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In this paper, we present a new strongly polynomial time algorithm for the minimum cost flow problem, based on a
refinement of the Edmonds-Karp scaling technique. Our algorithm solves the uncapacitated minimum cost flow problem
as a sequence of O(n log n) shortest path problems on networks with # nodes and m arcs and runs in O(n log n (m +
n log n)) time. Using a standard transformation, thjs approach yields.an O(m log n (m + n log n)) algorithm for the
capacitated minimum cost flow problem. This algorithm improves the best previous strongly polynomial time algorithm,
due to Z. Galil and E. Tardos, by a factor of n*/m. Our algorithm for the capacitated minimum cost flow problem is
even more efficient if the number of arcs with finite upper bounds, say m’, is much less than m. In this case, the running

time of the algorithm is O((m’ + n)log n(m + n log n)).

he minimum cost flow problem is one of the
" A most fundamental problems within network flow
theory and it has been studied extensively. Researchers
have developed a number of different algorithmic
approaches that have led both to theoretical and prac-
tical improvements in the running time. We refer the

reader to the text of Ahuja, Magnanti and Orlin -

(1993) for a survey of many of these developments. In
Figure 1, we summarize the developments in
solving the minimum cost flow problem by poly-
nomial time algorithms.

Figure 1 reports the running times for networks
with n nodes and m arcs, of which m’ arcs are ca-
pacitated. Those algorithms whose running times con-
tain the term log C assume integral cost coefficients
whose absolute values are bounded by C. Those algo-
rithms whose running times contain the term log U
assume integral capacities and supply/demands whose
absolute values are bounded by U. In the figure, the
term S(-) denotes the running time to solve a shortest
path problem with nonnegative arc costs and AM(-)
denotes the running time to solve a maximum flow
problem. The best time bounds for the shortest
path and maximum flow problems are also given in
Figure 1. ,

Edmonds and Karp (1972) were the first to solve
the minimum cost flow problem in polynomial
time. Their algorithm, now commonly known as
the Edmonds-Karp scaling technique, was to reduce
minimum cost flow problem to a sequence of
O((n + m")log U) shortest path problems. Although

Edmonds and Karp did resolve the question whether
the minimum cost flow problem can be solved in
polynomial time, an interesting related question was
unresolved. As stated in their paper:

A challenging open problem is to give a method for the
minimum cost flow problem having a bound of computation
which is polynomial in the number of nodes and arcs, and
1s independent of both costs and capacities.

In other words, the open problem was to determine
a strongly polynomial time algorithm for the mini-
mum cost flow problem. In a strongly polynomial
time algorithm, the number of operations performed
by the algorithm is polynomially bounded in # and m
where the number of operations allowed are additions,
subtractions, and comparisons. (We point out that our

. definition of strongly polynomial time algorithms is

more restrictive than the one typically used in the
literature as it allows fewer operations.) There are
several reasons for studying strongly polynomial time
algorithms. A primary theoretical motivation for -
developing strongly polynomial time algorithms is
that they are useful in the subroutines where irrational
data are used (e.g., the generalized maximum flow
algorithm of Goldberg, Plotkin and Tardos 1988).
Another motivation for developing these algorithms
is that they help to identify whether the size ot the
numbers involved increases the inherent complexity
of solving the problem.

The first strongly polynomial time algorithm for the
minimum cost flow problem was developed by Tardos
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Figure 1. Polynomial algorithms for the minimum cost flow problem. (Year indicates the publication date of the
.paper, except for Bland and Jensen (1985) and Orlin (1984), where it indicates the year the technical
report was written. The papers are listed in the order they were developed.) ‘

(1985). This algorithm motivated the development of
several other strongly polynomial time algorithms by
Orlin (1984), Fujishige (1986), Galil and Tardos
(1986), Goldberg and Tarjan (1987, 1988), Plotkin
and Tardos (1990), and Orlin, Plotkin and Tardos
(1991). The fastest strongly polynomial time
algorithm prior to the algorithm presented in this
paper is due to Galil and Tardos and runs in
O(n%og n S(n, m)) time.

In this paper, we describe a new strongly polynomial
time algorithm that solves the minimum cost flow
problem in O(m log n S(n, m)) time. Our algorithm
is a variation of the Edmonds and Karp scaling algo-
rithm and solves the minimum cost flow problem as
a sequence of O(m log n) shortest path problems.
Hence, our algorithm improves the running time
of Galil and Tardos’s algorithm by a factor of
n*/m. Besides being (currently) the fastest strongly
polynomial time algorithm for the minimum cost
flow problem, our algorithm has the following nice

features:

1. The algorithm 1is fairly simple, intuitively appeal-
ing, and easy to program.

The algorithm yields an attractive running time for
solving the minimum cost flow problem in parallel.
There exists a parallel shortest path algorithm that
uses »> parallel processors and runs in O(logn)
time. Using this shortest path algorithm as a sub-
routine, our minimum cost flow algorithm can be
implemented in O(m log3n) time using O(n®) pro-
cessors. Further improvements in processor utili-
zations are possible through the use of fast matrix
multiplication techniques. .

2.

This paper is organized as follows. In Section 1, we
present the notation and definitions. A brief discussion
on the optimality conditions and some basic results
for the minimum cost flow problem are presented
in Section 2. In Section 3, we describe a modified
version of the Edmonds-Karp scaling technique for
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uncapacitated networks (i.e., where all arc capacities
are o and all lower bounds are zero). This algorithm
solves the uncapacitated minimum cost flow problem
as a sequence of O(n log U) shortest path problems.
In Section 4, we describe how to modify the algorithm,
to solve the uncapacitated minimum cost flow
problem as a sequence of O(n log n) shortest
path problems. The running time of this algorithm is
O(n log n S(n, m)). Using a standard transformation,
this leads to an O(m log n S(n, m)) time algorithm
for solving the capacitated minimum cost flow prob-
lem; we describe this generalization in Section 5.

