Introduction to étale cohomology

Ádám Gyenge1

1ELTE TTK
Department of Geometry

16 June 2014
Outline

1. Grothendieck topologies
2. Presheaves and sheaves on sites
3. Cohomology of sheaves
4. Étale morphisms and sites
5. Some useful theorems
6. l-adic comology
The site of a topological space

Let

- \(X \) be a topological space,
- \(X_{cl} \) be the set of all open subsets of \(X \),
- \(\text{cov}(X_{cl}) \) be the set of families \(\{U_i \to U\} \) which are coverings of an \(U \subseteq X \) open.

\(X_{cl} \) becomes a category if we set:

\[
\text{Hom}(U, V) = \begin{cases}
\emptyset & \text{if } U \not\subseteq V \\
\text{inclusion } U \to V & \text{if } U \subseteq V.
\end{cases}
\]

In this category if \(U_1 \to U \) and \(U_2 \to U \) are arrows, then their fiber product is their intersection:

\[
U_1 \times_U U_2 = U_1 \cap U_2.
\]
Properties of $\text{cov}(X_{cl})$

Proposition

(T1) For $U_i \to U \in \text{cov}(X_{cl})$ and a morphism $V \to U$ in X_{cl} all fibre products $U_i \times_U V$ exist and $\{U_i \times_U V \to V\} \in \text{cov}(X_{cl})$.

(T2) Given $\{U_i \to U\} \in \text{cov}(X_{cl})$ and a family $\{V_{ij} \to U_i\} \in \text{cov}(X_{cl})$ for all $i \in I$, the family $\{V_{ij} \to U\}$ obtained by composition of morphisms, also belongs to $\text{cov}(X_{cl})$.

(T3) If $V \to U$ is an isomorphism in X_{cl}, then $\{V \to U\} \in \text{cov}(X_{cl})$.

In fact, the set $\text{cov}(X_{cl})$ describes the topology of X.
Grothendieck topologies

Definition
A topology (or site) T consists of a category $\text{cat}(T)$ and a set $\text{cov}(T)$ of coverings, i.e. families $\{U_i \to U\}_{i \in I}$ of morphisms in $\text{cat}(T)$, which satisfy (T1), (T2) and (T3).

Definition
A morphism $f : T \to T'$ of topologies is a functor $f : \text{cat}(T) \to \text{cat}(T')$ of the underlying categories with the following two properties

(a) $\{U_i \to U\} \in \text{cov}(T) \Rightarrow \{f(U_i) \to f(U)\} \in \text{cov}(T')$

(b) For $\{U_i \to U\} \in \text{cov}(T)$ and a morphism $V \to U$ in $\text{cat}(T)$ the canonical morphism

$$f(U_i \times_U V) \to f(U_i) \times_{f(U)} f(V)$$

is an isomorphism for all i.
Presheaves and sheaves on topological spaces

Let \mathcal{C} be a category (e.g. Sets or Ab).
If X is a topological space, a presheaf on X with values in \mathcal{C} is a functor

$$F : X^\text{op} \to \mathcal{C}.$$

For every presheaf F of sets on X and every $\{U_i \to U\} \in \text{cov}(T)$ there is a diagram

$$F(U) \to \prod_i F(U_i) \xrightarrow{\text{pr}_1^*} \prod_{i,j} F(U_i \times_U U_j).$$

Here $F(U) \to \prod_i F(U_i)$ is induced by the restrictions

$F(U) \to F(U_i)$, and $\prod_i F(U_i) \xrightarrow{\text{pr}_1^*} \prod_{i,j} F(U_i \times_U U_j)$ is induced by

$\text{pr}_1^* : F(U_i) \xrightarrow{\text{pr}_1^*} \prod_j F(U_i \times_U U_j)$ for each i (pr_2^* similarly).
The sheaf condition

The presheaf $F : X^{\text{op}}_{cl} \to C$ is a sheaf, if the following holds:

\((SH) \) For every $\{U_i \to U\} \in \text{cov}(T)$ and every $a_i \in F(U_i)$, such that $\text{pr}_1^*(a_i) = \text{pr}_2^*(a_j) \in F(U_i \times_U U_j) (= F(U_i \cap U_j))$ for every i, j, there is a unique $a \in F(U)$ whose pullback to $F(U_i)$ is a_i.

