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RADIOACTIVE DECAY

The number of atoms in a sample that decay in a given time interval
is proportional to the number of atoms in the sample.

Differential Equation
Let Q = Q(t) be the amount of a radioactive substance at time t. Then
for some positive constant k:

dQ
dt

= −kQ

Solution – Theorem 3.3.2

Let Q(t) = Ce−kt , where k and C are constants. Then:

2/72 Equation 3.3.1
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RADIOACTIVE DECAY

Quantity of a Radioactive Isotope

Q(t) = Ce−kt

Q(t): quantity at time t

What is the sign of Q(t)?
A. positive or zero
B. negative or zero
C. could be either
D. I don’t know

What is the sign of C?
A. positive or zero
B. negative or zero
C. could be either
D. I don’t know
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Seaborgium Decay
The amount of 266Sg (Seaborgium-266) in a sample at time t
(measured in seconds) is given by

Q(t) = Ce−kt

Let’s approximate the half life of 266Sg as 30 seconds. That is, every 30
seconds, the size of the sample halves.

What are C and k?

4/72 Example 3.3.3
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A sample of radioactive matter is stored in a lab in 2000. In the year
2002, it is tested and found to contain 10 units of a particular
radioactive isotope. In the year 2005, it is tested and found to contain
only 2 units of that same isotope. How many units of the isotope
were present in the year 2000?

5/72 Example 3.3.3Example 3.3.6
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Q′(t) = kQ(t)

The number of atoms in a sample that decay in a given time interval
is proportional to the number of atoms in the sample.

The rate of growth of a population in a given time interval is
propotional to the number of individuals in the population, when the
population has ample resources.

The amount of interest a bank account accrues in a given time
interval is proportional to the balance in that bank account.
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Exponential Growth – Theorem 3.3.2
Let Q = Q(t) satisfy:

dQ
dt

= kQ

for some constant k. Then for some constant C = Q(0),

Q(t) = Cekt

Suppose y(t) is a function with the properties that

dy
dt

+ 3y = 0 and y(1) = 2.

What is y(t)?
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POPULATION GROWTH

Suppose a petri dish starts with a culture of 100 bacteria cells and a
limited amount of food and space. The population of the culture at
different times is given in the table below. At approximately what
time did the culture start to show signs of limited resources?

time population
0 100
1 1000
3 100000
5 1000000

8/72
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FLU SEASON

The CDC keeps records (link) on the number of flu cases in the US by
week. At the start of the flu season, the 40th week of 2014, there are
100 cases of a particular strain. Five weeks later (at week 45), there
are 506 cases. What do you think was the first week to have 5,000
cases? What about 10,000 cases?

9/72 Example 3.3.13
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Newton’s Law of Cooling – Equation 3.3.7
The rate of change of temperature of an object is proportional to the
difference in temperature between that object and its surroundings.

dT
dt

(t) = K[T(t)− A]

where T(t) is the temperature of the object at time t, A is the
(constant) ambient temperature of the surroundings, and K is some
constant depending on the object.

10/72
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dT
dt

(t) = K[T(t)− A]

T(t) is the temperature of the object, A is the ambient temperature, K
is some constant.

What is true of K?
A. K ≥ 0
B. K ≤ 0
C. K = 0
D. K could be positive, negative, or zero, depending on the object
E. I don’t know
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Newton’s Law of Cooling – Equation 3.3.7
dT
dt

(t) = K[T(t)− A]

T(t) is the temperature of the object, A is the ambient temperature,
and K is some constant.

T(t) = [T(0)− A]eKt + A

is the only function satisfying Newton’s Law of Cooling

If T(10) < A, then:
A. K > 0
B. T(0) > 0
C. T(0) > A
D. T(0) < A

Evaluate lim
t→∞

T(t).

A. A
B. 0
C. ∞
D. T(0)
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What assumptions are we making that might not square with the real
world?

Newton’s Law of Cooling – Equation 3.3.7
dT
dt

= K[T(t)− A]

T(t) is the temperature of the object, A is the ambient temperature,
and K is some constant.

Temperature of a Cooling Body – Corollary 3.3.8

T(t) = [T(0)− A]eKt + A

13/72
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A farrier forms a horseshoe heated to 400◦ C, then dunks it in a river
at room-temperature (25◦ C). The water boils for 30 seconds. The
horseshoe is safe for the horse when it’s 40◦ C. When can the farrier
put on the horseshoe?