1. NOTATION AND DEFINITIONS

Let G = (N, A) be a directed network with a cost ¢;
associated with every arc (i, j) € A. We consider
uncapacitated networks, i.e., networks in which there
is no upper bound on the flow on any arc. Let n =
|IN| and m = | A|. We associate with each node i €
N an integer number b(i), which indicates the supply
(or demand) of the node if 5(i) > 0 (or b(i) < 0). Let
U = max{|b(i)|: i € N}. The uncapacitated minimum
cost flow problem can be stated as follows.

Minimize Y, ¢y (1a)
(L)EA
subject to
Y xj— Y xp=0b(i) forali€N, (Ib)
Ui LU.DeEA)
x; =0 forall (i, j) € A (1c)

We consider the uncapacitated minimum cost flow
problem satisfying the following assumptions:

Assumption 1. For all nodes i/ and j in N, there is a
directed path in G from i to j.

Assumption 2. All arc costs are nonnegative.

The first assumption can be met by adding an
artificial node s with b(s) = 0, and adding artificial
arcs (s, {) and (i, s) for all nodes i with a very large
cost M. If the value of M is sufficiently high, then
none of these artificial arcs will appear with positive
flow in any minimum cost solution, provided that the
minimum cost flow problem is feasible. This assump-
tion allows us to ignore the infeasibility of the mini-

mum cost flow problem. '
- The second assumption is also made without any
loss of generality. If the network contains some nega-
tive cost arcs, then using the following standard trans-
formation arc costs can be made nonnegative. We first

compute the shortest path distances d(i) from node s
to all other nodes, where the length of arc (4, j) is ¢;.
If the shortest path algorithm identifies a negative
cycle in the network, then either the minimum cost
flow problem is infeasible or its optimum solution is
unbounded. Otherwise, we replace c; by ¢; + d(i) —
d(j), which is nonnegative for all the arcs. We show
later in Lemma 2 that this transformation does not
affect the value of the optimal minimum cost flow.

The algorithm described in this paper maintains a
“pseudoflow” at each intermediate step. A pseudoflow
x is a function x: 4 — R that satisfies only the
nonnegativity constraints (1c) on arc flows, i.e., we
allow a pseudoflow to violate the mass balance con-
straints (1b) at nodes. For a given pseudoflow x, we
define the imbalance at node i to be
ey=bi+ Y xi— X Xy

U EA) i, e}

A positive e(i) is referred to as an excess, and a
negative e(/) is called a deficit. A node i with e(i) >0
is called a source node, and a node i with
e(i) < 0 is referred to as a sink node. A node i
with e(i) = 0 is called a balanced node, and im-
balanced otherwise. We denote by S and 7, the sets
of source and sink nodes, respectively.

For any pseudoflow x, we define the residual net-
work G(x) as follows: We replace each arc (i, j) € 4
by two arcs (i, j) and (J, 7). The arc (i, j) has cost ¢;
and residual capacity r; = o, and the arc (j, i)
has cost —c; and residual capacity r; = x;. A re-
sidual network consists only of arcs with positive
residual capacity. The imbalance of node i in
the residual network G(x) is e(i), that is, it is the same
as the imbalance of node i for the pseudoflow. We
illustrate the construction of the residual network in
Figure 2. Figure 2a shows the network G with arc
costs and node supplies, Figure 2b shows a pseudoflow
x, and 2c gives the corresponding residual network
G(x).

We point out that in the residual network G(x)
there may be multiple arcs, i.e., more than one arc
with the same tail and head nodes, but possibly with
different arc costs. The notation we use to address an
arc, say (i, j), is appropriate only when there is one
arc with the same tail and head nodes. In the case of
multiple arcs, we should use more complex notation.
However, for the sake of simplicity, we will use the
same notation. We observe that even if the original
minimum cost flow problem does not have multiple
arcs, our algorithm can produce multiple arcs through
the contraction of certain nodes. For this reason, it is
important to observe that all of the analysis in this
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Figure 2. The construction of the residual network.

paper extends readily to the case in which multiple
arcs are present. Moreover, most of the popular data
structures available to implement network flow algo-
rithms, such as the forward star representation and
the adjacency list representation, are capable of
handling multiple arcs.

2. OPTIMALITY CONDITIONS

In this section, we discuss the optimality conditions
for the uncapacitated minimum cost flow problem
and prove some basic results that our algorithms use.
We first state the dual of the minimum cost flow
problem. We associate a dual variable =(i) with the
mass balance constraint of node i in (1b). In terms of
these variables, the dual of the minimum cost flow
problem is as follows.

Maximize Y, b(i)n(i) (22)
ieEN

subject to

(i) — 7(j) < ¢; for all (i, j) € A. (2b)

In the subsequent discussion, we refer to x(i) as the
potential of node i. Let ¢f = ¢; — (i) + =(j). We
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refer to ¢} as the reduced cost of arc (i, j). The
complementary slackness conditions for the unca-
pacitated minimum cost flow problem are:

g>0=x,=0; (3a)
x;>0=c;=0. (3b)

In terms of the residual network G(x), the comple-
mentary slackness conditions can be simplified as:

¢t = 0 for every arc (7, j) in G(x). 4)

It is easy to show that (3) and (4) are equivalent
(see, for example, Ahuja, Magnanti and Orlin). We
refer to (3a)-(3b) or (4) as the optimality conditions
for the minimum cost flow problem. We call a feasible
flow x of the minimum cost flow problem an optimum
flow if there exists a set of node potentials = so that
the pair (x, ) satisfies the optimality conditions.
Similarly, we call a set of node potentials = an opti-
mum potential if there exists a feasible flow x so that
the pair (x, =) satisfies the optimality condition.

We point out that our strongly polynomial time
algorithm essentially solves the dual minimum cost
flow problem. It first obtains optimum node potentials
and then uses these to obtain an optimum flow. Our
minimum cost flow algorithms use the following well
known results.