Equivalently:

\((SH') \) For every $\{U_i \to U\} \in \text{cov}(T)$ the diagram

\[F(U) \to \prod_i F(U_i) \xrightarrow{\text{pr}_1^*} \prod_i F(U_i \times_U U_j) \]

has the properties:

- $F(U) \to \prod_i F(U_i)$ is injective,
- $\text{Im}(F(U) \to \prod_i F(U_i)) = \{(a_i) \in \prod_i F(U_i) | \text{pr}_1^*(a_i) = \text{pr}_2^*(a_j) \forall i, j\}$.
Presheaves and sheaves on sites

Let \mathcal{C} be an category and \mathcal{T} a topology.

Definition

1. A *presheaf* on X with values in \mathcal{C} is a contravariant functor

 $$F : \mathcal{T} \to \mathcal{C},$$

2. F is a *sheaf* if it moreover satisfies (SH), or equivalently (SH’).

3. A *morphism of (pre)sheaves* $F \to G$ is a natural transformation of functors.

Abelian presheaves and sheaves on a topology \mathcal{T} form abelian categories \mathcal{P} and \mathcal{S}.
All sheaves are presheaves, so there is an inclusion functor

\[i : S \to \mathcal{P} . \]

Theorem

There exist a left-adjoint functor \(\# : S \to \mathcal{P} \) of \(i \).

Definition

For each \(F \in \mathcal{P} \), the sheaf \(F\# \) is called the *sheaf associated to the presheaf \(F \).*

This is a universal construction in the sense, that each morphism from \(F \) to an abelian sheaf \(G \) factors uniquely as \(F \to F\# \to G \).
Refinement of coverings

Definition
\[\{U_j \rightarrow U\}_{j \in J} \rightarrow \{U_i \rightarrow U\}_{i \in I} \] if there is an \(\varepsilon : J \rightarrow I \), such that
\(\{U_j' \rightarrow U\} \) factorizes as

\[U_j' \xrightarrow{} U \xrightarrow{} U \]

\[\triangleleft \]

\[U_{\varepsilon(j)} \]

\(\sim \) an inverse system of covers can be constructed.
Reminder on derived functors

- An abelian category \mathcal{C} has enough injectives, if for each object A there is a monomorphism $A \to I$ into an injective object of \mathcal{C}.
- If $F : \mathcal{C} \to Ab$ is an additive, left-exact functor, then its derived functor is defined as
 1. Construct an injective resolution of X:
 \[0 \to X \to I^0 \to I^1 \to I^2 \ldots . \]
 2. Apply F on it and chop off the first term:
 \[0 \to F(I^0) \to F(I^1) \to F(I^2) \ldots . \]
 3. The i-th derived functor of F on X is
 \[R^i F(X) := \ker(d^i)/\im(d^{i-1}) . \]
Cohomology of sheaves

S has enough injectives \Rightarrow we can take right derived functors. Consider for a fixed $U \in \mathcal{T}$ the section functor

$$\Gamma_U : S \to \text{Ab},$$

defined by $\Gamma_U(F) = F(U)$. This is additive, left-exact, and

\[
\begin{array}{ccc}
S & \xrightarrow{\Gamma_U} & \text{Ab} \\
\downarrow i & & \downarrow \Gamma_U \\
\mathcal{P} & \xleftarrow{i} & \\
\end{array}
\]

Definition

For $q \geq 0$, the q-th cohomology group of U with values in F is

$$H^q(U, F) := R^q\Gamma_U(F).$$
Direct/inverse images for presheaves

Let \(f : T \to T' \) be a morphism of topologies, and \(\mathcal{P}, \mathcal{S} \) and \(\mathcal{P}', \mathcal{S}' \) be the categories of abelian (pre)sheaves on \(T \) and \(T' \), respectively.

Definition

If \(F' \) is an abelian presheaf on \(T' \), then its direct image \(f^p F' \) is the presheaf on \(T \) given by

\[
U \mapsto f^p F'(U) = F'(f(U)),
\]

for \(U \in T \). This is functorial in \(F' \Rightarrow \) we get an additive, exact functor:

\[
f' : T' \to T.
\]

Theorem

The functor \(f^p \) has a left adjoint \(f_p \), which is right-exact.
These induce functors between S and S' as well:

1.
 \[f^s : S' \to S, \quad f^s = \# \circ f^p \circ i', \]

2.
 \[f_s : S \to S', \quad f_s = \#' \circ f_p \circ i. \]
Cohomology and limits

Definition
A topology T is noetherian, if each object of T is quasi-compact.

