Today's Plan

- Integral as area under a curve
- Riemann Sums (approximation and definition of the definite integral)
- Ch 2 in the notes
- Properties of the integral (Ch 5.2)

If \(f \) is a positive continuous function then \(\int_a^b f(x) \, dx \) "definite integral of \(f \) from \(a \) to \(b \)" is the area under the graph of \(f \) e.g. between the graph of \(f \) and the \(x \)-axis.

Ex: \(f(x) = \begin{cases} x + 2 & -2 \leq x < 0 \\ \frac{1}{\sqrt{-x^2 + 1}} & 0 \leq x < 1 \end{cases} \)

The circle \((x, y)\) is \(x^2 + y^2 = 1 \).

\[
\int_{-2}^{1} f(x) \, dx = \int_{-2}^{-1} (x + 2) \, dx + \int_{0}^{1} 1 \, dx + \int_{0}^{1} \frac{1}{\sqrt{-x^2 + 1}} \, dx
\]

\[
= \left[\frac{1}{2} x^2 + 2x \right]_{-2}^{-1} + 1 + \int_{0}^{1} \frac{1}{\sqrt{-x^2 + 1}} \, dx
\]

\[
= \frac{1}{2} + 1 + \frac{\pi}{4}
\]
Area is \(\int_a^b f(x) \, dx \)
Riemann Sum Approximation

- Approximate the area by a sum of areas of rectangles

1. \(f(x) = x \), 4 segments

\[
\int_{0}^{1} f(x) \, dx \approx \frac{1}{4}(\frac{1}{4}) + \frac{1}{4}(\frac{1}{2}) + \frac{1}{4}(\frac{3}{4}) + \frac{1}{4}(1) \\
= \frac{1}{16}[1 + 2 + 3 + 4] = \frac{10}{16} = \frac{5}{8}
\]

For \(N \) segments

\(\Delta x = \frac{1}{N} \)

- Label the points

\(b = 0, \quad x_1 = \frac{1}{N}, \quad x_2 = \frac{2}{N}, \ldots, \quad x_N = \frac{N}{N} = 1 \)

\(x_i = \frac{i}{N} \)

- The height of the \(i^{th} \) rectangle is

\(f(x_i) = x_i \) [for right endpoint Riemann Sums]
\[f(x) = x \]

\[\Delta x = \frac{1}{4} \]

\[X_0 \ x_1 \ x_2 \ x_3 \ x_4 \]

\[X_{N-1} \]

\[\Delta x = \frac{1}{N} \]
\[\int_0^1 f(x) \, dx \leq \sum_{i=1}^{N} f(x_i) \Delta x \]

\[\sum_{i=1}^{N} \frac{1}{N} = \frac{1}{N} \sum_{i=1}^{N} i = \frac{1}{N} \frac{N(N+1)}{2} \]

\[= \frac{N^2 + N}{2N^2} = \frac{1}{2} + \frac{1}{2N} \]

Riemann's definition of the integral is

\[\int_0^1 f(x) \, dx = \lim_{N \to \infty} \sum_{i=1}^{N} f(x_i) \Delta x \]

where \(\Delta x = \frac{1}{N} \)

\[x_i = \frac{i}{N} \]

\[= \lim_{N \to \infty} \sum_{i=1}^{N} f\left(\frac{i}{N} \right) \left(\frac{1}{N} \right) \]
Ex: \(f(x) = e^x \)

The \(N^{th} \) Right-Riemann sum is

\[
\sum_{i=1}^{N} e^{in \left(\frac{1}{N} \right)} = \sum_{i=1}^{N} e^{\frac{in}{N}} \left(\frac{1}{N} \right)
\]

\[
= \frac{1}{N} \sum_{i=1}^{N} (e^{in})^j
\]

Shift to \(j = i - 1 \)

\[
= \frac{1}{N} \sum_{j=0}^{N-1} (e^{in})^j
\]

\[
= \frac{e^{in}}{N} \left[1 - (e^{in})^{N-1} \right]
\]

\[
= \frac{1}{N} \left(\frac{1 - e^{in}}{1 - e^{in/N}} \right)
\]

Use L'Hopital's (Taylor expansion) \(e^{-x} = 1 - x + R(x) \) Remainder

\[
\lim_{N \to \infty} \frac{1}{N} \left(\frac{1 - e}{1 - e^{1/N}} \right) = \lim_{N \to \infty} \frac{(1-e)}{-1 + NR(\frac{1}{N})} = e - 1
\]
Taylor Series (and L'Hopital's rule)

Approximating a function \(f(x) \) for small values of \(x \)

Thm: If \(f \) is continuously differentiable at \(x=0 \) then \(f(x) = f(0) + f'(0)x + R(x) \)

where \(\lim_{x \to 0} \frac{R(x)}{x} = 0 \) \(\tag{3} \)

This useful to calculate limits

\[
\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \left[\frac{f(0) + f'(0)x + R(x)}{x} \right]
\]

if \(f(0) = 0 \)

and \(f \) is cont. diff

\[
= \lim_{x \to 0} f'(0) + \frac{R(x)}{x}
\]

\[
= f'(0)
\]

L'Hopital: If \(f \) and \(g \) are cont. diff, \(f(0) = g(0) = 0 \)

\[
\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \frac{f'(0)}{g'(0)} \quad \text{and} \quad g'(0) \neq 0
\]
$f(x) = e^x$

$\ell(x) = f(0) + f'(0) x$
\[
\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f(0) + f'(0)x + R_1(x)}{g(0) + g'(0)x + R_2(x)}
\]

\[
= \lim_{x \to 0} \frac{f'(0) + \frac{R_1(x)}{x}}{g'(0) + \frac{R_2(x)}{x}}
\]

Since the limit exists on the top and bottom (Taylor's theorem) and the bottom is non-zero, then

\[
= \frac{f'(0)}{g'(0)}
\]
General Domain Riemann Sum

\[\int_{a}^{b} f(x) \, dx = \lim_{N \to \infty} \sum_{i=1}^{N} f(x_i) \Delta x \]

where \(\Delta x = \frac{b-a}{N} \)

and \(x_i = a + i \Delta x \)

\[x_0 = a \Delta x \]

N times \(\Delta x \) is the total width \(b-a \)

\[\Delta x = \frac{b-a}{N} \]

\[x_i = a + i \Delta x = a + i \frac{(b-a)}{N} \]

\[x_N = a + N \frac{(b-a)}{N} = b \]

We could also use the left end points

The \(N^{th} \) approximation is

\[\sum_{i=0}^{N-1} f(x_i) \Delta x \]
Example Riemann Sum Problem

Express \(\lim_{N \to \infty} \sum_{i=1}^{N} \cos \left(\frac{6i}{N} \right) \frac{1}{N} \)

a) as an integral from \(x=0 \) to \(x=1 \)

We need \(\cos \left(\frac{6i}{N} \right) = f(X_i) \) and \(\frac{1}{N} = \Delta x \)
\[\Delta x = \frac{1}{N} \quad X_i = \frac{i}{N} \]
\[\cos \left(\frac{6i}{N} \right) \frac{1}{N} = \cos \left(6X_i \right) \Delta x \]
\[f(X_i) \]

Answer 13 \(\int_{0}^{1} \cos (6x) \, dx \)

b) as an integral from \(x=0 \) to \(x=6 \)
\[\Delta x = \frac{6}{N} \quad X_i = \frac{6i}{N} \]
\[\cos \left(\frac{6i}{N} \right) \frac{1}{N} = \cos \left(X_i \right) \Delta x \]
\[\frac{1}{6} \]

Answer \(\int_{0}^{6} \cos (x) \, dx \)