Lemma 1. If x is an optimal flow and if = is an
optimal set of potentials, then the pair (x, =) satisfies
the optimality conditions.

Lemma 2. Let = be any set of node potentials. If x is
an optimum flow of the minimum cost flow problem
with the cost of each arc (i, j) € A as cy, then it is
also an optimum flow of the minimum cost flow
problem with the cost of each arc (i, j) € A as ¢§ =
¢y — w(i) + 7(j).

Our minimum cost flow algorithms will maintain a
pseudoflow x at every step that satisfies the optimality
conditions. The algorithms proceed by augmenting
flows along shortest paths where the length of an arc
is defined to be its reduced cost. We show in the
following lemmas that the pseudoflow obtained by
these augmentations also satisfies the optimality
condition. '

Lemma 3. Suppose that a pseudoflow (or a flow) x
satisfies the optimality condition (4) with respect to
some node potentials x. Let the vector d represent the
shortest path distances from some node s to all other
nodes in the residual network G(x) with ¢ as the
length of an arc (i, j). Then the following properties
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are valid:

a. The pseudoflow x satisfies the optimality condition
with respect to the node potentials ©’ = = — d.

b. The reduced costs ¢} are zero for all arcs (i, j) in
a shortest path from node s to some other node.

Proof. Since x satisfies the optimality condition (4)
with respect to =, we have ¢ = 0 for every arc (i, j)
in G(x). Furthermore, since the vector d represents
shortest path distances with ¢jj as arc lengths, it satisfies
the shortest path optimality condition (see, e.g., Ahuja,
Magnanti and Orlin), that is

d(j) < d(i) + ¢ for all (i, j) in G(x). (5)

Substituting ¢ = ¢; — =(i) + =(j) in (5), we obtain
d(j) < d@i) + c;j — =(i) + =(j). Alternatively, c¢; —
(w(i) = d(i)) + (x(j) — d(j)) =2 0, or ¢’ = 0. This
conclusion establishes part a of the lemma.

Consider next a shortest path from node s to some
node k. For each arc (i, j) in this path, d(j) = d(i) +
cf. Substituting ¢§ = ¢; — (i) + «()) in this equation,
we obtain ¢} = 0. This conclusion establishes part b.

The following result is an immediate consequence of
the preceding lemma.

Lemma 4. Suppose that a pseudoflow (or a flow) x
satisfies the optimality condition (4) and x’ is obtained
from x by sending flow along a shortest path from node
§ to some other node k, then x' also satisfies the
optimality condition.

Proof. Define the potentials = and «’, as in Lemma
3. The proof of Lemma 3 implies that for every arc
(i, J) in the shortest path P from node s to the node k,
¢’ = 0. Augmenting flow on any such arc might add
its reversal (J, i) to the residual network. But since
¢y’ = 0 for each arc (i, j) € P, ¢f = 0 and the arc
(j, i) also satisfies the optimality condition. The
lemma follows.

3. THE EDMONDS-KARP SCALING TECHNIQUE

In this section, we present a complete description and
proof of a variation of the Edmonds-Karp right-hand
side scaling technique, which we call the RHS-scaling
algorithm. Our version of the Edmonds-Karp algo-
rithm is similar to their original algorithm, but it

differs in several computational aspects. Our version

appears to be particularly well suited for generalization
to a strongly polynomial time algorithm. In addition,
the proof of the correctness of the RHS-scaling algo-

rithm is of further use in proving the correctness of
the strongly polynomial time algorithm.

The basic ideas behind the RHS-scaling algorithm
are as follows. Let x be a pseudoflow and let =«
be a vector of node potentials. For some integer A,
let S(A) = {i € N: e(i) = A} and let T(A) =
{i € N: e(i) < —A}. We call the pair (x, r) A-optimal,
if (x, =) satisfies the optimality conditions and either
S(A)y =D or T(A) = D. Clearly, if x =0 and = = 0,
then (x, =) is A-optimal for every A > U. If x is integral
and if (x, r) is A-optimal for some A < 1, then x is an
optimum flow. The RHS-scaling algorithm starts with
a A-optimal pseudoflow with A = 2M°¢ U' at each
iteration it replaces A by A/2 and obtains a A-optimal
pseudoflow, and terminates when A < 1. Given a 2A-
optimal pseudoflow, the scaling algorithm obtains a
A-optimal pseudoflow by solving at most » shortest
path problems. A maximal period during which A
remains unchanged is called a A-scaling phase.
We refer to A as the scale factor. Clearly, there are
log U + 1 scaling phases. A formal description of
the RHS-scaling algorithm is given in Figure 3.

We next prove the correctness and complexity of
the RHS-scaling algorithm.

Lemma 5. At every step of the RHS-scaling algorithm,
the flow and the residual capacity of every arc in the
residual network is an integral multiple of the scale
factor A.

Proof. We show this result by performing induction
on the number of augmentations and adjustments in
the scale factor. This result is clearly satisfied at the

algorithm RHS-SCALING;

begin
setx:=0,m:=0;ande:=b;
setU:=max{|bl)|:ieNL
Aie J log U]:
while there is an imbalanced node do
begin {A-scaling phase}

S(A) : = (i: e) = A);

T(A): = {i:e(i) $-A)

while 5(A) # g and T(A)= & do
begin

choose some k e 5(A) and ve T(4);
considering reduced costs as arc lengths, compute shortest path
distances d(i) from node k to all other nodes;
n(i) : = n(t) ~d@@), for all ie N;
augment A units of flow along the shortest path from node k to
node v;
update x, r, e, 5(A) and T(a);
end;
end; {A-scaling phase}
A=A/2;
end;

Figﬁre 3. The RHS-scaling algorithm.




beginning of the RHS-scaling algorithm because the
initial flow is 0 and all arc capacities are . Each
augmentation modifies the residual capacities of arcs
by 0 or A units and, consequently, preserves the
induction hypothesis. Reducing the scale factor of A
to A/2 also maintains the invariant.