T(t) = [T(0)− A]eKt + A
14/72 Example 3.3.9
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A glass of just-boiled tea is put on a porch outside. After ten minutes,
the tea is 40◦, and after 20 minutes, the tea is 25◦. What is the
temperature outside?

15/72 Example 3.3.11
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In 1963, the US Fish and Wildlife Service recorded a bald eagle
population of 487 breeding pairs. In 1993, that number was 4015.
How many breeding pairs would you expect there were in 2006?
What about 2015?

16/72
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link: Wood Bison Restoration in Alaska, Alaska Department of Fish
and Game

Excerpt:
Based on experience with reintroduced populations elsewhere, wood
bison would be expected to increase at a rate of 15%-25% annually
after becoming established.... With an average annual growth rate
of 20%, an initial precalving population of 50 bison would increase
to 500 in approximately 13 years.

NOW
YOU

Are they using our same model?

17/72

http://www.adfg.alaska.gov/static/species/speciesinfo/woodbison/pdfs/er_no_appendices.pdf
http://www.adfg.alaska.gov/static/species/speciesinfo/woodbison/pdfs/er_no_appendices.pdf


3.3: Exponential Growth and Decay 3.4.1-2: Constant, Linear 3.4.3: Quadratic 3.4.4-5: Taylor Polynomial 3.4.6-7: ∆x, ∆y 3.4.8: Error in Taylor

COMPOUND INTEREST

Suppose you invest $10,000 in an account that accrues interest each
month. After one month, your balance (with interest) is $10,100. How
much money will be in your account after a year?

Compound interest is calculated according to the formula Pert, where
r is the interest rate and t is time.
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CARRYING CAPACITY

For a population of size P with unrestricted access to resources, let β
be the average number of offspring each breeding pair produces per
generation, where a generation has length tg. Then b = β−2

2tg
is the net

birthrate (births minus deaths) per member per unit time. This yields
dP
dt (t) = bP(t), hence:

But as resources grow scarce, b might change.
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CARRYING CAPACITY

b is the net birthrate (births minus deaths) per member per unit time.
If K is the carrying capacity of an ecosystem, we can model
b = b0(1− P

K ).

P

b

K

NOW
YOU

Describe to your neighbour what the following mean in

terms of the model:
I b > 0, b = 0, b < 0
I P = 0, P > 0, P < 0

20/72



3.3: Exponential Growth and Decay 3.4.1-2: Constant, Linear 3.4.3: Quadratic 3.4.4-5: Taylor Polynomial 3.4.6-7: ∆x, ∆y 3.4.8: Error in Taylor

CARRYING CAPACITY

Then:
dP
dt

(t) = b0

(
1− P(t)

K

)
︸ ︷︷ ︸
per capita birthrate

P(t)

This is an example of a differential equation that we don’t have the
tools to solve. (If you take more calculus, though, you’ll learn how!)
It’s also an example of a way you might tweak a model so its
assumptions better fit what you observe.
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RADIOCARBON DATING

Researchers at Charlie Lake in BC have found evidence1 of habitation
dating back to around 8500 BCE. For instance, a butchered bison bone
was radiocarbon dated to about 10,500 years ago.

Suppose a comparable bone of a bison alive today contains 1µg of
14C. If the half-life of 14C is about 5730 years, roughly how much 14C
do you think the researchers found in the sample?

A. About 1
10,500 µg

B. About 1
4 µg

C. About 1
2 µg

D. About 1 µg

E. I’m not sure how to estimate
this

1http://pubs.aina.ucalgary.ca/arctic/Arctic49-3-265.pdf
22/72 Example 3.3.5
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Suppose a body is discovered at 3:45 pm, in a room held at 20◦, and
the body’s temperature is 27◦, not the normal 37◦. At 5:45 pm, the
temperature of the body has dropped to 25.3◦. When did the
inhabitant of the body die?

