F̃0. Let
x ∈ F̃0, r > 1, t > 4rdw , let n be such that l−n

F ≤ r < l−n+1
F , and set

R− = [t − 4rdw , t − 3rdw ]×
(
Dn(x) ∩ F̃0

)
,

R+ = [t − rdw , t]×
(
Dn+2(x) ∩ F̃0

)
.

Let 0 ≤ t1 < t − 4rdw < t < t2, and B ⊂ Rd be an open set with Dn(x) ⊂ B. Let u be
non-negative and parabolic on (t1, t2)× (B ∩ F̃0).

Theorem 7.12 There exists a constant c1, independent of x, r, t, u such that

sup
R−

u ≤ c1 inf
R+

u.(7.10)

The proof follows from the estimates on q(t, x, y) in Theorem 6.9 by the same argument
as that used in [FS].

We now discuss the functions in D(E) in a little more detail. If f ∈ D(E) then by [FOT,
Lemma 1.3.4]

E( f , f ) = lim
t↓0

Et ( f , f ),

where
Et ( f , f ) = t−1

(
(I − Pt ) f , f

)
.

Set

Γt ( f )(x) = (2t)−1

∫
pt (x, y)

(
f (x)− f (y)

)2
µ(dy).

Then ∫
Γt ( f )(x)µ(dx) =

1

2
t−1

∫ ∫
pt (x, y)

(
f (x)− f (y)

)2
µ(dy)µ(dx)

= t−1

∫ ∫
f (x)pt (x, y)

(
f (x)− f (y)

)
µ(dy)µ(dx)

= Et ( f , f ).

Proposition 7.13 Suppose the GSC F is such that dw > 2. Let f ∈ C1(Rd), and suppose
g = f |F̃ ∈ D(E). Then g is constant.

Proof Suppose g is non-constant. Then we can find x0 ∈ F̃ such that f is approximately
linear (with non-zero gradient) in a neighbourhood of x0. It follows that we can find suffi-
ciently small constants a0, a1, a2, a3 such that whenever x ∈ B0 = B(x0, a0) and 0 < t < a1,
there exists y0 ∈ B(x, t1/dw ) such that

| f (y)− f (x)| ≥ a2t1/dw for y ∈ B(y0, a3t1/dw ).
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So, writing B1 = B(y0, a3t1/dw ), and c1, c2 for positive constants depending on the ai ,

Γt ( f )(x) ≥ (2t)−1

∫
B1

pt (x, y)
(

f (x)− f (y)
)2
µ(dy)

≥ c1t−1µ(B1)t−d f /dwt2/dw ≥ c2t(2−dw)/dw .

Hence

Et ( f , f ) ≥

∫
B0

Γt ( f )(x)µ(dx) ≥ c2µ(B0)t(2−dw)/dw .

Hence lim
t↓0

Et ( f , f ) =∞, so f /∈ D(E).

Remark 7.14 For the Sierpinski gasket, see [BP, Corollary 9.2] (or [BST, Theorem 4.4] for
an analytic proof) for an analogous result for D(L).

Remark 7.15 There are several recent papers on Sobolev inequalities and capacity on gen-
eral metric spaces (including fractals)—see, for example, [H1] and [KM]. Specialized to a
GSC F̃, Hajłasz [H1] defines the space L1,2(F̃, µ) to be the set of f : F̃ → R such that there
exists E ⊂ F̃ and g ∈ L2(F̃, µ) such that for x, y ∈ F̃ − E,

| f (x)− f (y)| ≤ |x − y|
(
g(x) + g(y)

)
.

The norm ‖ f ‖L1,2 is defined to be the infimum of ‖g‖2 for g satisfying the above.
As an example of the kind of results that can be obtained, Hajłasz proves [H1, Lemma 2]

the Poincaré inequality ∫
B
| f (x)− fB|

2 ≤ cr2‖ f ‖L1,2 ,(7.11)

where B = B(x, r) ∩ F̃. Thus this Poincaré inequality has the usual r2 scaling, rather than
the rdw scaling of Theorem 7.3.

While the relation between these two approaches is not clear to us in general, we can
remark that Hajłasz’s space L1,2(F̃, µ) is very different from D(E). For example, if f ∈
C1

K(Rd) and f0 = f |F̃ then f0 ∈ L1,2(F̃, µ), while, by Proposition 7.13, f0 ∈ D(E) only if f0

is constant.

8 Properties of the Process

In this section we list a number of properties of the processes X and W .

