This midterm has 4 questions on 6 pages, for a total of 35 points.

Duration: 50 minutes

- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations; answers without justifications will not be marked.
- Continue on the back of the previous page if you run out of space.
- Attempt to answer all questions for partial credit.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)
- Don't think about pink elephants.
- Does anyone read these things?

Full Name (including all middle names): \qquad

Student-No: \qquad

Signature: \qquad

Question:	1	2	3	4	Total
Points:	15	6	6	8	35
Score:					

SHORT ANSWER QUESTIONS.

Please show your work and also underline your answer.
Each question is worth 3 marks, but an incorrect answer will be given at most 1 mark.
Unless otherwise stated, it is not necessary to simplify your answers.

3 marks

3 marks

3 marks
3 marks

1. (a) Let $y=\tan (\arccos (x))$. What is $\frac{\mathrm{d} y}{\mathrm{~d} x}$? (remember \arccos is inverse-cosine).

Solution:

$$
\begin{aligned}
y & =\tan (\arccos (x)) \\
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\sec ^{2}(\arccos x) \cdot \frac{\mathrm{d}}{\mathrm{~d} x}(\arccos x) \\
& =\frac{1}{\cos ^{2}(\arccos x)} \cdot \frac{-1}{\sqrt{1-x^{2}}} \\
& =\frac{1}{x^{2}} \cdot \frac{-1}{\sqrt{1-x^{2}}}=\frac{-1}{x^{2} \sqrt{1-x^{2}}}
\end{aligned}
$$

(c) Use a linear approximation to estimate $\sqrt{3.9}$.

Solution: Let $f(x)=\sqrt{x}$ and we expand around $a=4$. We need the first derivative - $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$. The linear approximation is

$$
\begin{aligned}
L(x) & =f(4)+f^{\prime}(4)(x-4) \\
& =2+\frac{1}{4}(x-4) \\
L(4.1) & =2+\frac{1}{4} \cdot-0.1 \\
& =2-0.025=1.975
\end{aligned}
$$

3 marks (d) Find the derivative of the following function

$$
g(t)=\frac{(1+t)^{3 / 2}(2-\cos (t))^{7}}{\left(1+e^{t}\right)^{2 / 5}}
$$

Solution: Use log-differentiation

$$
\ln g=\frac{3}{2} \ln (1+t)+7 \ln (2-\cos t)-\frac{2}{5} \ln \left(1+e^{t}\right)
$$

differentiate wrt t

$$
\begin{aligned}
\frac{1}{g} \frac{\mathrm{~d} g}{\mathrm{~d} t} & =\frac{3}{2(1+t)}+\frac{7 \sin t}{2-\cos (t)}-\frac{2 e^{t}}{5\left(1+e^{t}\right)} \\
\frac{\mathrm{d} g}{\mathrm{~d} t} & =\left(\frac{3}{2(1+t)}+\frac{7 \sin t}{2-\cos (t)}-\frac{2 e^{t}}{5\left(1+e^{t}\right)}\right) \frac{(1+t)^{3 / 2}(2-\cos (t))^{7}}{\left(1+e^{t}\right)^{2 / 5}}
\end{aligned}
$$

3 marks
(e) If $x^{3}-y^{3}=e^{y}$ what is $\frac{\mathrm{d} y}{\mathrm{~d} x}$?

Solution:

$$
\begin{aligned}
x^{3}-y^{2} & =e^{y} \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(x^{3}\right)-\frac{\mathrm{d}}{\mathrm{~d} x}\left(y^{2}\right) & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(e^{y}\right) \\
3 x^{2}-2 y \frac{\mathrm{~d} y}{\mathrm{~d} x} & =e^{y} \frac{\mathrm{~d} y}{\mathrm{~d} x} \\
3 x^{2} & =\left(2 y+e^{y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} \\
\frac{\mathrm{~d} y}{\mathrm{~d} x} & =\frac{3 x^{2}}{2 y+e^{y}}
\end{aligned}
$$

FULL-SOLUTION PROBLEMS

In questions $2-4$, justify your answers and show all your work. If you need more space, use the back of the previous page.
2. A 1 kg lump of unknown material is decaying radioactively. After 20 minutes 100 g has decayed.
(a) What is the half-life of the material?