23/72 Example 3.3.10
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APPROXIMATING A FUNCTION

y = sin x

0.2 y = sin 0

Constant Approximation – Equation 3.4.1
We can approximate f (x) near a point a by

f (x) ≈ f (a)

Google: sin(0.2) ≈ 0.198669... Constant approx: sin(0.2) ≈ 0

25/72
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APPROXIMATING A FUNCTION

y = sin x

0.2

y = x

Linear Approximation (Linearization) – Equation 3.4.3
We can approximate f (x) near a point a by the tangent line to f (x) at a,
namely

f (x) ≈ L(x) = f (a) + f ′(a)(x− a)

Google:
sin(0.2) ≈ 0.198669...

Linear approx:
sin(0.2) ≈ 0 + 1(0.2− 0) = 0.2

26/72
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To find a linear approximation of f (x) at a particular point x, pick a
point a near to x, such that f (a) and f ′(a) are easy to calculate.

f (x) ≈ L(x) = f (a) + f ′(a)(x− a)

x

y

f (x)

L(x)

a x

Let f (x) =
√

x. Approximate f (8.9).
First we note that 8.9 ≈ 9 and we can easily calculate f (9) = 3.
Constant approximation: 8.9 ≈ 9, so f (8.9) ≈ f (9) = 3
Linear approximation: Using a = 9,

f ′(a) = 1
2
√

a = 1
2
√

9
= 1

6

f (8.9) ≈ f (9) + f ′(9)(8.9− 9) = 3 + 1
6 (−.1)

f (8.9) ≈ 3− 1
60 = 2.9833

Google:
√

8.9 = 2.98328677804...

27/72 Example 3.4.5
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To find a linear approximation of f (x) at a particular point x, pick a
point a near to x, such that f (a) and f ′(a) are easy to calculate.

f (x) ≈ L(x) = f (a) + f ′(a)(x− a)

Let f (x) =
√

x. Approximate f (8.9).

First we note that 8.9 ≈ 9 and we can easily calculate f (9) = 3.

Constant approximation: 8.9 ≈ 9, so f (8.9) ≈ f (9) = 3

Linear approximation: Using a = 9,

f ′(a) = 1
2
√

a = 1
2
√

9
= 1

6

f (8.9) ≈ f (9) + f ′(9)(8.9− 9) = 3 + 1
6 (−.1)

f (8.9) ≈ 3− 1
60 = 2.9833

Google:
√

8.9 = 2.98328677804...

28/72 Example 3.4.5
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CAN WE COMPUTE?

Suppose we want to approximate the value of cos(1.5). Which of the
following linear approximations could we calculate by hand? (You
can leave things in terms of π.)
A. tangent line to f (x) = cos x when x = π/2
B. tangent line to f (x) = cos x when x = 3/2
C. both
D. neither

We know cos(π/2) = 0 and sin(π/2) = 1, so we can easily compute
the linear approximation if we centre it at π/2. However, what kind
of ugly number is cos(3/2)?

29/72



3.3: Exponential Growth and Decay 3.4.1-2: Constant, Linear 3.4.3: Quadratic 3.4.4-5: Taylor Polynomial 3.4.6-7: ∆x, ∆y 3.4.8: Error in Taylor

CAN WE COMPUTE?

Which of the following tangent lines is probably the most accurate in
approximating cos(1.5)?
A. tangent line to f (x) = cos x when x = π/2
B. tangent line to f (x) = cos x when x = π/4
C. constant approximation: cos 1.5 ≈ cos(π/2) = 0
D. the linear approximations should be better than the constant

approximation, but both linear approximations should have the
same accuracy

π/2 is very close to 1.5.
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LINEAR APPROXIMATION

Approximate sin(3) using a linear approximation. You may leave
your answer in terms of π.
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LINEAR APPROXIMATION

Approximate e1/10 using a linear approximation.
If f (x) = ex and a = 0 :

f ′(x) = ex

f (1/10) ≈ f (0) + f ′(0)(1/10− 0) = e0 + e0(1/10− 0) = 1 + 1/10
= 1.1

If g(x) = x1/10:
The closest number to e with a simple tenth root is a = 1.

g′(x) = 1
10 x−9/10

g(e) ≈ g(1) + g′(1)(e− 1) = 1 + 1
10 (e− 1) = e+9

10

... but what’s e?
Google: e1/10 = 1.10517091808...

32/72
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LINEAR APPROXIMATION WRAP-UP

Let L(x) = f (a) + f ′(a)(x− a), so L(x) is the linear approximation
(linearization) of f (x) at a.