(a) Spectral Dimension

Let x0 be fixed and let p(t, x, y) be the transition densities of Xt killed on exiting D0(x0). By
Proposition 6.15 we may write

p(t, x, y) =
∞∑
i=1

e−λi tϕi(x)ϕi(y)
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for suitable eigenvalues λi and eigenfunctions ϕi (cf. [Bas2, Section II.4]). Just as in [BP,
pp. 618–619],

lim
λ→∞

log #{λ j : λ j ≤ λ}

logλ
= ds,

which says that ds agrees with what is known in the mathematical physics literature as the
spectral dimension.

(b) Transience, Recurrence and Regularity of Points

Let Tx = inf{t > 0 : Xt = x}.

Theorem 8.1 X is transient if and only if ds > 2. Points are regular for themselves if and only
if ds < 2. More precisely, if x, y ∈ F̃ then:

(a) if ds < 2, then Px(Ty <∞) = 1 and Px(Tx = 0) = 1,
(b) if ds = 2, then Px(Ty <∞) = 0, Px(Tx = 0) = 0, and Px(TDn(y) <∞) = 1 for all n,
(c) if ds > 2, then Px(Ty <∞) = 0, Px(Tx = 0) = 0, and Px( lim

t→∞
|Xt − y| =∞) = 1.

Proof (a) may be proved as in [BB4, Theorem 8.1].

(b) Let λ > 0. By Corollary 6.13(c) uλ(x, y) <∞ for x 6= y, while uλ(x, x) =∞ for all
x. Since uλ(Xt , y) is a non-negative Px-supermartingale, it follows that Xt cannot hit y.

Since Xt has a density, Ex
∫ σm(x0)

0 1{x}(Xs) ds ≤
∫∞

0 p(s, x, x) ds = 0, or Xt leaves {x}
immediately. By the preceding paragraph and the strong Markov property, Xt never returns
to x.

Let u(x, y) be the Green function for Xt killed on exiting D0(y). We observe that there
exist c1 and c2 such that

u(x, y) =

∫ ∞
0

p(t, x, y) dt ≥ c1

∫ 1

c2|x−y|dw

t−ds/2 dt ≥ −c3 log |x − y|, x, y ∈ D2(y).

From (2.12), Theorem 6.9, and integration we obtain u(x, y) ≤ −c4 log |x − y|. Since
u(Xt∧σn+m(y), y) is a martingale and u(x, y) = 0 if x ∈ ∂D0(y), this martingale is a time-
change of a one-dimensional Brownian motion. Since σ0(y) has finite expectation, it is
finite almost surely, and we conclude that

Plm−n
F x

(
TDn+m(y) < σ0(y)

)
→ 1 as m→ −∞.

By weak scaling, Px
(
TDn(y) < σm(y)

)
→ 1 as m→ −∞, which completes the proof of (b).

(c) The first two assertions are proved as in (b). u(Xt , y) is a nonnegative supermartin-
gale, hence it converges a.s. It is clear that the only possible limit value is 0. Therefore
|Xt | → ∞, a.s.
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(c) Modulus of Continuity

There exists c1 such that

lim
δ→0

sup
0≤s,t≤T
|s−t|≤δ

|Xt − Xs|

|s− t|1/dw
(
log(1/|s− t|)

)(dw−1)/dw
≤ c1, a.s.(8.1)

The proof is the same as that of the corresponding result for the Sierpinski gasket in [BP].

(d) Occupation Times

Proposition 8.2 Suppose ds > 2 and let

At (r) = sup
x∈F0

∫ t

0
1B(x,r)(Xs) ds.

Then there exists c1 <∞ such that

lim sup
r→0

A∞(r)

rdw log(1/r)
≤ c1.

Proof Let Ct (x, r) =
∫ t

0 1B(x,r)(Xs) ds. By Corollary 6.10

sup
y

EyC∞(x, r) ≤ sup
y

∫
B(x,r)
|z − y|dw−d f µ(dz) ≤ c2rdw .

Since Ct (x, r) is an additive functional, by subadditivity (see [BK]), there exist c3 and c4

such that
sup

y
Ey exp

(
c3C∞(x, r)/rdw

)
≤ c4.

So
Py
(
C∞(x, r) > λrdw

)
≤ c5e−c6λ.

There exist M = c7r−d balls of radius 4r such that if x ∈ [0, 1]d, then B(x, r) is contained
in one of these M balls. Then

Py
(

A∞(r) > c8 log(1/r)rdw
)
≤ c5c7r−de−c6c8 log(1/r).

