Problem 1. Let Z be a standard normal variable. Find all the moments of Z. (Hint: expand the characteristic function as a taylor series.)

Problem 3. Let A be an $n \times n$ matrix, and let $X = (X_1, \ldots, X_n)^T$ be a vector of i.i.d. $N(0, 1)$ random variables. Let $Y = AX$, and Y_i its coordinates.
 (a) What is the distribution of Y_i?
 (b) Find Cov(Y_i, Y_j).
 (c) If $n = 2$ and A is invertible, show that Y_1, Y_2 have joint probability density function
 \[\frac{1}{(2\pi)^{n/2} |\det A|} e^{-(y^T A^{-2} y)/2} \]
 on \mathbb{R}^2, where $y = (y_1, y_2)^T$ is a vector.) (Hint: What is the Jacobian of the mapping from X to Y?)
 (d) If A is invertible, show that Y has probability density function with the same formula.

Problem 4. (a) If X is an integer valued random variable, show that the characteristic function of X has period 2π.
 (b) Prove the converse: if $\phi(t) = \phi(t + 2\pi)$ for every t, then show that X takes only integer values. (Hint: If a random variable Y satisfies $Y \geq 0$ and $E[Y] = 0$ then $P(Y = 0) = 1$. Use this for a carefully chosen function of X.)

Problem 5. This problem is concerned with the random walk in \mathbb{Z}. Let $X_i = \pm 1$ with probability $\frac{1}{2}$ each be independent. Let $S_n = X_1 + X_2 + \cdots + X_n$.
 (a) Simulate a random walk with 10^6 steps. Submit your code and a plot of S_0, \ldots, S_n.
 (b) Simulate 1000 independent random walks, each for up to 10^6 steps. For each walk, let T be the first time the walk returns to 0. If a walk does not return to 0, let $T = 10^6$. How many of the 1000 walks did not return to 0? Submit a histogram of the values of T observed.
 (c) Make a log-log plot of the fraction of times $T > k$ for $k = 0, \ldots, 10^6$.
 (d) Based on the previous plot, guess the asymptotics of $P(T > n)$ as $n \to \infty$. What do you think is the mean of T?