Fontaine-Mazur conjecture and p-adic Galois representations

Exercises

13th June 2014

In this series of exercises we construct the Witt rings of perfect rings of characteristic p. Let A be a commutative ring with 1 in which $p = 1 + \cdots + 1 \in A$ is not a zero divisor and the natural map $A \to \lim_{\leftarrow n} A/p^n A$ is an isomorphism (ie. A is p-adically complete). Further suppose that $R := A/pA$ is a perfect ring of characteristic p, that is the p-power Frobenius is bijective: for all $x \in R$ there exists uniquely a $y := x^{p^{-1}} \in R$ with $x = y^p$. These rings A are called strict p-rings. For example $A = \mathbb{Z}_p$ is a strict p-ring.

1. Show that on fields k of characteristic p the Frobenius is always injective and it is surjective if and only if none of the irreducible polynomials over k have a multiple root.

2. Show that a ring R of characteristic p (ie. commutative and $1 + \cdots + 1 = 0$) is reduced (ie. contains no nilpotent elements) if the Frobenius is injective.

3. Let A be a strict p-ring with $R := A/pA$ perfect of characteristic p. For any $x \in R$ denote by \hat{x} an arbitrary lift of x to A (ie. $x = \hat{x} + pA$). We choose once and for all such a lift for each $x \in R$. Show that the limit $[x] := \lim_{n \to \infty} (x^{p^{-n}})^{p^n}$ exists in A in the p-adic topology. Moreover, verify that $[xy] = [x][y]$. The element $[x] \in A$ is called the multiplicative (or Teichmüller) representative of x.

4. Show that in a strict p-ring A any element $x \in A$ can be uniquely written in the form

$$x = \sum_{i=0}^{\infty} p^i [x_i]$$

where $[x_i] \in A$ are multiplicative representatives of elements $x_i \in R$. Moreover, any sum like that converges in the p-adic topology.

Let R be a perfect ring of characteristic p. Our goal is to construct a strict p-ring $W(R)$ such that $R \cong W(R)/pW(R)$. Further, we would like to do this functorially in R. Such a $W(R)$ will be unique up to a unique isomorphism and will be called the Witt ring of R. The elements of $W(R)$ will have the form $\sum_{i=0}^{\infty} p^i [x_i]$ with $x_i \in R$. Here $[x_i]$ denotes a formal multiplicative representative of x_i in $W(R)$. In order to define the addition and multiplication
on these formal power series we first need to construct the Witt ring of a free perfect ring of characteristic p on countably many generators. Let $X_0, X_1, \ldots, Y_0, Y_1, \ldots$ be formal variables. Moreover, let $X_i^{p^{-n}}$ and $Y_i^{p^{-n}}$ denote a formal p^nth root of these variables. Further let

$$Z_p[X_i^{p^{-\infty}}, Y_i^{p^{-\infty}} \mid i \geq 0] := \bigcup_{n} Z_p[X_i^{p^{-n}}, Y_i^{p^{-n}} \mid i \geq 0] ;$$

$$S := \lim_{n} Z_p[X_i^{p^{-\infty}}, Y_i^{p^{-\infty}} \mid i \geq 0]/(p^n) .$$

5. Show that S is a strict p-ring. Therefore there exist polynomials $S_1, P_i \in S/pS = F_p[X_i^{p^{-\infty}}, Y_i^{p^{-\infty}} \mid i \geq 0]$ for which

$$\left(\sum_{i=0}^{\infty} p^i X_i \right) + \left(\sum_{i=0}^{\infty} p^i Y_i \right) = \sum_{i=0}^{\infty} p^i [S_i]$$

$$\left(\sum_{i=0}^{\infty} p^i X_i \right) \left(\sum_{i=0}^{\infty} p^i Y_i \right) = \sum_{i=0}^{\infty} p^i [P_i] .$$