If we choose c8 sufficiently large (but depending only on c6 and d), then

Py
(
A∞(r) ≥ c8 log(1/r)rdw

)
≤ r−2.

We apply this estimate for r j = 2− j , j = 1, 2, . . . . By the Borel-Cantelli lemma,

Py
(
A∞(r j) ≥ c8 log(1/r j)rdw

j i.o.
)
= 0.

Since A∞(r) increases in r as does log(1/r)rdw for r small, while log(1/2r)(2r)dw is bounded
by a constant times log(1/r)rdw , the proposition follows.
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(e) Local Times

If ds < 2, the argument of [BB4] shows Xt has a jointly continuous local time. If ds ≥ 2,
Theorem 8.1 shows that a point y is never hit, so a local time at y cannot exist.

(f) Hausdorff Dimension of the Range

Proposition 8.3 Suppose ds > 2. If R(ω) = {Xt (ω) : 0 ≤ t ≤ 1}, then with probability one
the Hausdorff dimension of R(ω) is dw.

This provides some justification for calling dw the “dimension” of the walk. (See [AO],
[RT].) If ds < 2, then the continuity of the local times of X implies that the range of Xt

includes an open subset of F, and hence the Hausdorff dimension of the range is d f .

Proof We first show the dimension of R(ω) is less than or equal to dw. Let ε > 0. By the
modulus of continuity result in (c), there exists M (depending on ω) such that

|Xt − Xs| ≤ M|s− t|1/(dw+ε)

if 0 ≤ s, t ≤ 1. Let j be an integer, δ = 1/( j + 1), and ti = iδ, i = 0, 1, . . . , j. Then the set
of balls B

(
Xti (ω),Mδ1/(dw+ε)

)
covers R(ω). We also have

j∑
i=0

(Mδ1/(dw+ε))dw+ε = Mdw+ε
j∑

i=0

δ = Mdw+ε <∞

for all j. This implies that the dimension of R(ω) does not exceed dw + ε, and since ε is
arbitrary, dim R(ω) ≤ dw.

Next we show that dim R(ω) is at least dw. By Proposition 8.2 there exists M ′ (depending
on ω) such that A1(r)(ω) ≤ M ′rdw−ε if r ≤ 1. Suppose there exists a sequence of balls
B(x1, r1),B(x2, r2), . . . that cover R(ω) with supi ri ≤

1
2 and

∑
i rdw−2ε

i ≤ 1/M ′. We have∫ 1

0
1B(xi ,ri )(Xs) ds ≤ A1(ri) ≤ M ′rdw−ε

i .

Summing over i,

1 =

∫ 1

0
1R(ω)(Xs) ds ≤ M ′

∑
i

rdw−ε
i ≤ (

1

2
)εM ′

∑
i

rdw−2ε
i ≤ (

1

2
)ε,

a contradiction. Therefore there cannot exist such a sequence of balls, and so dim R(ω) ≥
dw − 2ε. However, ε is arbitrary.

(g) Self-Intersections

By [Ro] and [FiS], Xt intersects itself if and only if∫
D1(x)

(
u1(x, y)

)2
µ(dy) <∞,
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where u1 is the 1-resolvent for Xt . Note that∫
D1(x)

(
u1(x, y)

)2
µ(dy) =

∞∑
i=1

∫
Di (x)−Di+1(x)

(
u1(x, y)

)2
µ(dy).

µ
(
Di(x)

)
≤ c1l

−id f

F and it is easy to see that µ
(
Di(x) − Di+1(x)

)
≥ c2l

−id f

F . Using the
estimates for u1(x, y), which are obtained similarly to those for u(x, y), it follows that Xt

has self-intersections if and only if

∞∑
i=1

[
(l−i

F )dw−d f
]2

l
−id f

F <∞,

that is, if 2(dw − d f ) + d f > 0, or if ds = 2d f /dw < 4.

(h) Zero-One Law

An event A is a tail event if it is in σ(Xu; u ≥ t) for all t > 0. We prove that the tail σ-field
is trivial.

Theorem 8.4 Suppose A is a tail event. Then either Px(A) is 0 for all x or else it is 1 for all x.