Lemma 5 implies that during an augmentation, A
units of flow can be sent on any path P with posi-
tive residual capacity. Lemma 4 implies that the
pseudoflow after the augmentation still satisfies
the optimality condition. The algorithm terminates
when all nodes are balanced; i.e., the current pseudo-
flow is a flow. Clearly, this flow must be optimum.

We now address the complexity of the algo-
rithm. We need some additional notations. A node i
is active in the A-scaling phase if |e(i)| = A, and
is inactive if |e(i)] < A. A node i is said to be
regenerated in the A-scaling phase if i was not in
S(2A) U T(2A) at the end of 2A-scaling phase,
but is in S(A) U T(A) at the beginning of the A-
scaling phase. Clearly, for each regenerated node i,
A < |e(i)] < 2A. The following lemma shows that the
algorithm can find at most # augmenting paths in any
scaling phase. In fact, it proves a slightly stronger
result that is useful in the proof of the strongly poly-
nomial time algorithm.

Lemma 6. The number of augmentations in a scaling
phase is at most the number of nodes that are regen-
erated at the beginning of the phase.

Proof. We first observe that at the beginning of the
A-scaling phase ¢éither S(2A) = & or T(2A) = &. Let
us consider the case when S(2A) = @. Then each node
in S(A) is a regenerated node. Each augmentation
starts at an active node in S(A) and makes it inactive
after the augmentation. Furthermore, since the aug-
mentation terminates at a sink node, it does not create
any new active node. Thus, the number of augmen-
tations is bounded by S(A) and the lemma follows. A
similar proof for the lemma can be given for the case
when 7(24) = @.

It is now easy to observe the following result.

Theorem 1. The RHS-scaling algorithm determines
an optimum solution of the uncapacitated minimum
cost flow problem within O(log U) scaling phases and
runs in O((n log U) S(n, m, C)) time.

In the next section, we describe a modification of
the RHS-scaling algorithm that runs in O(n log n S(n,
m)) time. This modified algorithm improves upon the
previous bound when log U = log n.
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4. THE STRONGLY POLYNOMIAL TIME
ALGORITHM

In this section, we present a strongly polynomial time
version of the RHS-scaling algorithm discussed in the
previous section. We first introduce the idea of con-
traction in the RHS-scaling algorithm. The contrac-
tion operation is also a key idea in a number of other
strongly polynomial time algorithms including those
of Orlin (1984), Tardos (1985), Fujishige (1986), and
Galil and Tardos (1986). We next point out that the
RHS-scaling algorithm using contractions is not a
polynomial time algorithm, and then we show how to
modify the RHS-scaling algorithm with contractions
so that it becomes a strongly polynomial time algo-
rithm. We again emphasize that contrary to the
RHS-scaling algorithm, the strongly polynomial time
algorithm solves the dual minimum cost flow prob-
lem:; it first obtains optimum node potentials and then
uses these to obtain an optimum flow.

4.1. Contraction

The key idea that allows us to make the RHS-scaling
algorithm strongly polynomial time is to identify arcs
whose flow is so large in the A-scaling phase that they
are guaranteed to have positive flow in all subsequent
scaling phases. In the A-scaling phase, the flow in any
arc can change by at most nA units, because there are
at most n augmentations. If we sum the changes in
flow in any arc over all subsequent scaling phases, the
total change is at most n(A + A/2 + A/4 + ... +
1) = 2nA. It thus follows that any arc whose flow
exceeds 2nA at any point during the A-scaling phase
will have positive flow at each subsequent iteration.
We will refer to any arc whose flow exceeds 2nA
during the A-scaling phase as a strongly feasible arc.

Our strongly polynomial time algorithm is based on
the fundamental idea that any strongly feasible arc,
say (k, 1), can be contracted into a single node p. The
contraction operation consists of: letting b(p) =
b(k) + b(l) and e(p) = e(k) + e(l); replacing each
arc (i, k) or (i, /) by the arc (i, p); replacing each arc
(k, i) or (I, i) by the arc (p, i); and letting the cost of
an arc in the contracted network equal that of the arc
it replaces. We point out that the contraction opera-
tion may lead to the creation of multiple arcs, i.e.,
several arcs with the same tail and head nodes. We
now give a theoretical justification for the contraction
operation.

Lemma 7. Suppose it is known that xu > 0 in an
optimum solution of the minimum cost flow problem.
Then with respect to every set of optimum node poten-
tials, the reduced cost of arc (k, [) is zero.
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Proof. Let x satisfy the optimality condition (3) with
respect to the node potential «. It follows from (3b)
that ¢y = 0. We next use Lemma 2, which implies
that if x satisfies the optimality condition (3) with
respect to some node potential, then it satisfies this
condition with respect to every optimum node poten-
tial. Hence, the reduced cost of arc (k, /) is zero with
. respect to every set of optimum node potentials.

Let P denote the minimum cost flow problem stated
in (1). Suppose that we are solving the minimum cost
flow problem P with arc costs ¢; by the RHS-scaling
algorithm and at some stage we realize that arc (k, /)
is a strongly feasible arc. The optimality condition
(3b) implies that

Cil — 7r(k) + 7r(l) = 0. (6)

Now consider the same minimum cost flow prob-
lem, but with the cost of each arc (i, j) equal to ¢} =
¢ = ¢; — w(i) + w(j). Let P’ denote the modified
minimum cost flow problem. It follows from (6) that

C/i[ = (. (7)

We next observe that the problems P and P’ have
the same optimum solutions (see Lemma 2). Since
arc (k, ) is a strongly feasible arc, it follows from the
optimality condition (3b) that in P’ the reduced cost
of arc (k, ) will be zero. If =’ denotes an optimum set
of node potentials for P’, then

c — w'(k) + ='(I) = 0. (8)

Substituting (7) in (8) implies that =’ (k) = «’(/).