What is L(a)?

L(a) = f (a)

What is L′(a)?

L′(a) = f ′(a)

What is L′′(a)? (Recall L′′(x) is the derivative of L′(x).)

L′′(a) = 0

y = f (x)

y = L(x)

a
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LINEAR APPROXIMATION WRAP-UP

Let L(x) be a linear approximation of f (x).
f (a) L(a) same
f ′(a) L′(a) same
f ′′(a) L′′(a) different2

2unless f ′′(a) = 0
34/72
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QUADRATIC APPROXIMATION

Imagine we approximate f (x) at x = a with a parabola, P(x).

y = f (x)

y = P(x)

a

35/72
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Constant Linear Quadratic
Function value
matches at x = a X X X

First derivative
matches at x = a × X X

Second derivative
matches at x = a × × X

36/72
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Constant: f (x) ≈ f (a)

Linear: f (x) ≈ f (a) + f ′(a)(x− a)

Quadratic: f (x) ≈ f (a) + f ′(a)(x− a) +
f ′′(a)

2 (x− a)2

37/72
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QUADRATIC APPROXIMATION

P(x) = f (a) + f ′(a)(x− a) +
1
2

f ′′(a)(x− a)2

Approximate log(1.1) using a quadratic approximation.

38/72 Example 3.4.7
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QUADRATIC APPROXIMATION

P(x) = f (a) + f ′(a)(x− a) +
1
2

f ′′(a)(x− a)2

Approximate 3
√

28 using a quadratic approximation.
You may leave your answer unsimplified, as long as it is an expression you
could figure out from integers using only plus, minus, times, and divide.
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Determine what f (x) and a should be so that you can approximate the
following using a quadratic approximation.

log(.9)

f (x) = log(x), a = 1

e−1/30

f (x) = ex, a = 0

5
√

30

f (x) = 5
√

x, a = 32 = 25

(2.01)6

f (x) = x6, a = 2
It is possible to compute the last one without an approximation, but an
approximation might save time while being sufficiently accurate for your
purposes.
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Constant Linear Quadratic degree n
match f (a)

X X X X
match f ′(a) × X X X
match
f ′′(a)

× × X X

· · ·
match
f (n)(a)

× × × X

match
f (n+1)(a)

× × × ×
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Constant:
f (x) ≈ f (a)

Linear:
f (x) ≈ f (a) + f ′(a)(x− a)

Quadratic:

f (x) ≈ f (a) + f ′(a)(x− a) +
f ′′(a)

2 (x− a)2

Degree-n:

f (x) ≈ f (a) + f ′(a)(x− a) +
f ′′(a)

2 (x− a)2 + · · ·?
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BRIEF DETOUR: SIGMA (SUMMATION) NOTATION

b∑
i=a

f (i)

I a, b (integers) “bounds”
I i “index”: runs over integers from a to b
I f (i) “summand”: compute for every i, add

43/72 Notation 3.4.8
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SIGMA NOTATION

4∑
i=2

(2i + 5)
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SIGMA NOTATION

4∑
i=1

(i + (i− 1)2)
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Write the following expressions in sigma notation:
1. 3 + 4 + 5 + 6 + 7
2. 8 + 8 + 8 + 8 + 8
3. 1 + (−2) + 4 + (−8) + 16
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Factorial – Definition 3.4.9
We read “n!” as “n factorial.”
For a natural number n, n! = 1 · 2 · 3 · . . . · n.
By convention, 0! = 1.

We write f (n)(x) to mean the nth derivative of f (x). By convention,
f (0)(x) = f (x).

Taylor Polynomial – Definition 3.4.11
Given a function f (x) that is differentiable n times at a point a, the
n-th degree Taylor polynomial for f (x) about a is

Tn(a) =

n∑
k=0

f (k)(a)

k!
(x− a)k

If a = 0, we also call it a Maclaurin polynomial.
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Tn(a) =

n∑
k=0

f (k)(a)

k!
(x− a)k

=

f (a)︸︷︷︸
k=0

+ f ′(a)(x− a)︸ ︷︷ ︸
k=1

+
1
2!

f ′′(a)(x− a)2︸ ︷︷ ︸
k=2

+

1
3!

f ′′′(a)(x− a)3︸ ︷︷ ︸
k=3

+
1
4!

f (4)(a)(x− a)4︸ ︷︷ ︸
k=4

+

· · ·+ 1
n!

f (n)(a)(x− a)n︸ ︷︷ ︸
k=n
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Tn(a) = f (a) + f ′(a)(x − a) + 1
2! f ′′(a)(x − a)2 + · · ·+ 1

n! f (n)(a)(x − a)n

Find the 7th degree Maclaurin3 polynomial for ex.

