This midterm has 4 questions on 5 pages, for a total of 35 points.

Duration: 50 minutes

- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations, answers without justifications will not be marked.
- Continue on the back of the previous page if you run out of space.
- Attempt to answer all questions for partial credit.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

Full Name (including all middle names):

Student-No:

Signature:

Question:	1	2	3	4	Total
Points:	15	6	7	7	35
Score:					

SHORT ANSWER QUESTIONS.

Please show your work and also <u>underline your answer</u>. Each question is worth 3 marks, but an incorrect answer will be given at most 1 mark. Unless otherwise stated, it is not necessary to simplify your answers.

3 marks 1. (a) Evaluate the limit $\lim_{x \to 2} \frac{x-2}{x^2-4}$ or determine that it does not exist.

3 marks (b) Evaluate the limit
$$\lim_{t \to 0} \frac{\sqrt{t+9}-3}{t}$$
 or determine that it does not exist

3 marks

(c) What value of c makes the following function continuous?

$$h(x) = \begin{cases} 3x + 2 & \text{if } x < c \\ 4 - x & \text{if } x \ge c \end{cases}$$

3 marks

(d) Find the derivative of $f(x) = \frac{e^x}{x^3 + 3}$

3 marks (e) Find the *second* derivative of $f(x) = x^2 e^x$.

FULL-SOLUTION PROBLEMS

In questions 2–4, justify your answers and **show all your work.** If you need more space, use the back of the *previous* page.

6 marks 2. Let

 $f(x) = e^{\sin x} - x$

Explain why f(x) is continuous for all x. Then use the Intermediate Value Theorem to prove there is a point c in the open interval $(0, \pi)$ so that f(c) = 0.

7 marks 3. Find the equation of a line that is tangent to the curve $f(x) = x^2 - 2x$ and passes through the point (2, -4).

7 marks 4. Let $g(t) = \frac{t}{2+t}$. Use the definition of the derivative to find $\frac{dg}{dt}$.

You must show your work.

No credit will be given on this problem for using derivative formulas.