We next observe that if we solve the dual minimum
cost flow problem (2) with the additional constraint
that the potentials of nodes k£ and / must be the same,
then this constraint will not affect the optimality of
the dual. But how can we solve the dual minimum
cost flow problem where two node potentials must be
the same? One solution is that in the formulation (2),
we replace both w(k) and =(/) by =(p). This substitu-
tion gives us a linear programming problem with one
less dual variable (or node potential). The reader can
easily verify that the resulting problem is a dual min-
imum cost flow problem on the network where nodes
k and / have been contracted into a single node p. The
purpose of the contraction operation should also be
clear to the reader; it reduces the size of the network
by one node which implies that there can be at most
n contraction operations. ‘

We next show that there will be a strongly feasible
arc after a “sufficiently small” number of scaling
phases.

Lemma 8. Suppose that at the termination of the A-
scaling phase, | b(i)| > 5n*A for some node i in N.
Then there is an arc (i, J) or (J, i) incident to node i
such that the flow on the arc is at least 3nA.

Proof. We first claim that | e(i) | < 2nA. To see this,
recall that either all of S(A) or all of 7(A) is regener-
ated at the beginning of the A-scaling phase, and thus
either the total excess or the total deficit is strictly
bounded by 2nA. We now prove the lemma in the
case when b(i) > 0. (The case when b(i) < 0 can be
proved analogously.) Clearly, the net flow going out
of node i is (b(i) — e(i)). As fewer than n arcs emanate
from i, at least one of these arcs has a flow strictly
more than (b(i) — e(i))/n = (5n°A — 2nA)/n = 3nA.
The lemma follows.

4.2. A Pathological Example for the RHS-Scaling
Algorithm

Lemma 8 comes very close to yielding a strongly
polynomial time algorithm for the following reason.
At the beginning of the algorithm, all the nodes have
e(i) = b(i). Within log(5n%) = O(log n) scaling phases,
A has been decreased by a factor of at least 5n% and
so |b(i)| > 5n*A. Then node i is incident to a strongly
feasible arc, at which point two nodes get contracted
into a single node. The analysis presented later will
show that we will charge each augmentation to a node,
and one can show that O(log n) augmentations are
charged to each original node i. This a/most leads to
an O(n log n S(n, m)) time algorithm. There is,
however, a difficulty which is illustrated in Figure 4.
The problem lies with the nodes that are created via a
contraction.

In Figure 4a, we give the initial node excesses and
arc flows where M represents a large number. Since
the initial flow is zero, b(i) = e(i) for every node i.
Assume that all the arc costs are 0. In the 8/-scaling
phase, 8 M units of flow are sent from node 3 to node
2. Subsequently, in each of the 4, 2M and M-scaling

8M+1 -8M+1

(a) ®) ©

Figure 4. A pathological example for the RHS-scaling
algorithm.




phases, flow is sent from node 1 to node 4. In Figure
4b, we give the flows at the end of M -scaling phase.
At this point, we can contract the arcs (1, 2) and
(3, 4), but not the arc (3, 1). The resulting contracted
graph is given in Figure 4c. Observe that b(4) = —2
and b(B) = 2, although e(4) = M — 2 and e(B) =
—M + 2. At this point, it will take O(log M) scaling
iterations before the flow in arc (B, A4) is sufficiently
small (relative to the unique feasible flow of two units
from B to A) so that this arc gets contracted and the
algorithm terminates. Thus, the algorithm is not
strongly polynomial time.

We summarize the difficulty. It is possible to create
contracted nodes in which the excess/deficit is
comparable to A and this is much larger than the
supply/demand at the node. Therefore, a node can be
regenerated a large number of times. To overcome
this difficulty we observe that the bad situation occurs
infrequently; in particular, when the excess e(k) =
A — ¢ for some very small positive ¢, and b(k) = — ¢,
or else when e(k) = —A + ¢ for some very small
positive ¢, and b(k) = e.

To overcome this difficulty, we modify the augmen-
tation rules slightly. Rather than requiring the excess
of the initial node of the augmenting path to be at
least A, we require that it be at least «A for some
constant « with 2 < o < 1. Similarly, we require that
the terminal node of the augmenting path has a deficit
of at least aA.

4.3. The Algorithm

Our strongly polynomial algorithm is the RHS-scaling
algorithm with the following modifications:

1. We contract an arc whenever it becomes strongly
feasible. The reason that our generalization of the
RHS-scaling algorithm is strongly polynomial is
that we can locate an additional strongly feasible
arc after O(log n) scaling phases, and that there are
at most n — 1 contractions. At termination, the
contracted arcs are uncontracted and we compute
an optimum flow.

2. We allow augmentations from a node i with e(i) =
aA to a node j with e(j) < —aA. f . < a < 1, the
algorithm is strongly polynomial. If « = 1, then
the algorithm is not strongly polynomial.

3. We no longer require A to be a power of two,
and we no longer require A to be divided by
two at each iteration.

4. Whereas the RHS-scaling algorithm solves the pri-
mal minimum cost flow problem (1) and obtains
an optimum flow, the strongly polynomial time
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algorithm solves the dual minimum cost flow prob-
lem (2). This algorithm first obtains an optimum
set of node potentials for (2) and then uses it to
determine an optimum flow.

Our strongly polynomial algorithm is given in
Figure 5. In the algorithmic description, we denote
the contracted network by G = (N, 4).

We point out that in consecutive scaling phases, the
strongly polynomial time algorithm either decreases
A by a factor of two or by a factor larger than two.
Whenever the algorithm decreases A by a factor larger
than two, then we call this step a complete regenera-
tion. We also point out that whenever the algorithm
contracts two nodes into a single node, it redefines the

" arc costs equal to the current reduced costs. We have

seen earlier in Lemma 2 that redefining the arc costs
does not affect the optimal solution of the minimum
cost flow problem.