3A Maclaurin polynomial is a Taylor polynomial with a = 0.
49/72 Example 3.4.12
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Tn(a) = f (a) + f ′(a)(x − a) + 1
2! f ′′(a)(x − a)2 + · · ·+ 1

n! f (n)(a)(x − a)n

Find the 8th degree Maclaurin polynomial for f (x) = sin x.
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Tn(a) = f (a) + f ′(a)(x − a) + 1
2! f ′′(a)(x − a)2 + · · ·+ 1

n! f (n)(a)(x − a)n

NOW
YOU

Find the 7th degree Taylor polynomial for f (x) = log x, centered at
a = 1.
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skip ∆x notation

Notation 3.4.18
Let x, y be variables related such that y = f (x). Then we denote a
small change in the variable x by ∆x (read as “delta x”). The
corresponding small change in the variable y is denoted ∆y (read as
“delta y”).

∆y = f (x + ∆x)− f (x)

Thinking about change in this way can lead to convenient
approximations.
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Let y = f (x) be the amount of water needed to produce x apples in an
orchard.
A farmer wants to know how a much water is needed to increase
their crop yield. ∆x is shorthand for some change in the number of
apples, and ∆y is shorthand for some change in the amount of water.

I Consider changing the
number of apples grown
from a to a + ∆x

I Then the change in water
requirements goes from
y = f (a) to y = f (a + ∆x)

∆y = f (a + ∆x)− f (a)
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LINEAR APPROXIMATION OF ∆y

I Using a linear approximation, setting x = a + ∆x:

f (x) ≈ f (a) + f ′(a)(x− a) linear approximation
f (a + ∆x) ≈ f (a) + f ′(a)(∆x) set x = a + ∆x

∆y = f (a + ∆x)− f (a) ≈ f ′(a)∆x subtract f (a) both sides

Linear Approximation of ∆y (Equation 3.4.20)

∆y ≈ f ′(a)∆x

If we set ∆x = 1, then ∆y ≈ f ′(a). So, if we want to produce a + 1
apples instead of a apples, the extra water needed for that one extra
apple is about f ′(a). We call this the marginal water cost of the apple.
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QUADRATIC APPROXIMATION OF ∆y

If we wanted a more accurate approximation, we can use other Taylor
polynomials. For example, let’s try the quadratic approximation.

Quadratic Approximation of ∆y (Equation 3.4.21)

∆y ≈ f ′(a)∆x +
1
2

f ′′(a)(∆x)2
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skip further examples

Approximate tan(65◦) three ways: using constant, linear, and
quadratic approximation.
Your answer may consist of the sum, difference, product, and
quotient of integers, roots of integers, and π.

All our derivatives were based on radians, so first, let’s do a
conversion:

65 degrees ·
(

2π radians
360 degrees

)
=

13π
36

radians

13π
36 is pretty close to π

3 (and 65 is pretty close to 60), so we centre our
approximation at a = π

3 (or 60◦). This is the closest reference angle to
our desired angle.
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You measure an angle x ≈ π
2 , and use it to calculate y = sin x ≈ 1.

However, you suspect the angle was not exactly equal to π
2 , which

means the actual value y is slightly less than 1. In order for your value
of y to have an error of no more than 1

200 , how accurate does your
measurement of θ have to be?

Let the actual angle x be x0 + ∆x with x0 = π
2 , so ∆x is the error in

your measurement. Then let y0 = sin x0 = 1 and y = sin x. Then the
error in y is ∆y = y− y0.
We want to solve

− 1
200

= ∆y = y− y0 = sin x− sin x0 = sin
(π

2
+ ∆x

)
− 1

for (the maximum allowed) ∆x.

We’ll show two solutions.

