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ROLLE’S THEOREM
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Rolle’s Theorem – Theorem 2.13.1
Let a and b be real numbers, with a < b. And let f be a function with
the properties:

• f (x) is continuous for every x with a ≤ x ≤ b;
• f (x) is differentiable when a < x < b;
• and f (a) = f (b).

Then there exists a number c with a < c < b such that

f ′(c) = 0.
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Rolle’s Theorem – Theorem 2.13.1
Let f (x) be continuous on the interval [a, b], differentiable on (a, b),
and let f (a) = f (b). Then there is a number c strictly between a and b
such that f ′(c) = 0.

Example: Let f (x) = x3 − 2x2 + 1, and observe f (2) = f (0) = 1. Since
f (x) is a polynomial, it is continuous and differentiable everywhere.

x

y

2

0 = f ′(x) = 3x2 − 4x
= x(3x− 4)

x = 0 and x =
4
3

f ′
(

4
3

)
= 0
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Rolle’s Theorem – Theorem 2.13.1
Let f (x) be continuous on the interval [a, b], differentiable on (a, b),
and let f (a) = f (b). Then there is a number c strictly between a and b
such that f ′(c) = 0.

x

y

a b
Suppose a < b and f (a) = f (b),
f (x) is continuous over [a, b], and
f (x) is differentiable over (a, b).

How many different values of x
between a and b have f ′(x) = 0?

A. 0 or 1
B. 1
C. 0, 1, or more
D. 1 or more
E. I’m not sure
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Rolle’s Theorem – Theorem 2.13.1
Let f (x) be continuous on the interval [a, b], differentiable on (a, b),
and let f (a) = f (b). Then there is a number c strictly between a and b
such that f ′(c) = 0.

Suppose f (x) is continuous and
differentiable for all real
numbers, and f (x) has precisely
seven roots, all different. How
many roots does f ′(x) have?

A. precisely six

B. precisely seven

C. at most seven

D. at least six
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Rolle’s Theorem – Theorem 2.13.1
Let f (x) be continuous on the interval [a, b], differentiable on (a, b),
and let f (a) = f (b). Then there is a number c strictly between a and b
such that f ′(c) = 0.

Suppose f (x) is continuous and
differentiable for all real
numbers, and f ′(x) is also
continuous and differentiable for
all real numbers, and f (x) has
precisely seven roots, all
different. How many roots does
f ′′(x) have?

A. precisely six
B. precisely five
C. at most five
D. at least five
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Rolle’s Theorem – Theorem 2.13.1
Let f (x) be continuous on the interval [a, b], differentiable on (a, b),
and let f (a) = f (b). Then there is a number c strictly between a and b
such that f ′(c) = 0.

Suppose f (x) is continuous and
differentiable for all real
numbers, and there are precisely
three places where f ′(x) = 0.
How many distinct roots does
f (x) have?

A. at most three

B. at most four

C. at least three

D. at least four
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Rolle’s Theorem – Theorem 2.13.1
Let f (x) be continuous on the interval [a, b], differentiable on (a, b),
and let f (a) = f (b). Then there is a number c strictly between a and b
such that f ′(c) = 0.

Suppose f (x) is continuous and
differentiable for all real
numbers, and f ′(x) = 0 for
precisely three values of x. How
many distinct values x exist with
f (x) = 17?

A. at most three

B. at most four

C. at least three

D. at least four
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APPLICATIONS OF ROLLE’S THEOREM

Prove that the function f (x) = x3 + x− 1 has at most one real root.

How would you show that f (x) has precisely one real root?

10/52 Example 2.13.3
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Use Rolle’s Theorem to show that the function
f (x) = 1

3 x3 + 3x2 + 9x− 3 has at most two distinct real roots.
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AVERAGE RATE OF CHANGE

x

y

1 3

5

3

1

What is the average rate of
change of f (x) from x = 1 to
x = 3?

A. 0
B. 1
C. 2
D. 4
E. I’m not sure
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AVERAGE RATE OF CHANGE

x

y

2 7

30

15

∆y
∆x

=
15− 15
7− 2

=
0
5

= 0

What is the average rate of
change of f (x) from x = 2 to
x = 7?