Theorem
Assume T is noetherian, and I is a category with a sensible definition of limit (pseudofiltered category). Then

$$\lim_{\overset{\longrightarrow}{I}} H^q(U, F_i) \simeq H^q(U, \lim_{\overset{\longrightarrow}{I}} F_i)$$
The implicit function theorem

Theorem

If f_1, \ldots, f_k are analytic functions around $x \in \mathbb{C}^{k+n}$, such that
\[\det_{1 \leq i, j \leq k} \left(\frac{\partial f_i}{\partial x_j} \right)(x) \neq 0, \]
then the projection

\[(f_1 = \cdots = f_k = 0) \rightarrow \mathbb{C}^n \]

\[(x_1, \ldots, x_{k+n}) \mapsto (x_{k+1}, \ldots, x_{k+n}) \]

is a local analytic isomorphism around x.
This is not true in the Zariski topology of AG

Example

\[V(x_1^2 - x_2) \to \mathbb{A}^1, \quad (x_1, x_2) \mapsto x_2. \]

At \(x = (1, 1) \) the conditions of IFT are satisfied:

\[
\frac{\partial}{\partial x_1}(x_1^2 - x_2) \bigg|_{x=2} = 2x_1 \bigg|_{x=2} = 2 \neq 0.
\]

But for all \(U \subset V(x_1^2 - x_2) \) Zariski open containing \(x \) the projection to \(x_2 \) is not even a bijection: except for finitely many values of \(a \), \((+\sqrt{a}, a), (-\sqrt{a}, a) \in U \Rightarrow a \) has two preimages.
Étale morphisms

Definition

1. The morphism
 \[X = \text{Spec} R[x_1, \ldots, x_n]/(f_1, \ldots, f_k) \to \text{Spec} R = Y \] is étale in \(x \in X \), if
 \[\det_{1 \leq i, j \leq k} \left(\frac{\partial f_i}{\partial x_j} \right) (x) \neq 0. \]

2. The finite type morphism \(f : X \to Y \) is étale, if for all \(x \in X \) there are open neighbourhoods \(x \in U \subset X \) and \(f(x) \in V \subset Y \) such that \(F(U) \subset V \) and \(f|_U \) is étale:

\[
\begin{array}{ccc}
U & \leftarrow & \text{Spec} R[x_1, \ldots, x_n]/(f_1, \ldots, f_n) \\
\downarrow f|_U & & \downarrow \\
V & \leftarrow & \text{Spec} R
\end{array}
\]
The étale site of a scheme

Idea: we change the topology in order for the IFT to hold. We require that open subsets are given by étale morphisms. \(\Rightarrow\) we need a Grothendieck topology!

Definition

- \(Et/X = \text{category of étale } X\text{-schemes}\)
 - \(\text{ob}(Et/X) = \{ Y \to X \text{ étale} \}\)
 - \(\text{Hom}(Y_1 \to X, Y_2 \to X) = \)

\[
\begin{array}{c}
Y_1 \rightarrow Y_2 \\
\downarrow \quad \downarrow \\
X && \text{commutative}
\end{array}
\]
The étale site of a scheme

Definition

- A family \(\{ X_i' \xrightarrow{\varphi_i} X' \} \) of morphisms in \(Et/X \) is called surjective if \(X' = \bigcup_i \varphi_i(X_i') \)
- The étale site \(X_{\text{ét}} \) of \(X \):
 - \(\text{cat}(X_{\text{ét}}) = Et/X \)
 - \(\text{cov}(X_{\text{ét}}) = \) set of surjective families of morphisms in \(Et/X \)
 - Remark: these satisfy the axioms T1, T2 and T3.
- \(\tilde{X}_{\text{ét}} = \) category of abelian sheaves on \(X_{\text{ét}} \).
Zariski and étale cohomology

Proposition

Open immersions are étale.

Corollary

1. Let X_{Zar} be the topology of open sets of the scheme X. Then the inclusion

$$\varepsilon : X_{\text{Zar}} \to X_{\text{ét}}$$

is a morphism of topologies.