6. Determine the polynomials $S_0, S_1, P_0, P_1 \in F_p[X_i^{p^{-\infty}}, Y_i^{p^{-\infty}} \mid i \geq 0]$.

7. Let R be a perfect ring of characteristic p and put $W(R) = \{ r = (r_0, r_1, \ldots) \mid r_i \in R, i \geq 0 \} = R^\mathbb{N}$ as a set. Consider the following operations on $W(R)$: $(r + s)_n := S_n(r_0, r_1, \ldots, s_0, s_1, \ldots)$ and $(rs)_n := P_n(r_0, r_1, \ldots, s_0, s_1, \ldots)$. Show that this equips the set $W(R)$ with a structure of a strict p-ring.

8. Prove the following universal property of $W(R)$: if A is any strict p-ring and $\varphi: R \rightarrow A/pA$ is a ring homomorphism then there exists a unique homomorphism $\tilde{\varphi}: W(R) \rightarrow A$ lifting φ, i.e. φ equals $\tilde{\varphi}$ modulo p. In particular, W is a functor from the category of perfect rings of characteristic p to the category of strict p-rings. Remark: Frobp: $R \rightarrow R$ can also be lifted to $W(R)$. We call this Frobenius-lift.

9. Show that the functors $R \mapsto W(R)$ and $A \mapsto A/pA$ are quasi-inverse equivalences of categories between the category of strict p-rings and the category of perfect rings of characteristic p.

10. Show that the field $\mathbb{C}_p := \hat{\mathbb{C}}_p$ is algebraically closed. (Here $\hat{\cdot}$ stands for the algebraic closure and $\hat{\cdot}$ stands for the completion with respect to the p-adic absolute value.)

11. For a finite extension K/\mathbb{Q}_p (inside $\overline{\mathbb{Q}}_p$) denote by $G_K = \text{Gal}(\overline{\mathbb{Q}}_p/K)$ its absolute Galois group. Since the action of G_K is continuous (isometric) on $\overline{\mathbb{Q}}_p$ it extends to the completion \mathbb{C}_p. Show that $\mathbb{C}_p^{G_K} = K$, i.e. there are no transcendental invariants.

12. (Hilbert 90 for GL$_n$) Show that for any finite Galois extension L/K of fields we have

$$H^1(\text{Gal}(L/K), \text{GL}_n(L)) = \{1\} .$$

Note that for $n > 1$ this is just a pointed set, not a group. Recall that the nonabelian group cohomology is defined as follows: if the group G acts on the group A via automorphisms then $H^1(G, A)$ is the set of equivalence classes of 1-cocycles: a 1-cocycle is a
map \(\varphi : G \to A \) with the property that \(\varphi(gh) = \varphi(g) \cdot (g\varphi(h)) \). Moreover, \(\varphi \) is equivalent to \(\varphi' \) if there exists an \(a \in A \) such that for all \(g \in G \) we have \(a\varphi'(g) = \varphi(g) \cdot (ga) \). The distinguished element of the set \(H^1(G, A) \) is the equivalence class of the constant 1 map.

13. (Thm. Ax–Sen–Tate) Prove that for any closed subgroup \(H \leq G_K \) we have \(\mathbb{C}_p^H = \widehat{L} \) where \(L = \mathbb{Q}_p^H \).

The following exercises are meant to be done after the course.

14. Let \(\Lambda \) be a finitely generated \(\mathbb{Z}_p \)-module equipped with a continuous representation by \(G_K = \text{Gal}(\overline{K}/K) \) for the fraction field \(K \) of a complete discrete valuation ring. Let \(\rho : G_K \to \text{Aut}_{\mathbb{Z}_p}(\Lambda) \) be the associated homomorphism. Prove that \(\ker \rho \) is a closed normal subgroup in \(G_K \), and let \(K_\infty \) be the corresponding fixed field; we call it the splitting field of \(\rho \). In case \(\rho \) is the Tate module representation of an elliptic curve \(E \) over \(F \) with \(\text{char}(K) \neq p \), prove that the splitting field of \(\rho \) is the field \(K(E[p^\infty]) \) generated by the coordinates of the \(p \)-power torsion points.

