This midterm has 4 questions on 6 pages, for a total of 35 points.

Duration: 50 minutes

- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations; answers without justifications will not be marked.
- Continue on the back of the previous page if you run out of space.
- Attempt to answer all questions for partial credit.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)
- Don't think about pink elephants.
- Does anyone read these things?

Full Name (including all middle names): \qquad

Student-No: \qquad

Signature: \qquad

Question:	1	2	3	4	Total
Points:	15	6	6	8	35
Score:					

SHORT ANSWER QUESTIONS.

Please show your work and also underline your answer.
Each question is worth 3 marks, but an incorrect answer will be given at most 1 mark.
Unless otherwise stated, it is not necessary to simplify your answers.
3 marks 1. (a) Let $y=\tan (\arccos (x))$. What is $\frac{\mathrm{d} y}{\mathrm{~d} x}$? (remember \arccos is inverse-cosine).

3 marks (b) What is $\lim _{x \rightarrow+\infty} \frac{x+2}{\sqrt{4 x^{2}+x}}$?

3 marks
(c) Use a linear approximation to estimate $\sqrt{3.9}$.

3 marks (d) Find the derivative of the following function

$$
g(t)=\frac{(1+t)^{3 / 2}(2-\cos (t))^{7}}{\left(1+e^{t}\right)^{2 / 5}}
$$

3 marks (e) If $x^{3}-y^{3}=e^{y}$ what is $\frac{\mathrm{d} y}{\mathrm{~d} x}$?

FULL-SOLUTION PROBLEMS

In questions $2-4$, justify your answers and show all your work. If you need more space, use the back of the previous page.
2. A 1 kg lump of unknown material is decaying radioactively. After 20 minutes 100 g has decayed.
(a) What is the half-life of the material?
(b) How long until only 250 g remain?

6 marks 3. Your friend is riding a big circular Ferris wheel with radius 30 m . It completes one rotation every 5 minutes. How fast is your friend rising when they are 18 m higher than the centre of the wheel? Include units in your answer.

4. Consider the function $f(x)=e^{x} \sin (x)$.
(a) Write down the 3rd degree Maclaurin polynomial for f and so approximate $f(1 / 2)$.
(b) Estimate the error in this approximation.

