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Basic Trig Functions

θ
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opphyp

sin(θ) =
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tan(θ) =
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adj

csc(θ) =
1

sin(θ)

sec(θ) =
1

cos(θ)

cot(θ) =
1

tan(θ)
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COMMONLY USED FACTS

I Graphs of sine, cosine, tangent

I Sine, cosine, and tangent of reference angles: 0,
π

6
,
π

4
,
π

3
,
π

2

I How to use reference angles to find sine, cosine and tangent of
other angles

I Identities: sin2 x + cos2 x = 1; tan2 x + 1 = sec2 x;

sin2 x =
1− cos(2x)

2
; cos2 x =

1 + cos 2x
2

I Conversion between radians and degrees

CLP-1 has an appendix on high school trigonometry that you should
be familiar with.
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REFERENCE ANGLES
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DERIVATIVE OF SINE

x

y

y = sin(x)

Consider the derivative of f (x) = sin(x).

d
dx
{sin(x)} ?

= cos(x).
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d
dx{sin x} = lim

h→0

sin(x + h)− sin(x)
h

= lim
h→0

sin(x) cos(h) + cos(x) sin(h)− sin(x)
h

= lim
h→0

sin(x)(cos(h)− 1)
h

+ lim
h→0

cos(x) sin(h)
h

= sin(x)lim
h→0

cos(0 + h)− cos(0)
h

+ cos(x)lim
h→0

sin(h)
h

= sin(x) d
dx{cos(x)}

∣∣
x=0 + cos(x)lim

h→0

sin(h)
h

= cos(x)lim
h→0

sin(h)
h

since cos(x) has a horizontal tangent, and hence has derivative zero, at x = 0.
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1

h

si
n
(h
) h

ta
n
(h
)

sin(h)≤h so
sin(h)

h
≤ 1

Now for the proof that
sin(h)

h
≥ cos(h).

green area:
h
2

h
2
≤ tan(h)

2
Blue area:

tan h
2

cos(h) ≤ sin(h)
h

We are now ready for the Squeeze Theorem. We have

cos h ≤ sin h
h

≤ 1

lim
h→0

cos h = 1 lim
h→0

1 = 1

By the Squeeze Theorem,

lim
h→0

sin h
h

= 1
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DERIVATIVES OF SINE AND COSINE

¿From before,

d
dx
{sin(x)} = cos(x) · lim

h→0

sin(h)
h

= cos(x)
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DERIVATIVE OF COSINE

Now for the derivative of cos. We already know the derivative of sin,
and it is easy to convert between sin and cos using trig identities.

a

bc

x

θ

π
2 − x sin x =

b
c
= cos

(π
2
− x
)

cos x =
a
c
= sin

(π
2
− x
)

d
dx [cos(x)] =

d
dx

[
sin
(
π
2 − x

)]
= − d

dx

[
sin
(
x− π

2

)]
= − cos

(
x− π

2

)
= − sin x

since sin(−θ) = − sin(θ) and cos(−θ) = cos(θ).

9/35



2.8: Derivatives of Trig Functions 2.9: Chain Rule

When we use radians:

Derivatives of Trig Functions
d
dx{sin(x)} = cos(x)
d
dx{cos(x)} = − sin(x)
d
dx{tan(x)} =

d
dx{sec(x)} =
d

dx{csc(x)} =
d

dx{cot(x)} =

Honorable Mention

lim
x→0

sin x
x

= 1
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y = sin x, radians

1

1

y = sin x, degrees

1

1
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OTHER TRIG FUNCTIONS

tan(x) =
sin(x)
cos(x)
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OTHER TRIG FUNCTIONS

sec(x) =
1

cos(x)

d
dx

[sec(x)] =
d

dx

[
1

cos(x)

]
=

cos(x)(0)− (1)(− sin(x))
cos2(x)

=
sin(x)
cos2(x)

=
1

cos(x)
sin(x)
cos(x)

= sec(x) tan(x)
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OTHER TRIG FUNCTIONS

csc(x) =
1

sin(x)

d
dx

[csc(x)] =
d

dx

[
1

sin(x)

]
=

sin(x)(0)− (1) cos(x)
sin2(x)

=
− cos(x)
sin2(x)

=
−1

sin(x)
cos(x)
sin(x)

= − csc(x) cot(x)

14/35



2.8: Derivatives of Trig Functions 2.9: Chain Rule

OTHER TRIG FUNCTIONS

cot(x) =
cos(x)
sin(x)

d
dx

[cot(x)] =
d
dx

[
cos(x)
sin(x)

]
=

sin(x)(− sin(x))− cos(x) cos(x)
sin2(x)

=
−1

sin2(x)
= − csc2(x)
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MEMORIZE

d
dx{sin(x)} = cos(x) d

dx{sec(x)} = sec(x) tan(x)
d
dx{cos(x)} = − sin(x) d

dx{csc(x)} = − csc(x) cot(x)
d
dx{tan(x)} = sec2(x) d

dx{cot(x)} = − csc2(x)

lim
x→0

sin x
x

= 1

16/35 Theorem 2.8.5
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Let f (x) =
x tan(x2 + 7)

15ex . Use the definition of the derivative to find

f ′(0).
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Differentiate (ex + cot x)
(
5x6 − csc x

)
.
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Let h(x) =
{

sin x
x , x < 0

ax+b
cos x , x ≥ 0

Which values of a and b make h(x) continuous at x = 0?
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Practice and Review
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f (x) =
{

x2 cos
( 1

x

)
, x 6= 0

0 , x = 0

Is f (x) differentiable at x = 0?

g(x) =
{

e
sin x

x , x < 0
(x− a)2 , x ≥ 0

What value(s) of a makes g(x) continuous at x = 0?
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A ladder 3 meters long rests against a vertical wall. Let θ be the angle
between the top of the ladder and the wall, measured in radians, and
let y be the height of the top of the ladder. If the ladder slides away
from the wall, how fast does y change with respect to θ?
When is the top of the ladder sinking the fastest? The slowest?