Proof Let ε > 0 and fix x0 ∈ F̃. By the martingale convergence theorem, Ex0 [1A | Ft ]→ 1A

almost surely as t →∞. Choose t0 large enough so that

Ex0 |Ex0 [1A | Ft0 ]− 1A| < ε.(8.2)

Write Y for Ex0 [1A | Ft0 ]. Using‘(5.21), choose M large so that

Px0 (sup
s≤t0

|Xs − x0| > Mt1/dw

0 ) < ε.(8.3)

For each t , by Theorem 6.18 we have the continuity of Pt f (x) in x with a modulus depend-
ing only on t and ‖ f ‖∞. We use scaling and choose t1 large so that

|Pt1 f (x)− Pt1 f (x0)| < ε‖ f ‖∞, |x − x0| ≤ Mt1/dw

0 .(8.4)

We note

|Px0 (A)− Ex0 (Y ; A)| = |Ex0 (1A; A)− Ex0 (Y ; A)| < ε.(8.5)

Since A is a tail event, there exists C such that A = C ◦ θt0+t1 . Let f (z) = Pz(C). By the
Markov property at time t1,

Ew(1C ◦ θt1 ) = EwEX(t1)1C = Ew f (Xt1 ) = Pt1 f (w).(8.6)
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By the Markov property at time t0 and (8.6),

Ex0 (Y ; A) = Ex0
[
Y EX(t0)(1C ◦ θt1 )

]
= Ex0

[
Y Pt1 f (Xt0 )

]
,(8.7)

while

Px0 (A) = Ex0 1A = Ex0 EX(t0)(1C ◦ θt1 ) = Ex0
[
Pt1 f (Xt0 )

]
.(8.8)

If |Xt0 − x0| ≤ Mt1/dw

0 , then |Pt1 f (Xt0 )− Pt1 f (x0)| < ε by (8.4). Since

Ex0
[
Y Pt1 f (Xt0 )

]
= Ex0

[
Y Pt1 f (Xt0 ); |Xt0 − x0| ≤ Mt1/dw

0

]
+ Ex0

[
Y Pt1 f (Xt0 ); |Xt0 − x0| > Mt1/dw

0

]
,

|Ex0
[
Y Pt1 f (Xt0 ); |Xt0 − x0| ≤ Mt1/dw

0

]
− Pt1 f (x0)Ex0 [Y ; |Xt0 − x0| ≤ Mt1/dw

0 ]| ≤ ε,

and

Ex0 [Y ; |Xt0 − x0| ≤ Mt1/dw

0 ] = Ex0Y − Ex0 [Y ; |Xt0 − x0| > Mt1/dw

0 ],

then

|Ex0
[
Y Pt1 f (Xt0 )

]
− Pt1 f (x0)Ex0Y | ≤ 3ε.(8.9)

Similarly

|Ex0 Pt1 f (Xt0 )− Pt1 f (x0)| ≤ 3ε.(8.10)

Combining (8.5), (8.7), (8.8), (8.9), and (8.10),

|Px0 (A)− Px0 (A)Ex0Y | ≤ 7ε.

Using this and (8.2),

|Px0 (A)− Px0 (A)Px0 (A)| ≤ 10ε.

Since ε is arbitrary, we deduce Px0 (A) = [Px0 (A)]2, or Px0 (A) is 0 or 1. Since Px(A) =
ExPt1 f (Xt0 ) = Pt0 (Pt1 f )(x) is continuous in x and F̃ is connected, then Px(A) is either
identically 0 or identically 1.

Remarks 8.5 1. An event A is invariant if A ◦ θt = A for all A. In particular, invariant
events are in the tail σ-field, hence trivial. It follows that there are no nonconstant bounded
harmonic functions on F̃.

2. Since we have similar estimates for the transition densities of Brownian motion on
the nested fractals, the same proof shows there is a zero-one law for (unbounded) nested
fractals as well.
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(i) Rate of Escape

Proposition 8.6 Suppose ds > 2. Then

lim inf
t→∞

|Xt − x|

t1/dw (log t)γ

equals 0 with Px probability one if γ > 1/(dw − d f ) and equals∞ with Px probability one if
γ < 1/(dw − d f ).

Proof By Corollary 6.13(a) and the fact that u(Xt , x) is a local martingale, there exist 0 <
c1 < c2 <∞ such that

c1

(
1 ∧ (r/|y − x|)dw−d f

)
≤ Py

(
Xt ever hits B(x, r)

)
≤ c2

(
1 ∧ (r/|y − x|)dw−d f

)
.