4.4. Correctness and Complexity of the Algorithm

- We now prove the correctness of the strongly poly-

nomial time algorithm.

Lemma 9. A: every step of the strongly polynomial
time algorithm, the flow and the residual capacity of
each arc (i, j) in the residual network is an integral
multiple of the scale factor A.

algorithm STRONGLY POLYNOMIAL;
begin
set x:=0, n:=0,ande:=Db;
set A:=max {e(i):ie N};
while there is an imbalanced node do
begin
i xjj=0forall G, ) in A and e)) <A forallie N then
A:=max [e@):ie NJ;
(A-scaling phase begins here)
while there is an arc (i, ) € A with Xjj2 3nA do contract nodes i and jand
define arc costs equal to their reduced costs;
S(a):=lie N:e() 2 an);
TA): = fie N:e() <-ank
while S(A)2oand T(A)#e do
begin
choose some k € §(A) and v € T(A);
considering reduced costs as arc lengths, compute shortest
path distances d{-) in G(x) from node k to all other nodes;
40 ¢ = x(i) - d@i), for all ie N;
augment A units of flow along the shortest
path from node k to node v;
update x, 1, e, 5(4) and T(A);
end;
{ A-scaling phase ends here}
A=A/2;
end;
uncontract the network and compute optimum arc flows;
end;

Figure 5. The strongly polynomial minimum cost
flow algorithm.
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Proof. We show this result by performing induction
on the number of augmentations, contractions, and
adjustments in the scale factor. The initial flow is 0,
all arc capacities are o, and hence the result is true.
Each augmentation carries A units of flow and pre-
serves the induction hypothesis. Although the con-
traction operation may delete some arcs, it does not
change flows on arcs in the contracted network. At
the end of a scaling phase, either A is replaced by
A/2 or by max{e(i):i € N}. The former case clearly
preserves the induction hypothesis, and the latter case
occurs when all arc flows are zero and the hypothesis
is again satisfied.

The preceding lemma implies that in each augmen-
tation we can send A units of flow. The algorithm
always maintains a pseudoflow that satisfies the opti-
mality condition and terminates when the pseudoflow
is a flow. Thus, the algorithm terminates with an
optimum flow in the contracted network. We will
describe later in subsection 4.5 how to expand the
contracted network and obtain an optimum flow in
the uncontracted network.

We next analyze the complexity of the strongly
polynomial time algorithm. The complexity proof of
the algorithm will proceed in the following manner.
Let A’ and A be the scale factors in two consecutive
scaling phases and recall that A’ = 2A. A node k is
called regenerated if at the beginning of the A-scaling
phase, aA < |e(k)| < aA’. We point out that the new
nodes that are formed during contractions in the A-
scaling phase are not called regenerated nodes in that
phase. We first show that the total number of aug-
mentations in the algorithm is at most n plus the
number of regenerated nodes. We next show that the
first time node k is regenerated, it satisfies |e(k)| <
2a| b(k)|/(2 — 2a). This result, in conjunction
with Lemma 8, implies that for a fixed «, any node is
regenerated O(log n) times before it is contracted.
Hence, we obtain a bound of O(n log ») on the num-
ber of augmentations. Finally, we show that the
number of scaling phases is also O(#n log n) to conclude
the proof of the algorithm.

Lemma 10. The number of augmentations during the
A-scaling phase is bounded by the number of regener-
“ated nodes plus the number of contractions in that
phase.

Proof. Let A’ be the scaling factor in the previous
scaling phase. Then A < A’/2. At the end of the
previous scaling phase, either S(A") = @ or T(A") =
@. We consider the case when S(A”) = &. (A similar
proof can be given when T(A’) = &.) We consider the

potential function F = 3 esle(i)/aAl. Each augmen-
tation sends A units of flow from a node in S, and
hence, F decreases by at least one unit. Thus, the total
number of augmentations is bounded by the initial
value of F minus the final value of F plus the total
increase in F.

It is easy to see that at the beginning of the A-scaling
phase, F is no more than the number of regenerated
nodes. Each node i & S contributes 0 to F. If A =
A’/2, then e(i) < 2aA and so Le(i)/(ad)l < 2. IfA <
A’/2, then e(i) < A and Le(i)/(ad)] < L1/al < 1. At
the end of the last scaling phase, F' < 0. Furthermore,
notice that a contraction can increase F by at most
one, because for all real numbers e(i) and e(j),
Le(i) + e(j)) < Le(i)] + Le(j)] + 1. The lemma now
follows.

Lemma 11. In the A-scaling phase, if x; = 3nA for
some arc (i, j) in A, then x; > 0 in all subsequent
scaling phases. ,

Proof. In the absence of contractions, the flow
changes on any arc due to augmentations in all sub-
sequent scaling phases is at most n{A + A/2 + A/4 +
...+ 1) = 2rA. Each contraction causes at most one
additional augmentation (see Lemma 10) and there
are at most n — 1 contractions. Thus, the total flow
change on any arc is less than 3#A and the lemma
follows.

Lemma 12. At each stage of t[ze algorithm, e(k) =
b(k)mod A for every node k € N. '

Proof. The yalue e(k) is b(k) minus the ‘ﬂ'ow across
the cut (k, N — k). By Lemma 9, each arc flow is a
multiple of A. Hence, e(k) = b(k)mod A.

Lemma 13. The first time that a node k is regenerated,
it satisfies |e(k)| < 2a|b(k)|/2 = 2a).

