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INVERTIBILITY GAME

I A function y = f (x) is known to both players
I Player A chooses a secret value x in the domain of f (x)
I Player A tells Player B what f (x) is
I Player B tries to guess Player A’s x-value.

Round 1: f (x) = 2x

Round 2: f (x) = 3
√

x

Round 3: f (x) = |x|

Round 4: f (x) = sin x

2/58



0.6: Inverse Functions A.13 Logarithms 2.10: Natural Log 2.11: Implicit Diff 2.12: Inverse Trig

FUNCTIONS ARE MAPS

domain range

f (x) = 3
√

x

f−1(x) = x3

3/58 Definition 0.6.3
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FUNCTIONS ARE MAPS

domain range

f (x) = |x|

f−1(x) DNE
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x

y

x2 − 4, x ≥ 0

A. invertible B. not invertible

5/58 Definition 0.6.2
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RELATIONSHIP BETWEEN f (x) AND f−1(x)

Let f be an invertible function.
What is f−1(f (x))?
A. x
B. 1
C. 0
D. not sure

domain range

125 5

f (x)

f−1(x)
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Invertibility
In order for a function to be invertible , different x values cannot map
to the same y value.
We call such a function one-to-one, or injective.

Suppose f (x) = 3
√

19 + x3. What is f−1(3)? (simplify your answer)

What is f−1(10)? (do not simplify)

What is f−1(x)?

9/58 Definition 0.6.1
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Let f (x) = x2 − x.

1. Sketch a graph of f (x), and choose a (large) domain over which it is
invertible.

2. For the domain you chose, evaluate f−1(20).

3. For the domain you chose, evaluate f−1(x).

4. What are the domain and range of f−1(x)? What are the (restricted)
domain and range of f (x)?
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x

y

a

b

y = x2 − x
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f (x) = x2 − x, domain:
[ 1

2 ,∞
)

f−1(x) = 1+
√

1+4x
2

domain of f (x) range of f (x)

f (x)

f−1(x)

range of f−1(x) domain of f−1(x)

[ 1
2 ,∞

) [
− 1

4 ,∞
)
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INVERTIBILITY GAME: f (x) = ex f−1(x) = loge x

I I’m thinking of an x. Your clue: f (x) = e. What is my x?

x = 1
loge(e) = 1

I I’m thinking of an x. Your clue: f (x) = 1. What is my x?

x = 0
loge(1) = 0

I I’m thinking of an x. Your clue: f (x) = 1
e . What is my x?

x = −1
loge

( 1
e

)
= −1

I I’m thinking of an x. Your clue: f (x) = e3. What is my x?

x = 3
loge(e3) = 3

I I’m thinking of an x. Your clue: f (x) = 0. What is my x?

Trick
question: no x gives f (x) = 0.

loge(x) is undefined at x = 0
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1. Suppose 0 < x < 1. Then loge(x) is...

2. Suppose −1 < x < 0. Then loge(x) is...

3. Suppose e < x. Then loge(x) is...

A. positive
B. negative

C. greater than one
D. less than one

E. undefined
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EXPONENTS AND LOGARITHMS

f (x) = ex f−1(x) = loge(x) = ln(x)= log(x)

x ex e fact↔ loge fact x loge(x)
0 1

e0 = 1 ↔ loge(1) = 0 1 0

1 e

e1 = e ↔ loge(e) = 1 e 1

−1 1
e

e−1 = 1
e ↔ loge(

1
e ) = −1 1

e −1

n en

en = en ↔ loge(en) = n en n
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x

y y = ex

y = loge(x)
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LOGS OF OTHER BASES: logn(x) IS THE INVERSE OF nx

log10 108 =

A. 0
B. 8
C. 10
D. other

log2 16 =

A. 1
B. 2
C. 3
D. other
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Logarithm Rules
Let A and B be positive, and let n be any real number.
log(A · B) = log(A) + log(B)
Proof: log(A · B) = log(elog Aelog B) = log(elog A+log B) = log(A) + log(B)
log(A/B) = log(A)− log(B)
Proof: log(A/B) = log

(
elog A

elog B

)
= log(elog A−log B) = logA− logB

log(An) = n log(A)

Proof: log(An) = log
((

elog A
)n
)
= log

(
en log A

)
= n logA
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Logarithm Rules
Let A and B be positive, and let n be any real number.
log(A · B) = log(A) + log(B)
log(A/B) = log(A)− log(B)
log(An) = n log(A)

Write as a single logarithm:

f (x) = log

(
10
x2

)
+ 2 log x + log(10 + x)
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BASE CHANGE

Fact: blogb(a) = a

⇒ log
(
blogb(a)) = log(a)

⇒ logb(a) log(b) = log(a)

⇒ logb(a) =
log(a)
log(b)

In general, for positive a, b, and c:

logb(a) =
logc(a)
logc(b)
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In general, for positive a, b, and c:

logb(a) =
logc(a)
logc(b)

Suppose your calculator can only compute logarithms base 10. What
would you enter to calculate log(17)?

log10(17)
log10(e)

Suppose your calculator can only compute natural logarithms. What
would you enter to calculate log2(57)?

log(57)
log(2)

Suppose your calculator can only compute logarithms base 2. What
would you enter to calculate log(2)?

log2 2
log2 e = 1

log2 e
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Decibels: For a particular measure of the power P of a sound wave,
the decibels of that sound is:

10 log10(P)

So, every ten decibels corresponds to a sound being ten times louder.

