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DERIVATIVES OF LINES

f (x) = 2x− 15

The equation of the tangent line to f (x) at x = 100 is:

f ′(1) =
A. 0 B. 1 C. 2 D. −15 E. −13

f ′(5) =

f ′(−13) =
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g(x) = 13

g′(1) =

A. 0 B. 1 C. 2 D. 13
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ADDING A CONSTANT

Adding or subtracting a constant to a function does not change its
derivative.

We saw

d
dx
(
3− 0.8t2)∣∣∣∣

t=1
= −1.6

So,

d
dx
(
10− 0.8t2)∣∣∣∣

t=1
=
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DIFFERENTIATING SUMS

d
dx
{f (x) + g(x)} =

lim
h→0

[
[f (x + h) + g(x + h)]− [f (x) + g(x)]

h

]
= lim

h→0

[
f (x + h)− f (x) + g(x + h) + g(x)

h

]
= lim

h→0

[
f (x + h)− f (x)

h
+

g(x + h)− g(x)
h

]
= lim

h→0

[
f (x + h)− f (x)

h

]
+ lim

h→0

[
g(x + h)− g(x)

h

]
= f ′(x) + g′(x)
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CONSTANT MULTIPLE OF A FUNCTION

Let a be a constant.

d
dx
{a · f (x)} =

lim
h→0

[
a · f (x + h)− a · f (x)

h

]
= lim

h→0

[
a · f (x + h)− f (x)

h

]
= a · lim

h→0

[
f (x + h)− f (x)

h

]
= a · f ′(x)
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Rules – Lemma 2.4.1
Suppose f (x) and g(x) are differentiable, and let c be a constant
number. Then:
I d

dx {f (x) + g(x)} = f ′(x) + g′(x)
I d

dx {f (x)− g(x)} = f ′(x)− g′(x)
I d

dx {cf (x)} = cf ′(x)

←Multiply by a constant: keep the constant

For instance: let f (x) = 10
(
(2x− 15) + 13−

√
x
)
. Then f ′(x) =

7/39 Example 2.6.1
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NOW
YOU

Suppose f ′(x) = 3x, g′(x) = −x2, and h′(x) = 5.

Calculate:
d

dx
{f (x) + 5g(x)− h(x) + 22}

A. 3x− 5x2

B. 3x− 5x2 − 5
C. 3x− 5x2 − 5 + 22
D. none of the above
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DERIVATIVES OF PRODUCTS

d
dx{x} =1

True or False:

d
dx
{2x} = d

dx
{x + x}

= [1] + [1]
= 2

True or False:

d
dx
{

x2} =
d

dx
{x · x}

= [1] · [1]
= 1
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WHAT TO DO WITH PRODUCTS?

Suppose f (x) and g(x) are differentiable functions of x. What about
f (x)g(x)?
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Product Rule – Theorem 2.4.3
For differentiable functions f (x) and g(x):

d
dx

[f (x)g(x)] = f (x)g′(x) + g(x)f ′(x)

Example:
d

dx
[
x2] =

d
dx

[x · x] = x(1) + x(1) = 2x

Example: suppose f (x) = 3x2, f ′(x) = 6x, g(x) = sin(x), g′(x) = cos(x).

d
dx
[
3x2sin(x)

]
=
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Given d
dx [2x + 5] = 2, d

dx

[
sin(x2)

]
= 2x cos(x2), d

dx

[
x2
]
= 2x

NOW
YOU

f (x) = (2x + 5) sin(x2)

A. f ′(x) = (2)
(
2x cos(x2)

)
(2x)

B. f ′(x) = (2)
(
2x cos(x2)

)
C. f ′(x) = (2x + 5)(2) + sin(x2)

(
2x cos(x2)

)
D. f ′(x) = (2x + 5)

(
2x cos(x2)

)
+ (2) sin(x2)

E. none of the above
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NOW
YOU

f (x) = a(x) · b(x) · c(x)

What is f ′(x)?