Proof. Suppose that node k is regenerated for the first
time at the beginning of the A-scaling phase. If there
has been a complete regeneration before the beginning
of the phase, then each arc flow is zero and e(k) =
b(k); hence, the lemma is true for this case. In case
there has not been a complete regeneration, then all
arc flows are integral multiples of 2A. Consider first
the case when e(k) > 0. Clearly, aA < e(k) < 2aA.
Since e(k) = b(j) mod(24), it follows that e(k) =
b(k) + (2A)w for some integral multiple w. If w = 0,
then e(k) = b(k) and the lemma is true. If w = 1, then
e(k) = b(k) + 2A. Alternatively, b(k) < e(k) — 2A.
Since node k is regenerated at the A-scaling phase, it
follows that e(k) < 2«4, substituting which in the
preceding inequality yields b(k) < (2a — 2)A. Since




a < 1, b(k) < 0, and hence multiplying the pre-
vious inequality by —1, we get |b(k)] > (2 — 2a)A.
We now use the fact that A > e(k)/2a to obtain
2a/(2 = 2a))|b(k)| > e(k) and the lemma follows.
This results when e(k) < 0 can be proved analogously.

Lemma 14. Each node is regenerated O(log n) times.

Proof. Suppose that a node k is regenerated for the
first time at the A*-scaling phase. Let o* = 2a/(2 —
2a). Then aA* < |e(k)| < o*|b(k)|, where the sec-
ond inequality follows from Lemma 13. After
Mog(5a*n?/a)1 = O(log n) scaling phases, the scale
factor is at most A*/5a*n® < |b(k)|/5n?, and by
Lemma 8§, there exists a strongly feasible arc emanat-
ing from node k. The node k then contracts into a
new node and is (vacuously) not regenerated again.

Hence, the following theorem is immediate.

Theorem 2. The total number of augmentations over
all scaling phases is O(n log n).

We next bound the number of scaling phases per-
formed by the algorithm.

Theorem 3. The algorithm performs O(n log n) scal-
ing phases.

Proof. By Theorem 2, the number of scaling phases
in which an augmentation occurs is O(n log n). We
now derive a bound of O(n log ) on the number of
scaling phases in which no augmentation occurs.

Consider a A-scaling phase in which no augmenta-
tion occurs. Suppose that there is a node k for which
le(k)| > A/5n*. We assume that e(k) > 0; the case
when e(k) < 0 can be proved similarly. Then within
O(log n) scaling phases, node k is regenerated
and within a further O(log n) scaling phase, there
is a contraction. Thus, overall, this case can occur
O(n log n) times.

We now consider the case when |e(k)| < A/5n? for
each node k and all arcs in the contracted graph have
zero flow. Then we set A to max{e(i): i € N} and in
the same scaling phase the node with maximum excess
is regenerated. Since within the next O(log n) scaling
phases there will be a contraction, this case will occur
O(n log n) times. :

Finally, we consider the case when |e(k)| < A/5n®
for each node k and there is some arc, say (k, /),
with positive flow. By Lemma 9, x;; = A. In the next
log 8n* = O(log n) scaling phases, the flow on X is
unchanged, but A is replaced by A’ < A/8r% At this
point, the arc (k, /) is strongly feasible, and a contrac-
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tion would take place. Again, the number of occur-
rences of this case is O(n log n).

Theorem 4. The strongly polynomial algorithm deter-
mines the minimum cost flow in the contracted net-
work in O((n log n)S(n, m)) time.

Proof. We have earlier discussed the correctness of
the algorithm. To complete the proof of the theorem,
we only need to discuss the computational time of the
algorithm. Consider the time spent in a scaling phase.
Reducing the scale factor by a factor other than two
requires O(m) time. The contractible arcs can also be
identified in O(m) time. The time needed to identify
the sets S(A) and T(A) is O(n) even if these sets may
be empty. Since there are O(n log n) scaling phases,
these operations require O((n log n)m) total time.
The number of augmentations in the algorithm is
O(n log n). Each augmentation involves solving a
shortest path problem and augmenting flow along this
path. The time needed to perform these operations is
clearly O((n log n)S(n, m)). The proof of the theorem
is complete.

4.5. Expansion of Contracted Nodes

We will now explain how to expand the contracted
network, and in that process we will prove that the
algorithm determines an optimum solution of the
minimum cost flow problem. The algorithm first
determines an optimum set of node potentials of the
problem (i.e., an optimum solution of the dual prob-
lem), and then by solving a maximum flow problem
determines an optimum flow. The algorithm obtains
an optimum set of node potentials for the original
problem by the repeated use of the following result.

Lemma 15. Let P be a problem with arc costs c; and
P’ be the same problem with arc costs as ¢; — (i) +
w(j). If =’ is an optimum set of node potentials for
problem P’, then = + =’ is an optimum set of node
potentials for P.

Proof. This property easily follows from the observa-
tion that if a solution x satisfies the optimality condi-
tion (4) with respect to the arc costs ¢; — 7(i) + w(j)
and node potentials 7', then the same solution satisfies
the same conditions with arc costs ¢; and node poten-
tials T + 7',

We expand (or uncontract) the nodes in the reverse
order in which they were contracted in the strongly
polynomial time algorithm and obtain optimum node
potentials of the successive problems. In the earlier
stages, between two successive problems we performed
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two transformations in the following order: we
replaced arc cost ¢; by its reduced cost ¢; — (i) +
m(j); and we contracted two nodes k and / into a single
new node p. We undo these transformations in the
reverse order. To undo the latter one, we set the
potentials of nodes k£ and / equal to that of node p,
and to undo the former one, we add = to the existing
node potentials. When all contracted nodes have been
expanded, the resulting node potentials are an opti-
mum set of node potentials for the minimum cost
flow problem.