Solution:

$$
\begin{array}{rlrl}
P(t) & =P(0) e^{k t} & P(0) & =1 k g \\
P(20)=0.9 & =e^{20 k} & k & =\ln (0 . \\
0.5 & =e^{t \ln (0.9) / 20} & & \\
\ln (0.5) & =t \ln (0.9) / 20 & & \\
t & =20 \ln (0.5) / \ln (0.9) \text { minutes } & &
\end{array}
$$

(b) How long until only 250 g remain?

Solution: In one "half-life" there will be 500 g remaining. In two "half-lives" there will be 250 g remaining. Hence $40 \ln (0.5) / \ln (0.9)$ minutes.

6 marks 3. Your friend is riding a big circular Ferris wheel with radius 30 m . It completes one rotation every 5 minutes. How fast is your friend rising when they are 18 m higher than the centre of the wheel? Include units in your answer.

Solution:

- Since the wheel rotates once in 5 minutes, $\frac{\mathrm{d} \theta}{\mathrm{d} t}=2 \pi / 5$ radians per minute.
- The height above the centre of the wheel is given by $h=30 \sin \theta$.
- Thus $\frac{\mathrm{d} h}{\mathrm{~d} t}=30 \cos \theta \cdot \frac{\mathrm{~d} \theta}{\mathrm{~d} t}$.
- When they are at $h=18, \sin \theta=18 / 30=3 / 5$. Since $\sin ^{2} \theta+\cos ^{2} \theta=1$, $\cos \theta=4 / 5$. It really helps to know $3^{2}+4^{2}=5^{2}-$ you should!
- Putting this together gives $\frac{\mathrm{d} h}{\mathrm{~d} t}=30 \cdot \frac{4}{5} \cdot \frac{2 \pi}{5}=\frac{48 \pi}{5}$ metres per minute.

4. Consider the function $f(x)=e^{x} \sin (x)$.
(a) Write down the 3rd degree Maclaurin polynomial for f and so approximate $f(1 / 2)$.

Solution:

$$
\begin{array}{rlrl}
f(x) & =e^{x} \sin x & f(0) & =0 \\
f^{\prime}(x) & =e^{x}(\sin x+\cos x) & f^{\prime}(0)=1 \\
f^{\prime \prime}(x) & =e^{x}(\sin x+\cos x+\cos x-\sin x) & \\
& =2 e^{x} \cos x & f^{\prime \prime}(0)=2 \\
f^{\prime \prime \prime}(x) & =2 e^{x}(\cos x-\sin x) & f^{\prime \prime \prime}(0)=2 \\
T_{3}(x) & =x+\frac{2}{2!} x^{2}+\frac{2}{3!} x^{3} & \\
& =x+x^{2}+\frac{1}{3} x^{3} &
\end{array}
$$

Thus

$$
T_{3}(1 / 2)=\frac{1}{2}+\frac{1}{4}+\frac{1}{8} \times \frac{1}{3}=\frac{12+6+1}{24}=\frac{19}{24}
$$

(b) Estimate the error in this approximation.

Solution: We need $f^{(4)}(x)$

$$
f^{(4)}(x)=2 e^{x}(\cos x-\sin x)+2 e^{x}(-\sin x-\cos x)=-4 e^{x} \sin x
$$

Plugging this into the remainder formula

$$
\begin{aligned}
R_{4}(x) & =\frac{1}{4!} f^{(4)}(c)(x-a)^{4} & \text { with } 0<c<1 / 2 \\
\left|R_{4}(1 / 2)\right| & =\frac{1}{24}\left|-4 e^{c} \sin c\right| \frac{1}{16} & |\sin c|<1 \\
& \leq \frac{4}{24} \cdot \frac{1}{16} \cdot\left|e^{c}\right| & e^{c}<3 \\
& \leq \frac{12}{24} \cdot \frac{1}{16}=\frac{1}{32} &
\end{aligned}
$$

