This midterm has 4 questions on 5 pages, for a total of 35 points.

Duration: 50 minutes

- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations, answers without justifications will not be marked.
- Continue on the back of the previous page if you run out of space.
- Attempt to answer all questions for partial credit.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

Full Name (including all middle names): \qquad

Student-No: \qquad

Signature: \qquad

Question:	1	2	3	4	Total
Points:	15	6	7	7	35
Score:					

SHORT ANSWER QUESTIONS.

Please show your work and also underline your answer.
Each question is worth 3 marks, but an incorrect answer will be given at most 1 mark. Unless otherwise stated, it is not necessary to simplify your answers.

3 marks

1. (a) Evaluate the limit $\lim _{x \rightarrow 2} \frac{x-2}{x^{2}-4} \quad$ or determine that it does not exist.

3 marks (b) Evaluate the limit $\lim _{t \rightarrow 0} \frac{\sqrt{t+9}-3}{t}$ or determine that it does not exist.

3 marks (c) What value of c makes the following function continuous?

$$
h(x)= \begin{cases}3 x+2 & \text { if } x<c \\ 4-x & \text { if } x \geq c\end{cases}
$$

3 marks (d) Find the derivative of $f(x)=\frac{e^{x}}{x^{3}+3}$

3 marks (e) Find the second derivative of $f(x)=x^{2} e^{x}$.

FULL-SOLUTION PROBLEMS

In questions $2-4$, justify your answers and show all your work. If you need more space, use the back of the previous page.

6 marks 2. Let

$$
f(x)=e^{\sin x}-x
$$

Explain why $f(x)$ is continuous for all x. Then use the Intermediate Value Theorem to prove there is a point c in the open interval $(0, \pi)$ so that $f(c)=0$.

7 marks 3. Find the equation of a line that is tangent to the curve $f(x)=x^{2}-2 x$ and passes through the point $(2,-4)$.

7 marks 4. Let $g(t)=\frac{t}{2+t}$. Use the definition of the derivative to find $\frac{\mathrm{d} g}{\mathrm{~d} t}$.
You must show your work.
No credit will be given on this problem for using derivative formulas.