θ

y3
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Suppose a point in the plane that is r centimetres from the origin, at
an angle of θ (0 ≤ θ ≤ π

2 ), is rotated π/2 radians. What is its new
coordinate (x, y)? If the point rotates at a constant rate of a radians
per second, when is the x coordinate changing fastest and slowest
with respect to θ?

x

y

r
(a, b)

θ

r

(x, y)

π
2
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INTUITION: sin x VERSUS sin(2x)

f (x) = sin x

f ′(x) = cos x

g(x) = sin(2x)

g′(x) = 2 cos(2x)
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COMPOUND FUNCTIONS

Video: 2:27-3:50

Morton, Jennifer. (2014). Balancing Act: Otters, Urchins and Kelp.
Available from https://www.kqed.org/quest/67124/
balancing-act-otters-urchins-and-kelp
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KELP POPULATION

k kelp population
u urchin population
o otter population
p public policy

k(u) k(u(o)) k(u(o(p)))

These are examples of compound functions.

Should d
do k
(
u(o)

)
be positive or negative?

A. positive B. negative C. I’m not sure

Should k′(u) be positive or negative?
A. positive B. negative C. I’m not sure
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DIFFERENTIATING COMPOUND FUNCTIONS

d
dx
{f (g(x))} = lim

h→0

f (g(x + h))− f (g(x))
h

= lim
h→0

f (g(x + h))− f (g(x))
h

(
g(x + h)− g(x)
g(x + h)− g(x)

)
= lim

h→0

f (g(x + h))− f (g(x))
g(x + h)− g(x)

· g(x + h)− g(x)
h

= lim
h→0

f (g(x + h))− f (g(x))
g(x + h)− g(x)

· lim
h→0

g(x + h)− g(x)
h

= lim
h→0

f
(

g(x + h)
)
− f
(

g(x)
)

g(x + h) − g(x)
· g′(x)

Set H = g(x + h)− g(x). As h→ 0, we also have H→ 0. So

= lim
H→0

f (g(x) + H)− f (g(x))
H

· g′(x)

= f ′(g(x)) · g′(x)
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CHAIN RULE

Chain Rule – Theorem 2.9.3
Suppose f and g are differentiable functions. Then

d
dx
{f
(
g(x)

)
} = f ′

(
g(x)

)
g′(x) =

df
dg
(
g(x)

)dg
dx

(x)

In the case of kelp,
d
do

k
(
u(o)

)
=

dk
du
(
u(o)

)du
do

(o)
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Chain Rule
Suppose f and g are differentiable functions. Then

d
dx
{f
(
g(x)

)
} = f ′

(
g(x)

)
g′(x) =

df
dg
(
g(x)

)dg
dx

(x)

Example: suppose F(x) = sin(ex + x2).
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F(v) =
(

v
v3 + 1

)6
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NOW
YOU

Let f (x) = (10x + csc x)1/2. Find f ′(x).

f (x) = ( 10x + csc x )1/2

Using the chain rule,

f ′(x) =
1
2
( 10x + csc x )−1/2(10x loge 10− csc x cot x)

=
10x loge 10− csc x cot x

2
√

10x + csc x
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NOW
YOU

Suppose o(t) = et, u(o) = 1
o+sin(o) , and t ≥ 10 (so all

these functions are defined). Using the chain rule, find d
dt u
(
o(t)
)
.

Note: your answer should depend only on t: not o.

o′(t) = et

u′(o) =
(o + sin o)(0)− (1)(1 + cos o)

(o + sin o)2

=
−(1 + cos o)
(o + sin o)2

d
dt

u
(
o(t)
)
= u′

(
o(t)
)

o′(t)

= −et

(
1 + cos

(
o(t)
)[

o(t) + sin(o(t))
]2
)

= −et

(
1 + cos(et)[
et + sin(et)

]2
)
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Evaluate
d

dx

{
x2 + sec

(
x2 +

1
x

)}

d
dx

{
x2 + sec

(
x2 +

1
x

)}

= 2x + sec

(
x2 +

1
x

)
· tan

(
x2 +

1
x

)
· d

dx

{
x2 +

1
x

}

= 2x + sec

(
x2 +

1
x

)
· tan

(
x2 +

1
x

)
· d

dx

{
x2 + x−1

}

= 2x + sec

(
x2 +

1
x

)
· tan

(
x2 +

1
x

)
·
(

2x− x−2
)

Notice: That first term, 2x, is not multiplied by anything else.
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Evaluate
d

dx


1

x +
1

x + 1
x



d
dx


1

x +
1

x + 1
x

 =
d

dx

{(
x +

(
x + x−1

)−1
)−1

}

= −
(

x +
(

x + x−1
)−1

)−2

·
d

dx

{
x +

(
x + x−1

)−1
}

= −
(

x +
(

x + x−1
)−1

)−2

·
[

1 + (−1)
(

x + x−1
)−2

·
d

dx

{
x + x−1

}]

= −
(

x +
(

x + x−1
)−1

)−2

·
[

1 + (−1)
(

x + x−1
)−2

· (1 − x−2)

]
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