Recall: Joint distribution!

\[p(x,y) = P(X=x, Y=y) \] discrete pmf

\[f(x,y) = \frac{1}{\theta} P((X,Y) \in A) = \int_A f(x,y) \, dx \, dy \] contin. pdf

Marginal: \[p_X = \text{pmf of } X \]

\[f_X = \text{pdf of } X \]

\[f_X(x) = \int_{-\infty}^{\infty} f(x,y) \, dy \]

\[f_Y(y) = \int_{-\infty}^{\infty} f(x,y) \, dx \]

Note: can have contin. X, Y s.t. (X, Y) not contin but each of X, Y is contin.

e.g. \((X, Y) = \text{unit pt on diagonal } (0,0) \rightarrow (1,1)\)
There is no \(f \) s.t. \(p(x,y) = \int_A f(x,y) \, dx \, dy \).

For jointly contin \((XY)\), \(p(x=y) = 0 \)

Note: a R.V. \(X \) is contin iff CDF \(F_X \) is differentiable.

PDF can have jumps.

(Ex.: Unif[0,1])

Thm: \(E(X+Y) = (E(X) + E(Y)) \) assuming defined.

E.g.: If \(X \) = # Black cards in sample of size \(n \), \(E(X) = \frac{n}{2} \)

E.g. 3-birthday collision: \(n \) people, \(\binom{3}{1} \) triples, each is a collision w.p. \(\frac{1}{365^2} \)
$X = \# \text{ of triple collisions, then } EX = \frac{1}{365^2} \cdot \binom{n}{3}$

$EX = \frac{n(n-1)(n-2)}{6 \cdot 365^2}$

Poisson heuristic: If there are unlikely events, but $E(\# \text{ events that occur})$ is λ then $\# \text{ of occurrences is}$

$\approx \text{ Pois} (\lambda)$

$P(\text{no triple collis.}) \approx e^{-\lambda}$ \quad $\lambda = \binom{n}{3} \cdot \frac{1}{365^2}$
Independent RV:

Definition: R.V. X, Y are independent if for any $A, B \subset \mathbb{R}$,

$$P(X \in A, Y \in B) = P(X \in A) P(Y \in B)$$

Intuition: Knowing X does not tell us anything about Y, and vice versa.

This is enough to show

$$P(X \leq s, Y \leq t) = F_{XY}(s,t) = F_X(s) F_Y(t) \quad \forall s, t$$

where $F_{XY}(s,t)$ is the joint CDF.
For disc. RV. XY:

Independence iff $p(x,y) = p_X(x) \cdot p_Y(y)$

For contin. f:

Independence iff $f(x,y) = f_X(x) \cdot f_Y(y)$.

e.g. if X, Y have pdf $2e^{-x-y}$ on $[0,\infty) \times [0,\infty)$

$2e^{-x-2y} = e^{-x} \cdot 2e^{-2y}$

X, Y are independent.

On $[0,1] \times [0,1]$ $f_{XY} = x + 2y^3$

not a product of $f_X(x), f_Y(y)$ so not independent.
Idea of proof: \(P(\{X \in A, Y \in B\}) = \iiint_{A \times B} f(x, y) \, dx \, dy \)

If \(f(x, y) \) is a product, this factors

If independent, then use \(F(x, y) = F_X(x) \cdot F_Y(y) \)

at 4 points: \((x, y), (x+\epsilon, y), (x, y+\epsilon), (x+\epsilon, y+\epsilon)\)

Find \(P(x, y \in \square) \)

\(\det \epsilon \to 0 \)
Let X be $\exp(1)$.
Given X, let Y be unif $[0,X]$.

What is the pdf?

Thm: If X,Y contin. Joint pdf is $\frac{d}{dx} \frac{d}{dy} F(x,y)$

where $F(x,y) = P(X \leq x, Y \leq y)$

In the example:

![Diagram of a probability density function (pdf) with shaded regions for $F(x,y)$ and points along the x and y axes.](image)
If \(y > x \):

\[y \geq x \Rightarrow F(xy) = P(X \leq x) = 1 - e^{-x} \]

\[\frac{d}{dx} \frac{d}{dy} = 0 \text{ when } y > x \text{ as expected.} \]

If \(y < x \):

\[F(xy) = P(X \leq y) + P(X \in [y, x], Y \leq y) \]

\[= 1 - e^{-y} + \int_y^x e^{-t} dt \cdot \frac{y}{t} \]

Take \(\frac{d}{dx} \frac{d}{dy} \): \[f(xy) = \frac{d}{dx} \frac{d}{dy} \int_y^x e^{-t} dt \cdot \frac{y}{t} \]
\[f(x, y) = \frac{d}{dy} \left(e^{-x} \frac{y}{x} \right) = \frac{e^{-x}}{x} \]

sol. \(f(x, y) = \frac{e^{-x}}{x} \) on wedge \(0 \leq y \leq x \) \\
\(0 \) elsewhere

not a factor since

\[f(x, y) = \frac{e^{-x}}{x}, 1 < x \geq 0, 1 > y > 0, 1 y \leq x \]
More details: If \(y \leq x \) then \(P(x \leq x, y \leq y) = P(A) + P(B) \)

\[
P(A) = P(x \leq y) = 1 - e^{-y}
\]

\[
P(B) = \int_{y}^{x} p(x = t) dt \quad P(y \leq y | x = t)
\]

\[
= \int_{y}^{x} e^{-t} dt \frac{y}{t}
\]

and so \(\frac{d}{dx} \frac{d}{dy} [P(A) + P(B)] = \frac{e^{-x}}{x} \)

\(\Box \) this is a slight abuse of notation, since \(P(x = t) = 0 \).

However, this can be justified

If \(x = t \), \(y \) is uniform on \([0, t]\) so \(P(Y \leq y) = \frac{y}{t} \).
Law of uncon. statistician: \[E(g(x,y)) = \iiint g(x,y) f(x,y) \, dx \, dy \]

If \(g(x,y) = xy \), and \(x, y \) indep:

\[
E(xy) = \iint xy \, f(x) \, f_y(y) \, dx \, dy = \left(\int x \, f_x(x) \, dx \right) \left(\int y \, f_y(y) \, dy \right) = E(X) \cdot E(Y)
\]

Thm: If \(x, y \) indep. then \(E(xy) = (E(x))(E(y)) \).