A. 0

B. 3

C. 5

D. 15

E. I’m not sure
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Rolle’s Theorem and Average Rate of Change
Suppose f (x) is continuous on the interval [a, b], differentiable on the
interval (a, b), and f (a) = f (b). Then there exists a number c strictly
between a and b such that

f ′(c) = 0 =
f (b)− f (a)

b− a
.

So there exists a point where the derivative is the same as the average
rate of change.
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Mean Value Theorem – Theorem 2.13.4
Let f (x) be continuous on the interval [a, b] and differentiable on (a, b).
Then there is a number c strictly between a and b such that:

f ′(c) =
f (b)− f (a)

b− a

That is: there is some point c in (a, b) where the instantaneous rate of
change of the function is equal to the average rate of change of the
function on the interval [a, b].
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Suppose you are driving along a long, straight highway with no
shortcuts. The speed limit is 100 kph. A police officer notices your car
going 90 kph, and uploads your plate and the time they saw you to
their database. 150 km down this same straight road, 75 minutes
later, another police officer notices your car going 85kph, and
uploads your plates to the database. Then they pull you over, and
give you a speeding ticket. Why were they justified?
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According to this website, Canada geese may fly 1500 miles in a
single day under favorable conditions. It also says their top speed is
around 70mph. Does this seem like a typo? (If it contradicts the Mean
Value Theorem, it’s probably a typo.)

18/52
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The record for fastest wheel-driven land speed is around 700 kph. 1

However, non-wheel driven cars (such as those powered by jet
engines) have achieved higher speeds. 2

Suppose a driver of a jet-powered car starts a 10km race at 12:00, and
finishes at 12:01. Did they beat 700kph?

1(at time of writing) George Poteet,
https://en.wikipedia.org/wiki/Wheel-driven_land_speed_record

2https://en.wikipedia.org/wiki/Land_speed_record
19/52
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Suppose you want to download a file that is 3000 MB (slightly under
3GB). Your internet provider guarantees you that your download
speeds will always be between 1 MBPS (MB per second) and 5 MBPS
(because you bought the cheap plan). Using the Mean Value
Theorem, give an upper and lower bound for how long the
download can take (assuming your providers aren’t lying, and your
device is performing adequately).
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Suppose 1 ≤ f ′(t) ≤ 5 for all values of t, and f (0) = 0. What are the
possible solutions to f (t) = 3000?
Notice: since the derivative exists for all real numbers, f (x) is
differentiable and continuous for all real numbers!
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Corollary to the MVT
Let a < b be numbers in the domain of f (x) and g(x), which are
continuous over [a, b] and differentiable over (a, b).

If f ′(x) = 0 for all x in (a, b), then

If f (c) 6= f (d), then f (d)−f (c)
d−c 6= 0, so f ′(e) 6=

0 for some e.

22/52 Corollary 2.13.11
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Corollary to the MVT
Let a < b be numbers in the domain of f (x) and g(x), which are
continuous over [a, b] and differentiable over (a, b).

If f ′(x) = g′(x) for all x in (a, b), then

Define a new function k(x) = f (x) − g(x).
Then k′(x) = 0 everywhere, so (by the last
corollary) k(x) = A for some constant A.

23/52 Corollary 2.13.12
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Corollary to the MVT
Let a < b be numbers in the domain of f (x) and g(x), which are
continuous over [a, b] and differentiable over (a, b).

If f ′(x) > 0 for all x in (a, b), then

If f (c) > f (d) and c < d, then f (d)−f (c)
d−c =

(negative)
(positive) < 0. Then f ′(e) < 0 for some e
between c and d.

24/52 Corollary 2.13.11
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Corollary to the MVT
Let a < b be numbers in the domain of f (x) and g(x), which are
continuous over [a, b] and differentiable over (a, b).

If f ′(x) < 0 for all x in (a, b), then

If f (c) < f (d) and c < d, then f (d)−f (c)
d−c =

(positive)
(positive) > 0. Then f ′(e) > 0 for some e
between c and d.

25/52 Corollary 2.13.11
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Mean Value Theorem – Theorem 2.13.4
Let f (x) be continuous on the interval [a, b] and differentiable on (a, b).
Then there is a number c strictly between a and b such that

f ′(c) =
f (b)− f (a)

b− a

WARNING: The MVT has two hypotheses.
I f (x) has to be continuous on [a, b].
I f (x) has to be differentiable on (a, b).