Using this, for any q > 1 and any z ∈ F̃,

Pz(|Xt − x| ≤ rn for some t > qn)

= EzPXqn (|Xt − x| ≤ rn for some t ≥ 0)

=

∫
Py(|Xt − x| ≤ rn for some t ≥ 0)Pz

(
Xqn ∈ µ(dy)

)
≤ c2

∫ (
rn

|y − x|
∧ 1

)dw−d f

p(qn, z, y)µ(dy).

Set rn = c3qn/dw (log qn)−γ . If

An = {|Xt − x| ≤ rn for some t ≥ qn},

then

Pz(An) ≤ c4(log qn)−γ(dw−d f ).(8.11)

By the Borel-Cantelli lemma we see that if γ > 1/(dw−d f ), then Px(An i.o.) = 0, no matter
what c3 is.

For the other direction

Px(|Xt − x| ≤ rn for some t ∈ [qn, qn+1]) = ExPXqn (|Xt − x| ≤ rn for some t ≥ 0)

− ExPXqn+1 (|Xt − x| ≤ rn for some t ≥ 0).

Let rn = c5qn/dw (log qn)−γ . As above, the second term on the right is bounded by

c6(log qn)−γ(dw−d f )q−1/dw .
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On the other hand, the first term on the right is bounded below by

∫
Py(|Xt − x| ≤ rn for some t ≥ 0)p(qn, x, y)µ(dy) ≥ c7(log qn)−γ(dw−d f ).

Set Bn = {|Xt − x| ≤ rn for some t ∈ [qn, qn+1]}. Then provided q is sufficiently large,

Px(Bn) ≥ c8(log qn)−γ(dw−d f ).(8.12)

If γ < 1/(dw − d f ), then
∑

Px(Bn) =∞.

Let ε > 0. If j ≥ i + 2, then

Px(Bi ∩ B j) = Ex
[

PX(qi+1)(|Xt − x| ≤ r j for some t ∈ [q j − qi+1, q j+1 − qi+1]); Bi

]
≤ Ex

[
sup

y
Py(|Xt − x| ≤ r j for some t ≥ q j − qi+1); Bi

]
.

As in the proof of (8.11), the right hand side is at most c9Px(Bi)(log q j)−γ(dw−d f ). Us-
ing (8.12), this in turn is bounded by c10Px(Bi)Px(B j), so

Px(Bi ∩ B j) ≤ c10Px(Bi)Px(B j).

By a Borel-Cantelli lemma for dependent events (see, e.g., [Bas2, Prop. II.5.14]),
Px(Bn i.o.) > 0. The result now follows from Theorem 8.4, the zero-one law.

(j) Process on the Pre-Carpet

The properties of X above which relate to large scale behavior of the process have analogues
for the process W on F̃0, with almost identical proofs. We summarize some of them in the
following theorem.

Theorem 8.7

(a) If ds ≤ 2 then Px(TW
Dn(y) < ∞) = 1 for all x, y ∈ F̃0, so that W is neighborhood-

recurrent.
(b) If ds > 2 then W is transient, and

lim inf
t→∞

|Wt − x|

t1/dw (log t)γ

equals 0 with probability one if γ > 1/(dw − d f ) and equals∞ with probability one if
γ < 1/(dw − d f ).

(c) The tail σ-field for W is trivial.
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9 Examples and Open Problems

Examples

We have already, in Example 5.4, defined the the carpet SC(a, b, d), where a, b, d are inte-
gers, d ≥ 2, and 1 ≤ b < a. Note that the symmetry assumption Hypothesis 2.1 (H1)
implies that a = b (mod 2), and that therefore b ≤ a − 2. Recall that for SC(a, b, d),
mF = ad − bd, and that

a− b

ad−1
+

b

ad−1 − bd−1
≤ ρF ≤

a

ad−1 − bd−1
.(9.1)

Since bd−1 ≤ (a−2)d−1 < (a−2)ad−2 = ad−1−2ad−2, we have ρF <
1
2 a3−d. In particular

ρF < 1 whenever d > 2, so that SC(a, b, d) is transient for all d ≥ 3. (This generalizes a
result of Zhou [Z]). This result is not surprising, since all these spaces contain a copy of R2

+.
SC(a, b, 2) is recurrent by Corollary 5.3, since ds ≤ d f < 2.

To obtain a GSC in dimension 3 for which the processes W or X are recurrent, we need
to ensure that F̃ does not contain a copy of R2

+. Take d = 3, let 1 ≤ b ≤ a − 2, write
Iab =

(
(a− b)/2a, (a + b)/2a

)
, let α(x) =

∑3
i=1 1Iab (xi), and let

F1 = {x ∈ F0 : α(x) ≤ 1}.