2. By spectral sequence arguments there is a functorial morphism

$$H^p_{\text{Zar}}(X, R^q \varepsilon^s(F)) \to H^{p+q}_{\text{ét}}(X, F),$$

which is in general not an isomorphism.
Equivalent conditions of étaleness

Theorem
For a morphism of schemes $f : X \to Y$ the followings are equivalent:

1. f is étale
2. f is smooth and unramified
3. f is smooth and of relative dimension 0
4. f is flat, locally of finite presentation, and for every $y \in Y$, the fiber $f^{-1}(y)$ is a disjoint union of points, each of which is a finite separable field extension of the residue field $\kappa(y)$.

Proposition
Étale morphisms are preserved under composition and base change.
Cohomology of curves

Theorem

X, smooth projective algebraic curve over \mathbb{C} with genus g. Then

$$H^0(X_{\text{an}}, \mathbb{Z}) = \mathbb{Z},$$

$$H^1(X_{\text{an}}, \mathbb{Z}) = \mathbb{Z}^{2g},$$

$$H^2(X_{\text{an}}, \mathbb{Z}) = \mathbb{Z}.$$

Theorem

X, smooth projective algebraic curve over k (algebraically closed) with genus g. $(\text{char } k, n) = 1$. Then

$$H^0(X_{\text{ét}}, \mu_n) = \mu_n(k),$$

$$H^1(X_{\text{ét}}, \mu_n) = (\mu_n(k))^{2g},$$

$$H^2(X_{\text{ét}}, \mu_n) = \mu_n(k).$$
Cohomology of fields

Let $X = \text{Spec}(k)$ and $G = \text{Gal}(k^{\text{sep}}|k)$ its absolute Galois group.

Theorem

- $Y \to X$ is étale $\iff Y = \text{Spec}(\prod_{i=1}^{r} L_i)$, where $L_i|k$ is a finite separable extension.
- The functor
 $$\tilde{X}_{\text{ét}} \to [\text{Continous } G\text{-sets}]$$
 $$F \mapsto \lim_{\longrightarrow} F(\text{Spec}(k'))$$

 $k \subset k' \subset k^{\text{sep}}, \text{ finite}$

 is an equivalence of categories.

- $$H^q(X_{\text{ét}}, F) \cong H^q(G, \lim_{\longrightarrow} F(\text{Spec}(k')))$$

- Here the right-hand side is the Galois-cohomology.
Étale cohomology yields the right cohomology theory for *torsion coefficients*.
More effort is needed for coefficients in a field with characteristic 0.

\(l \)-adic cohomology (\(l \neq \text{char} k \) prime):

\[
H^i(X, \mathbb{Z}_l) = \lim_{\leftarrow \nu} H^i(X_{\text{ét}}, \mathbb{Z}/l^\nu \mathbb{Z}),
\]

\[
H^i(X, \mathbb{Q}_l) = H^i(X, \mathbb{Z}_l) \otimes_{\mathbb{Z}_l} \mathbb{Q}_l.
\]
Properties of l-adic cohomology

Theorem

1. *The groups $H^i(X, \mathbb{Q}_l)$ are vector spaces over \mathbb{Q}_l.*
2. *If X is proper over k, then they are finite dimensional.*
3. *Functoriality in X: if $f : X \to Y$ is a morphism, then it induces a homomorphism on the cohomologies:*
 \[
 f^* : H^i(Y, \mathbb{Q}_l) \to H^i(X, \mathbb{Q}_l).
 \]
4. *$H^i(X, \mathbb{Q}_l) = 0$ for $i > 2 \dim X$.*
5. *K"unneth-formula is valid.*
Properties of l-adic cohomology

Theorem

6. There is a cup-product structure

$$H^i(X, \mathbb{Q}_l) \times H^j(X, \mathbb{Q}_l) \to H^{i+j}(X, \mathbb{Q}_l)$$

defined for all i, j.

7. Poincaré duality: if X is smooth and proper over k, of dimension n, then $H^{2n}(X, \mathbb{Q}_l)$ is 1-dimensional, and the cup-product pairing is a perfect pairing for each $i, 0 \leq i \leq 2n$.
Let X be smooth and proper over k. Suppose $f : X \to X$ has only isolated fixed points, whose number is $L(f, X)$. Assume moreover, that for each fixed point $x \in X$, assume that the action of $1 - df$ on Ω^1_X is injective. Then

$$L(f, X) = \sum_{i=0}^{2n} (-1)^i \text{Tr}(f^* H^i(X, \mathbb{Q}_l)) .$$
Thank you for your attention!

Questions?