13/39 Example 2.6.6
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Quotient Rule – Theorem 2.4.5
Let f (x) and g(x) be differentiable and g(x) 6= 0. Then:

d
dx

{
f (x)
g(x)

}
=

g(x)f ′(x)− f (x)g′(x)
g2(x)

Mnemonic: Low d’high minus high d’low over lowlow.
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Quotient Rule – Theorem 2.4.5
Let f (x) and g(x) be differentiable and g(x) 6= 0. Then:

d
dx

{
f (x)
g(x)

}
=

g(x)f ′(x)− f (x)g′(x)
g2(x)

Mnemonic: Low d’high minus high d’low over lowlow.

d
dx

{
2x + 5
3x− 6

}
=
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Quotient Rule – Theorem 2.4.5
Let f (x) and g(x) be differentiable and g(x) 6= 0. Then:

d
dx

{
f (x)
g(x)

}
=

g(x)f ′(x)− f (x)g′(x)
g2(x)

Mnemonic: Low d’high minus high d’low over lowlow.

d
dx

{
5x√
x− 1

}
=

16/39



2.4-2.6: Arithmetic of Derivatives 2.7: Derivs of Exponential Functions

NOW
YOU

Differentiate the following.

f (x) = 2x + 5
g(x) = (2x + 5)(3x− 7) + 25

h(x) =
2x + 5
8x− 2

j(x) =
(

2x + 5
8x− 2

)2

Rules
Product: d

dx{f (x)g(x)} = f (x)g′(x) + g(x)f ′(x)

Quotient:
d

dx

{
f (x)
g(x)

}
=

g(x)f ′(x)− f (x)g′(x)
g2(x)
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x

y

f (x) =
x2 + 3
x− 1

For which values of x is the tangent line to the curve horizontal?
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The position of an object moving left and right at time t, t ≥ 0, is
given by

s(t) = −t2(t− 2)

where a positive position means it is to the right of its starting
position, and a negative position means it is to the left. First it moves
to the right, then it moves left forever.

t = 0

t = 2

What is the farthest point to the right that the object reaches?
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MORE ABOUT THE PRODUCT RULE

d
dx{x

2} = d
dx{x · x} = x(1) + x(1)

= 2x

d
dx{x

3} = d
dx{x · x

2}
= (x)(2x) + (x2)(1) = 3x2

d
dx {x

4} = d
dx{x · x

3}
= x(3x2) + x3(1) = 4x3

Where are these functions
defined?

function derivative
x 1
x2 2x
x3 3x2

x4 4x3

x30 30x29

xn nxn−1

20/39 Lemma 2.6.9
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CAUTIONARY TALE
WITH functions RAISED TO A POWER, IT’S MORE COMPLICATED.

Differentiate (2x + 1)2
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Power Rule – Corollary 2.6.17
d
dx{x

a} = axa−1 (where defined)

d
dx
{3x5 + 7x2 − x + 15} =

22/39



2.4-2.6: Arithmetic of Derivatives 2.7: Derivs of Exponential Functions

Power Rule – Corollary 2.6.17
d
dx{x

a} = axa−1 (where defined)

Differentiate
(x4 + 1)( 3

√
x + 4
√

x)
2x + 5
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Power Rule – Corollary 2.6.17
d
dx{x

a} = axa−1 (where defined)

Suppose a motorist is driving their car, and their position is given by
s(t) = 10t3 − 90t2 + 180t kilometres. At t = 1 (t measured in hours), a
police officer notices they are driving erratically. The motorist claims
to have simply suffered a lack of attention: they were in the act of
pressing the brakes even as the officer noticed their speed.

At t = 1, how fast was the motorist going, and were they pressing the
gas or the brake?

Challenge: What about t = 2?
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Power Rule – Corollary 2.6.17
d
dx{x

a} = axa−1 (where defined)

Recall that a sphere of radius r has volume V = 4
3πr3.

Suppose you are winding twine into a gigantic twine ball, filming the
process, and trying to make a viral video. You can wrap one cubic
meter of twine per hour. (In other words, when we have V cubic
meters of twine, we’re at time V hours.) How fast is the radius of
your spherical twine ball increasing?
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EXPONENTIAL FUNCTIONS

Consider d
dx {17x}

x

y

1

f (x) = 17x

small large

f (x) is always increasing, so f ′(x) is always positive.
f ′(x) might look similar to f (x).
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EXPONENTIAL FUNCTIONS

d
dx
{17x} =
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d
dx
{17x} = 17x · lim

h→0

(17h − 1)
h︸ ︷︷ ︸

constant

Given what you know about d
dx{17x}, is it possible that

lim
h→0

17h − 1
h

= 0?