Call the resulting GSC a Menger Sponge (see [Man, p. 134]) or MS(a, b). For the basic
MS(3, 1), F1 consists of F0 with the central cube and the 6 adjacent cubes removed. (See
[Man, p. 145] for an excellent picture.) Note that mF = a3−

(
b3 +3b2(a−b)

)
. Using shorts

and cuts, as in Proposition 5.1, we can easily estimate ρF for these sets: we obtain

a− b

a2 − b2
+

b

(a− b)2
≤ ρF ≤

a

(a− b)2
.(9.2)

In particular, for MS(3, 1) we have 1
2 ≤ ρF ≤ 3/4, so that MS(3, 1) is transient. However,

if a = 6 and b = 4 then we have 11/10 ≤ ρF ≤ 3/2, so that MS(6, 4) is recurrent. On the
other hand, as mF = 56, we have d f = log 56/ log 6 ≈ 2.25 > 2, so the family of Menger
Sponges includes sets with Hausdorff dimension greater than 2, but spectral dimension less
than 2.

Open Problems

We conclude this paper with some open questions concerning these processes. (See also the
problems in [Bas3].)

1. Spectral Dimension Of the three “dimensions” mentioned in this paper, d f , dw, and ds,
the first is given explicitly in terms of lF and mF . The other two are defined in terms of the
resistance exponent ρF , which we only know how to define as a limit:

log ρF = lim
n→∞

log Rn

n
.
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Is there a more explicit equation which defines ρF? S. R. S. Varadhan has asked if ρF could
be defined by some kind of variational equation.

2. Uniqueness There are two different kinds of uniqueness we can consider. The first
relates to the construction of X and its law Px given here. In Section 5 we stated that the set
of laws of the approximating processes {Px

n, n ≥ 0} was weakly compact, and so has limit
points. Can one show that Px

n converges weakly to Px, that is, that the limit is unique? If so,
then one would immediately have that the resulting process was self-similar.

A second kind of uniqueness is given by our conjecture that the process constructed
in this paper is (up to a deterministic time change) the unique symmetric diffusion on X
which is locally isotropic. (For an analogous theorem for the Sierpinski gasket see [BP].)
If we knew this, then any two limit points of Px

n could differ only by a deterministic time
change, and also, more significantly, we would know that any other construction of a sym-
metric locally isotropic diffusion on F̃ (such as the one given in [KZ] using random walks)
would lead to essentially the same process.

We remark here that Osada [O2] has recently defined a diffusion Z = (Qx,Zt ) on F
which is not equal in law to X and does not satisfy (5.18), but which does satisfy a more
limited kind of invariance under local isometries. Let S1, S2 ∈ Sn, write Ai = int(Si), and
suppose that ϕ is an isometry between S1 ∩ F and S2 ∩ F. Then for x ∈ A1 ∩ F one has

Qx
(
ϕ(Zt∧τ (A1)) ∈ · , t ≥ 0

)
= Qϕ(x)(Zt∧τ (A2) ∈ · , t ≥ 0).(9.3)

The key difference between (9.3) and (5.18) is that in (9.3) the processes are stopped on
hitting the boundary of the cubes Si .

This example shows that the definition of “locally isotropic” is quite sensitive.
See [Sa] and [Me] for some uniqueness results in the finitely ramified case.

3. Continuity of Harmonic Functions Let x0 ∈ F̃ and set D = Dn(x0)∩ F̃, D ′ = Dn+2(x0).
Let h be non-negative and harmonic in D. Then we know by Theorem 4.2 that there exists
α > 0 such that h is Hölder continuous of order α in D ′. What is the correct Hölder
exponent for h? The constant α given in Theorem 4.2 comes from the Harnack inequality,
so would not be a good estimate. If ds < 2 then the estimates of Section 4 of [BB3] imply
that h is Hölder continuous of order dw − d f . Even here, though, we do not know if that is
best possible.

References
[AO] S. Alexander and R. Orbach, Density of states on fractals: “fractons”. J. Physique (Paris) Lett. 43(1982),

L625–L631.
[A] D. G. Aronson, Bounds on the fundamental solution of a parabolic equation. Bull. Amer. Math. Soc.

73(1967), 890-896.
[Bar1] M. T. Barlow, Diffusions on fractals. Lectures on Probability Theory and Statistics, École d’Été de
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