If either of these hypotheses are violated, the conclusion of the MVT
can fail. Here are two examples.
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Mean Value Theorem – Theorem 2.13.4
Let f (x) be continuous on the interval [a, b] and differentiable on (a, b).
Then there is a number c strictly between a and b such that

f ′(c) =
f (b)− f (a)

b− a

Example: Let a = −1, b = 1 and f (x) = |x|.

x

y

1−1

f ′(x) =


1 if x > 0
−1 if x < 0
undefined if x = 0

f ′(x) is never 0 =
f (b)−f (a)

b−a .
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Mean Value Theorem – Theorem 2.13.4
Let f (x) be continuous on the interval [a, b] and differentiable on (a, b).
Then there is a number c strictly between a and b such that

f ′(c) =
f (b)− f (a)

b− a

Example: Let a = 0, b = 1 and f (x) =

{
0 if x ≤ 0
1 if x > 0

.

x

y

1

f ′(x) =


0 if x > 0
0 if x < 0
undefined if x = 0

f ′(x) is never 1 =
f (b)−f (a)

b−a .
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HIGHER ORDER DERIVATIVES

Evaluate d
dx

[
d
dx [x5 − 2x2 + 3]

]
d

dx
[x5 − 2x2 + 3] =

d
dx

[
d

dx
[x5 − 2x2 + 3]

]
=

d
dx
[
5x4 − 4x

]
= 20x3 − 4

Notation 2.14.1
The derivative of a derivative is called the second derivative, written

f ′′(x) or
d2y
dx2 (x)

Similarly, the derivative of a second derivative is a third derivative,
etc.

30/52
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Notation 2.14.1
I f ′′(x) and f (2)(x) and d2f

dx2 (x) all mean d
dx

( d
dx f (x)

)
I f ′′′(x) and f (3)(x) and d3f

dx3 (x) all mean d
dx

( d
dx

( d
dx f (x)

))
I f (4)(x) and d4f

dx4 (x) both mean d
dx

( d
dx

( d
dx

( d
dx f (x)

)))
I and so on.
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TYPICAL EXAMPLE: ACCELERATION

I Velocity: rate of change of position
I Acceleration: rate of change of velocity.

The position of an object at time t is given by s(t) = t(5− t). Time is
measured in seconds, and position is measured in metres.

1. Sketch the graph giving the position of the object.
2. What is the velocity of the object when t = 1? Include units.
3. What is the acceleration of the object when t = 1? Include units.

32/52 Example 2.14.3
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CONCEPT CHECK

True or False: If f ′(1) = 18, then f ′′(1) = 0,
since the d

dx{18} = 0.

Which of the following is
always true of a QUADRATIC
polynomial f (x)?
A. f (0) = 0
B. f ′(0) = 0
C. f ′′(0) = 0
D. f ′′′(0) = 0
E. f (4)(0) = 0

Which of the following is
always true of a CUBIC
polynomial f (x)?
A. f (0) = 0
B. f ′(0) = 0
C. f ′′(0) = 0
D. f ′′′(0) = 0
E. f (4)(0) = 0

33/52 Warning 2.14.5Example 2.14.2
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IMPLICIT DIFFERENTIATION

Suppose y(x) is a function such that

y(x) = y3x + x2 − 1

Find y′′(x) at the point (−2, 1).

We start by differentiating both
sides of the function. Remember that y is a function, not a variable.

y(x) = y(x)3x + x2 + 1
dy
dx

(x)
prod
= y(x)3 + 3xy(x)2 dy

dx
(x) + 2x (∗)

Let’s differentiate both sides again. Remember we have a rule for the
product of three functions.

d2y
dx2 = 3y2 dy

dx
+ 3

(
y2 dy

dx
+ x · 2y

dy
dx
· dy

dx
+ xy2 d2y

dx2

)
+ 2 (∗∗)

34/52 Example 2.14.4
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The position of a unicyclist along a tightrope is given by

s(t) = t3 − 3t2 − 9t + 10

where s(t) gives the distance in meters to the right of the middle of
the tightrope, and t is measured in seconds, −2 ≤ t ≤ 4.

Describe the unicyclist’s motion: when they are moving right or left;
when they are moving fastest and slowest; and how far to the right or
left of centre they travel.