A. Sure, there’s no reason we’ve seen that would make it
impossible.

B. No, it couldn’t be 0, that wouldn’t make sense.
C. I do not feel equipped to answer this question.
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d
dx
{17x} = 17x · lim

h→0

(17h − 1)
h︸ ︷︷ ︸

constant

Given what you know about d
dx{17x}, is it possible that

lim
h→0

17h − 1
h

=∞?

A. Sure, there’s no reason we’ve seen that would make it
impossible.

B. No, it couldn’t be∞, that wouldn’t make sense.
C. I do not feel equipped to answer this question.
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d
dx
{17x} = 17x · lim

h→0

(17h − 1)
h︸ ︷︷ ︸

constant

h
17h − 1

h
0.001 2.83723068608
0.00001 2.83325347992
0.0000001 2.83321374583
0.000000001 2.83321344163

31/39 Example 2.7.1
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d
dx
{17x} = lim

h→0

17x+h − 17x

h

= lim
h→0

17x17h − 17x

h

= lim
h→0

17x(17h − 1)
h

= 17x lim
h→0

(17h − 1)
h

In general, for any positive number a,

d
dx
{ax} = ax lim

h→0

ah − 1
h
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EXPONENTIAL FUNCTIONS

x

y

y = 8xy = d
dx {8

x}

d
dx {8

x} = 8x lim
h→0

8h − 1
h

y = 5xy = d
dx {5

x}

d
dx {5

x} = 5x lim
h→0

5h − 1
h

y = 4xy = d
dx {4

x}

d
dx {4

x} = 4x lim
h→0

4h − 1
h

y = 3xy = d
dx {3

x}

d
dx {3

x} = 3x lim
h→0

3h − 1
h

y = 2x y = d
dx {2

x}

d
dx {2

x} = 2x lim
h→0

2h − 1
h
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EXPONENTIAL FUNCTIONS

x

y

y = 8xy = d
dx {8

x}

d
dx {8

x} = 8x lim
h→0

8h − 1
h

y = 5xy = d
dx {5

x}

d
dx {5

x} = 5x lim
h→0

5h − 1
h

y = 4xy = d
dx {4

x}

d
dx {4

x} = 4x lim
h→0

4h − 1
h

y = 3xy = d
dx {3

x}

d
dx {3

x} = 3x lim
h→0

3h − 1
h

y = 2x y = d
dx {2

x}

d
dx {2

x} = 2x lim
h→0

2h − 1
h
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In general, for any positive number a, d
dx{a

x} = ax lim
h→0

ah − 1
h

Euler’s Number – Theorem 2.7.4
We define e to be the unique number satisfying

lim
h→0

eh − 1
h

= 1

e ≈ 2.7182818284590452353602874713526624... (Wikipedia)
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Theorem 2.7.4 and Corollary 2.10.6
Using this definition of e,

d
dx
{ex} = ex lim

h→0

eh − 1
h︸ ︷︷ ︸

1

= ex

In general, lim
h→0

ah − 1
h

= loge(a), so d
dx{a

x} = ax loge(a)

That lim
h→0

ah − 1
h

= loge(a) and d
dx{a

x} = ax loge(a) are consequences of

ax =
(
eloge(a))x

= ex loge(a)

For the details, see the end of Section 2.7.
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Things to Have Memorized
d

dx
{ex} = ex

When a is any constant,

d
dx
{ax} = ax loge(a)

Let f (x) =
ex

3x5 . When is the tangent line to f (x) horizontal?
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Evaluate d
dx

{
e3x
}
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Suppose the deficit, in millions, of a fictitious country is given by

f (x) = ex(4x3 − 12x2 + 14x− 4)

where x is the number of years since the current leader took office.
Suppose the leader has been in power for exactly two years.

1. Is the deficit increasing or decreasing?

2. Is the rate at which the deficit is growing increasing or
decreasing?
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