We next use the optimal node potentials to obtain
an optimum flow by solving a maximum flow prob-
lem. There is a well known technique to accomplish
it (see, e.g., Ahuja, Magnanti and Orlin) and we
include it for the sake of completeness. Let #* denote
the optimum node potentials of the minimum cost
flow problem. We define the reduced cost ¢ of an arc
(i, )€ A as ¢; — =*(i) + =*(j). The optimality condi-
tion (4) implies that ¢ = 0 for each arc (i, j) € A.
Furthermore, at optimality, no arc (i, j) € 4 with
¢ > 0 can have positive flow; then arc (j, i)
will be present in the residual network with ¢ =
—c < 0, which violates (4). Hence, arcs with zero
reduced cost only are allowed to have positive flow
in the optimum solution. So the problem is reduced
to finding a nonnegative flow in the subnetwork
G° = (N, A°), where A° = {(i, j) € A: ¢} = 0}, that
meets the supply/demand constraints of nodes. We

solve this problem as follows. We introduce a super

source node s* and a super sink node t*. For each
node i with b(i) > 0, we add an arc (s*, i) with capacity
b(i), and for each node i with b(i) <0, we add an arc
(i*, t) with capacity —b(i). Then we solve a maximum
flow problem from s* to t*. The solution thus obtained
is feasible and satisfies the complementary slackness
condition (3); therefore, it is an optimum solution of
the minimum cost flow problem.

5. CAPACITATED MINIMUM COST FLOW
PROBLEM

The algorithm described in Section 4 solves the unca-
pacitated minimum cost flow problem as a sequence
of O(n log n) shortest path problems. In this section,
we consider the capacitated minimum cost flow prob-
lem. We define the capacity of an arc (i, j) € 4 as u;
and let

U’= max[max{|b(i)|: i € N}, max{u,;: (i, ) € 4}].

We show how the capacitated minimum cost flow
problem, with m’ capacitated arcs, can be solved as a

sequence of O((n + m’)log n)) shortest path problems,
where each shortest path problem takes S(n, m) time.

There is a well known transformation available
to convert a capacitated minimum cost flow prob-
lem to an uncapacitated one. This transformation
consists of replacing each capacitated arc (i, j) by an
additional node k and two arcs (i, k) and (J, k), as
shown in Figure 6. This gives us a network with node
set Ny U N,, where N, = N and each node in N,
corresponds to a capacitated arc in the original net-
work. If each arc in A4 is capacitated, then the trans-
formed network is bipartite. Each node in N, is a
demand node. When the algorithm described in sub-
section 4.3 is applied to the transformed network, it
solves O((n + m’)log n) shortest path problems
and each shortest path problem takes S((n + m’),
(m + m’)) time. If m’ = O(m), then the time to
solve a shortest path problem is O(m log n). To
reduce the time for shortest path computation to
O(m + n log n), we have to solve shortest path
problems more carefully. We achieve this by
solviné shortest path problems on a smaller network
G =N, A").

The basic idea behind the improved shortest path
algorithm is as follows. Suppose that we want to solve
a shortest path problem in a residual network where
node k is adjacent to only two nodes i and j. Then we
can eliminate node & from the network as follows. If
both (i, k) and (k, j) are in the residual network, then
we add the arc (i, j) with length ci + c¢x. Similarly, if
both (J, k) and (k, i) are in the network, then we add
the arc (J, i) with the length ci + c.. Then we delete
the node k and the arcs incident on this node. After

bi) b(j)

(a)

b(j) + Uy

(b)

Figure 6. Transforming a capacitated arc into unca-
pacitated arcs.




solving the shortest path problem in the reduced net-
work, we can obtain d(k) using

d(k) = min{d(i) + ca, d(j) + cu}.

Let G(x) denote the residual network corresponding
to the current pseudoflow x. The nodes in the residual
network are either original nodes or contracted nodes.
It is easy to see that each contracted node contains
at least one node in N. We form the network G’ =
(N’, A’) by eliminating the original nodes in N,. We
consider each original node k € N, and replace node
k and the two arcs incident on it, say (i, k) and (J, k),
by at most two arcs defined as follows. If x; > 0, then
add the arc (j, i) with length [; = ¢k — ¢k = i = 0
(because by Lemma 3b, ¢ = 0). Furthermore, if x>
0, then add the arc (i, j) with length /; = ¢k — ¢k =
¢% = 0. For each other arc (i, j) in G(x) that is not
replaced, we define /; = ¢f. Clearly, the network G’
has at most # nodes, m + 2m’ = O(m) arcs, and in
the network all arc lengths are nonnegative.

The shortest paths from some node s to all other
nodes in G’ can be determined in O(m + n log n)
time by Fredman and Tarjan’s (1987) implementation
of Dijkstra’s (1959) algorithm. Let d(-) denote the
shortest path distances in G’. These distances are used
to determine shortest path distances for the rest of the
nodes in G(x) in the following manner. Consider any
original node k in N, on which two arcs (i, k) and
(j, k) are incident. The shortest path distance to
node k from node s is min{d(i) + ¢, d(j) + ¢k} and
the path corresponding to the smaller quantity is the
shortest path. Thus, we can calculate shortest paths
from node s to all other nodes in G(x) in an additional
O(m) unit of time.

We have thus shown the following result.

Theorem 5. The strongly polynomial algorithm
solves the capacitated minimum cost flow problem in
O(m log n (m + nlog n)) time.

To conclude, we have developed a strongly poly-
nomial time algorithm for solving the capacitated
minimum cost flow problem as a sequence of
O(m log n) shortest path problems. This is the best
running time for the minimum cost flow problem if
the data are exponentially large, assuming that all
operations take O(1) steps. Moreover, for the case of
the uncapacitated minimum cost flow problem, this
algorithm is the fastest algorithm even in the case that
the data satisfy the similarity assumption. The running
time of our algorithm is O((n log n)(m + n log n)),
which compares favorably to the running time of
O(nm log(n*/m)log(nC)) for an algorithm developed
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by Goldberg and Tarjan (1987) and to O(nm loglog
U log(nC)) for an algorithm developed by Ahuja et al.
(1988). In addition, the algorithm presented here leads
to a good running time for solving the minimum cost
flow problem in parallel.
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