A lawnmower emits a 100dB sound. How much sound will two
lawnmowers make?
A. 100 dB
B. 110 dB
C. 200 dB
D. other
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DIFFERENTIATING THE NATURAL LOGARITHM

Calculate d
dx{loge x}.

One Weird Trick:

x = eloge x

d
dx
{x} = d

dx
{

eloge x}
1 = eloge x · d

dx
{loge x} = x · d

dx
{loge x}

1
x
=

d
dx
{loge x}
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Derivative of Natural Logarithm
d
dx
{loge |x|} =

1
x

(x 6= 0)

Differentiate: f (x) = loge |x2 + 1|
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Derivatives of Logarithms – Corollary 2.10.6
For a > 0:

d
dx

[loga |x|] =
1

x log a

In particular:
d

dx
[log |x|] = 1

x

Differentiate: f (x) = loge | cot x|
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LOGARITHMIC DIFFERENTIATION - A FANCY TRICK

I log(f · g) = log f + log g

multiplication turns into addition

I log
(

f
g

)
= log f − log g

division turns into subtraction

I log (f g) = g log f

exponentiation turns into multiplication

We can exploit these properties to differentiate!
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Logarithmic Differentiation

In general, if f (x) 6= 0, d
dx [log |f (x)|] =

f ′(x)
f (x) .

f (x) =
(
(2x + 5)4(x2 + 1)

x + 3

)5

Find f ′(x).

28/58 Example 2.10.8
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LOGARITHMIC DIFFERENTIATION - A FANCY TRICK

f (x) =
(
(2x + 5)4(x2 + 1)

x + 3

)5
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LOGARITHMIC DIFFERENTIATION - A FANCY TRICK

Differentiate:
f (x) = xx

30/58
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LOGARITHMIC DIFFERENTIATION - A FANCY TRICK

Differentiate:

f (x) =
(

(x15 − 9x2)10(x + x2 + 1)
(x7 + 7)(x + 1)(x + 2)(x + 3)

)5
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f (x) =
(x8 − ex)(

√
x + 5)

csc5 x
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f (x) = (x2 + 17)(32x5 − 8)(x98 − x57 + 32x2)4(32x10 − 10x32)

Find f ′(x).
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IMPLICITLY DEFINED FUNCTIONS

y2 + x2 + xy + x2y = 1

Which of the following points are on the curve?
(0, 1), (0,−1), (0, 0), (1, 1)

If x = −3, what is y?
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y2 + x2 + xy + x2y = 1

Still has a slope: ∆y
∆x

Locally, y is still a function of x.
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y2 + x2 + xy + x2y = 1

Consider y as a function of x. Can we find dy
dx ?

d
dx [y] =

d
dx [x] =

d
dx [1] =

37/58
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y2 + x2 + xy + x2y = 1

dy
dx

= −2x + y + 2xy
2y + x + x2

Necessarily, dy
dx depends on both y and x. Why?

38/58
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NOW
YOU

Suppose x4y + y4x = 2. Find dy
dx at the point (1, 1).

x4y(x) + y(x)4x = 2

4x3y(x) + x4 dy
dx

(x) + y(x)4 + 4y(x)3 dy
dx

(x) x = 0

We may only replace variables with constants after differentiating.
When x = 1 and y(1) = 1,

4(1)3y(1) + (1)4 dy
dx

(1) + y(1)4 + 4y(1)3 dy
dx

(1) = 0

4 +
dy
dx

(1) + 1 + 4
dy
dx

(1) = 0

5
dy
dx

(1) = −5

dy
dx

(1) = −1
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NOW
YOU

Suppose
3y2 + 2y + y3

x2 + 1
= x. Find

dy
dx

when x = 0, and

the equations of the associated tangent line(s).

To avoid the quotient rule, we start by simplifying our expression.

3y(x)2 + 2y(x) + y(x)3

x2 + 1
= x

3y(x)2 + 2y(x) + y(x)3 = x3 + x

6y(x)
dy
dx

(x) + 2
dy
dx

(x) + 3y(x)2 dy
dx

(x) = 3x2 + 1

When x = 0:

dy
dx

(0) =
1

6y(0) + 2 + 3y(0)2
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Use implicit differentiation to differentiate log(x), x > 0.

log x = y(x)

x = ey(x)

1 = ey(x) · dy
dx

(x)

dy
dx

(x) =
1

ey(x)
=

1
x

Use implicit differentiation to differentiate log |x|, x < 0.

log |x| = y(x)
log(−x) = y(x)

−x = ey(x)

−1 = ey(x) · dy
dx

(x)

dy
dx

(x) =
−1
ey(x)

=
−1
−x

=
1
x
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Use implicit differentiation to differentiate loga(x), where a > 0 is a
constant and x > 0.