36/52 Example 3.1.1
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A solution in a beaker is undergoing a chemical reaction, and its
temperature (in degrees Celsius) at t seconds from noon is given by

T(t) = t3 + 3t2 + 4t− 273

1. When is the reaction increasing the temperature, and when is it
decreasing the temperature?

2. What is the slowest rate of change of the temperature?

37/52 Example 3.1.1Example 3.1.1
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You roll a magnetic marble across the floor towards a metal fridge,
giving it an initial velocity of 50 centimetres per second. The magnet
imparts an acceleration on the magnet of 1 meter per second per
second. If the magnet hits the fridge after 2 seconds, how far away
was it when you rolled it?

38/52
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The deceleration of a particular car while braking is 9 m/s2.
1. Suppose the car needs to stop in 30m. How fast can it be going?
(Give your answer in kph.)

2. Suppose the car needs to stop in 50m. How fast can it be going?
(Give your answer in kph.)

39/52 Example 3.1.3
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Suppose your brakes decelerate your car at a constant rate. That is, d
meters per second per second, for some constant d.
Is it true that if you double your speed, you double your stopping
time?

40/52 Example 3.1.3Example 3.1.3
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RELATED RATES - INTRODUCTION

“Related rates” problems involve finding the rate of change of one
quantity, based on the rate of change of a related quantity.

42/52
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Suppose P and Q are quantities that are changing over time, t.
Suppose they are related by the equation

3P2 = 2Q2 + Q + 3.

If
dP
dt

(t) = 5 when P(t) = 1 and Q(t) = 0, then what is
dQ
dt

at that
time?

43/52 Example 3.2.3
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Related rates problems often involve some kind of geometric or
trigonometric modeling

A garden hose can pump out a cubic meter of water in about 20
minutes. Suppose you’re filling up a rectangular backyard pool, 3
meters wide and 6 meters long, with a garden hose. How fast is the
water rising?

44/52
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SOLVING RELATED RATES

1. Draw a Picture

2. Write what you know, and what you want to know. Note units.

3. Relate all your relevant variables in one equation.

4. Differentiate both sides (with respect to the appropriate variable!)

5. Solve for what you want.

45/52
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A weight is attached to a rope, which is attached to a pulley on a
boat, at water level. The weight is taken 8 (horizontal) metres from its
attachment point on the boat, then dropped in the water.
The weight sinks straight down. The rope stays taught as it is let out
at a constant rate of one metre per second, and two seconds have
passed. How fast is the weight descending?

8

46/52
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You are pouring water through a funnel with an extremely small
hole. The funnel lets water out at 100mL per second, and you are
pouring water into the funnel at 300mL per second. The funnel is
shaped like a cone with height 20 cm and with the diameter at the top
also 20 cm. (Ignore the hole in the bottom.) How fast is the height of
the water in the funnel rising when it is 10 cm high?

A cone with radius r and height h has volume π
3 r2h.

47/52
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A sprinkler is 3m from a long, straight wall. The sprinkler sprays
water in a circle, making three revolutions per minute. Let P be the
point on the wall closest to the sprinkler. The water hits the wall at
some spot, and that spot moves as the sprinkler rotates. When the
spot where the water hits the wall is 1m away from P, how fast is the
spot moving horizontally?
(You may assume the water travels from the sprinkler to the wall
instantaneously.)

48/52 Example 3.2.1
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A roller coaster has a track shaped in part like the folium of
Descartes: x3 + y3 = 6xy. When it is at the position (3, 3), its
horizontal position is changing at 2 units per second in the negative
direction. How fast is its vertical position changing?

49/52 Example 3.2.1
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Two dogs are tied with elastic leashes to a lamp post that is 2 metres
from a straight road. At first, both dogs are on the road, at the closest
part of the road to the lamp post. Then, they start running in opposite
directions: one dog runs 3 metres per second, and the other runs 2
metres per second. After one second of running, how fast is the angle
made by the two leashes increasing?

road

lamp post

doggy 1 doggy 2

θ

50/52
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A crow is one kilometre due east of the math building, heading east
at 5 kph. An eagle is two kilometres due north of the math building,
heading north at 7kph. How fast is the distance between the two
birds increasing at this instant?

51/52 Example 3.2.5
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A triangle has one side that is 1cm long, and another side that is 2cm,
and the third side is formed by an elastic band that can shrink and
stretch. The two fixed sides are rotated so that the angle they form, θ,
grows by 1.5 radians each second. Find the rate of change of the area
inside the triangle when θ = π/4.

52/52 Example 3.2.5
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