15. Let \(E \) be an elliptic curve over \(K \) with split multiplicative reduction, and consider the representation space \(V_p(E) = \mathbb{Q}_p \otimes_{\mathbb{Z}_p} T_p(E) \in \text{Rep}_{\mathbb{Q}_p}(G_K) \). The theory of Tate curves provides an exact sequence

\[
0 \to \mathbb{Q}_p(1) \to V_p(E) \to \mathbb{Q}_p \to 0
\]

that is non-split in \(\text{Rep}_{\mathbb{Q}_p}(G_{K'}) \) for all finite extensions \(K'/K \) inside of \(\overline{K} \). Show that the exact sequence

\[
0 \to \overline{K}(1) \to \overline{K} \otimes_{\mathbb{Q}_p} V_p(E) \to \overline{K} \to 0
\]

is not split in the category \(\text{Rep}_{\overline{K}}(G_K) \) of semilinear representations of \(G_K \) on \(\overline{K} \)-vector spaces either. However, the exact sequence

\[
0 \to \mathbb{C}_p(1) \to \mathbb{C}_p \otimes_{\mathbb{Q}_p} V_p(E) \to \mathbb{C}_p \to 0
\]

splits in \(\text{Rep}_{\mathbb{C}_p}(G_K) \).

16. Let \(\eta : G_K \to \mathbb{Z}_p^* \) be a continuous character. Identify \(H^1_{\text{cont}}(G_K, \mathbb{C}_p(\eta)) \) with the set of isomorphism classes of extensions

\[
0 \to \mathbb{C}_p(\eta) \to W \to \mathbb{C}_p \to 0
\]

in \(\text{Rep}_{\mathbb{C}_p}(G_K) \) as follows: using the matrix description

\[
\begin{pmatrix}
\eta & * \\
0 & 1
\end{pmatrix}
\]

of such a \(W \), the homomorphism property for the \(G_K \)-action on \(W \) says that the upper right entry function is a 1-cocycle on \(G_K \) with values in \(\mathbb{C}_p(\eta) \), and changing the choice of \(\mathbb{C}_p \)-linear splitting changes this function by a 1-coboundary.
17. Let R be a discrete valuation ring with maximal ideal m and residue field k, and let $A = \operatorname{Frac}(R)$. There is a natural structure of a filtered ring on A via $A^i = m^i$ for $i \in \mathbb{Z}$. In this case the associated graded ring $\operatorname{gr}^\bullet(A)$ is a k-algebra that is non-canonically isomorphic to a Laurent polynomial ring $k[t, 1/t]$ upon choosing a k-basis of m/m^2. Show that canonically $\operatorname{gr}^\bullet(A) \cong \operatorname{gr}^\bullet(\hat{A})$, where \hat{A} denotes the fraction field of the completion \hat{R} of R.

18. Let the ring R be $R := \varprojlim \left\{ x \mapsto x^p \mathcal{O}_C / (p) \right\}$. Show that R has no zero divisors and $\operatorname{Frac}(R)$ is an algebraically closed field of characteristic p.

19. Show that B_{st}^+ is not (\mathbb{Q}_p, G_K)-regular.

20. Show that a 1-dimensional p-adic Galois-representation is deRham if and only if it is Hodge-Tate.

21. Show that a p-adic Galois representation V is deRham (resp. Hodge-Tate) if and only if all its Tate twists $V(r)$ are deRham (resp. Hodge-Tate).

22. Calculate explicitly $D_{\text{cris}}(\mathbb{Q}_p(r))$.

23. Calculate explicitly $D_{\text{st}}(V_p(E))$ where E is an elliptic curve over K with split multiplicative reduction (you may assume it is a Tate curve).