Use implicit differentiation to differentiate loga |x|, a > 0.
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INVERTIBILITY GAME

x

y

y = sin x

π
2−π

2
3π
2

ππ 2π

I’m thinking of a number x. Your hint: sin(x) = 0. What number am I
thinking of?

I’m thinking of a number x, and x is between −π
2 and π

2 . Your hint:
sin(x) = 0. What number am I thinking of?
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ARCSINE

x

y

y = sin x

π
2−π

2
3π
2

ππ 2π

arcsin(x) is the inverse of sin x restricted to
[
−π

2 ,
π
2

]

arcsin x is the (unique) number θ such that:
I −π

2 ≤ θ ≤
π
2 , and

I sin θ = x

45/58 Example 2.12.1
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ARCSINE

Reference Angles:

θ sin θ

0 0

−

π
6

−

1
2

−

π
4

−

1√
2

−

π
3

−

√
3

2

−

π
2

−

1

I arcsin(0)

= 0

I arcsin
(

1√
2

)

=π
4

I arcsin
(
− 1√

2

)

=−π
4

I arcsin
(
π
2

)

undefined

I arcsin
(
π
4

)

defined, but we
haven’t covered tools (yet) to
figure it out

46/58 Example 2.12.2
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ARCCOSINE

x

y
y = cos x

arccos(x) is the inverse of cos x restricted to [0, π].

arccos(x) is the (unique) number θ such that:
I cos(θ) = x and

←←← inverse

I 0 ≤ θ ≤ π

←←← inverse exists

47/58 Definition 2.12.3
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ARCTANGENT

x

y

y = tan(x)

arctan(x) = θ means:
(1) tan(θ) = x and
(2) −π/2 < θ < π/2

48/58 Definition 2.12.3
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ARCSECANT, ARCSINE, AND ARCCOTANGENT

arcsec(x) =

arccos
( 1

x

)

49/58 Definition 2.12.3
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ARCSECANT, ARCSINE, AND ARCCOTANGENT

arccsc(x) = arcsin
( 1

x

)
arccsc(x) = y

csc y = x
1

sin y
= x

sin y =
1
x

y = arcsin
( 1

x

)
arccsc(x) = arcsin

( 1
x

)

arccot(x) = arctan
( 1

x

)
arccot(x) = y

cot y = x
1

tan y
= x

tan y = 1
x

y = arctan
( 1

x

)
arccot(x) = arctan

( 1
x

)

50/58 Definition 2.12.3
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arcsec(x) = arccos
( 1

x

)
The domain of arccos(y) is −1 ≤ y ≤ 1, so the domain of arcsec(y) is

(−∞,−1] ∪ [1,∞).

y = 1
x

1

−1

x

y

51/58
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arccsc(x) = arcsin
( 1

x

)
Domain of arcsin(y) is −1 ≤ y ≤ 1, so the domain of arccsc(x) is

(−∞,−1] ∪ [1,∞).

y = 1
x

1

−1

x

y

52/58
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arccot(x) = arctan
( 1

x

)
Domain of arctan(x) is all real numbers, so the domain of arccot(x) is

(−∞, 0) ∪ (0,∞).

y = 1
x

x

y

53/58
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y = arcsin x

Find dy
dx .

54/58



0.6: Inverse Functions A.13 Logarithms 2.10: Natural Log 2.11: Implicit Diff 2.12: Inverse Trig

y = arctan x

Find dy
dx .

55/58 Example 2.12.5
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y = arccos x

Find dy
dx .

56/58 Example 2.12.4
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To differentiate arcsecant, arccosecant, and arccotangent, you can use
the chain rule!

d
dx

[arccsc(x)] =
d
dx

[
arcsin

(
1
x

)]
=

d
dx

[
arcsin

(
x−1)]

57/58 Example 2.12.6
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Derivatives of Inverse Trigonometric Functions –
Theorem 2.12.7
Memorize:

d
dx [arcsin x] =

1√
1− x2

d
dx [arccos x] = − 1√

1− x2

d
dx [arcsin x] =

1
1 + x2

Be able to derive:

d
dx [arccsc x] = − 1

|x|
√

x2 − 1
d

dx [arcsec x] =
1

|x|
√

x2 − 1
d

dx [arccot x] = − 1
1 + x2
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Included Work

‘Brain’ by Eucalyp is licensed under CC BY 3.0 (accessed 8 June 2021), 39, 40

screenshot of graph using Desmos Graphing Calculator,
https://www.desmos.com/calculator (accessed 19 October 2017), 38

screenshot of graph using Desmos Graphing Calculator,
https://www.desmos.com/calculator (accessed 19 October 2017), 36

https://thenounproject.com/term/brain/3088298/
https://thenounproject.com/eucalyp/
https://creativecommons.org/licenses/by/3.0/
https://www.desmos.com/calculator
https://www.desmos.com/calculator
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