57/72 Example 3.4.22Example 3.4.22Example 3.4.24
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Definition 3.4.25
Let Q0 be the exact value of a quantity and let Q0 + ∆Q be the
measured value. We call

|∆Q|

the absolute error of the measurement, and

100
|∆Q|
Q0

the percentage error of the measurement.

Suppose a bottle of water is labelled as having 500 mL of water, but in
fact contains 502.

58/72 Example 3.4.24Example 3.4.24
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Once again, you find yourself in the position of measuring an angle x,
which you use to compute y = sin x. Let’s say both x and y are
positive. If your percentage error in measuring x is at most 1%, what
is the corresponding maximum percentage error in y?
Use a linear approximation.

Let x0 be the actual value of the angle, x be the measured angle, and
∆x = x− x0. Then let y(x) = sin x (the computed y) and y0 = sin x0 (the
actual y), with ∆y = y− y0.
Using the linear approximation y(x0 + ∆x) ≈ y(x0) + y′(x0)(∆x):

∆y = y(x0 + ∆x)− y(x0) ≈ y′(x0)∆x = cos x0 ·∆x

Note: 1 = 100
|∆x|

x0
=⇒ ∆x = ± x0

100

=⇒ ∆y ≈ ±x0 cos x0

100

=⇒ 100
|∆y|

y0
≈ 100

|x0 cos x0|
100

y0
=

x0| cos x0|
y0

=
x0| cos x0|

sin x0

Note that when x0 ≈ π
2 , this percentage error, x0| cos x0|

sin x0
, is close to 0; when

x0 ≈ 0, it is about 1. (For the second fact, remember lim
x→0

sin x
x = 1.)
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ERROR: WHAT “CAUSES” ERROR IN AN ESTIMATION?

Constant approximation: We assume the function doesn’t change, but
in fact the function does change (its derivative is not always zero).
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CONTROLLING THE “CAUSE” OF THE ERROR

Constant approximation: We assume the function doesn’t change, but
in fact the function does change (its derivative is not always zero).
BUT: suppose we know the max and min values of the function’s
slope.
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Error
The error in an estimation f (x) ≈ Tn(x) is f (x)− Tn(x). We often use
|f (x)− Tn(x)| if we don’t care whether the approximation is too big or
too little, but only that it is not too egregious.

Taylor’s Theorem – Equation 3.4.33
For some c strictly between x and a,

f (x)− Tn(x) =
1

(n + 1)!
f (n+1)(c)(x− a)n+1

The trick is bounding f (n+1)(c). It’s usually OK to be sloppy here!
Also, usually what we care about is the magnitude of the error:
|f (x)− Tn(x)|.

62/72



3.3: Exponential Growth and Decay 3.4.1-2: Constant, Linear 3.4.3: Quadratic 3.4.4-5: Taylor Polynomial 3.4.6-7: ∆x, ∆y 3.4.8: Error in Taylor

Third degree Maclaurin polynomial for f (x) = ex:

T3(x) = f (0) + f ′(0)(x− 0) + 1
2! f
′′(0)(x− 0)2 + 1

3! f
′′′(0)(x− 0)3

= e0 + e0x +
1
2!

e0x2 +
1
3!

e0x3

= 1 + x +
x2

2!
+

x3

3!

Bound the error associated with using T3(x) to approximate e1/10.
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Taylor’s Theorem – Equation 3.4.33
For some c strictly between x and a,

f (x)− Tn(x) =
1

(n + 1)!
f (n+1)(c)(x− a)n+1

Bound the error associated with using T3(x) to approximate e1/10.
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Taylor’s Theorem – Equation 3.4.33
For some c strictly between x and a,

f (x)− Tn(x) =
1

(n + 1)!
f (n+1)(c)(x− a)n+1

Suppose we use the 5th degree Taylor polynomial centered at a = π/2
to approximate f (x) = cos x. What could the magnitude of the error
be if we approximate cos(2)?

65/72 Example 3.4.34
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Taylor’s Theorem – Equation 3.4.33
For some c strictly between x and a,

f (x)− Tn(x) =
1

(n + 1)!
f (n+1)(c)(x− a)n+1

Suppose we use a third degree Taylor polynomial centred at 4 to
approximate f (x) =

√
x. If we use this Taylor polynomial to

approximate
√

4.1, give a bound for our error.
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Taylor’s Theorem – Equation 3.4.33
For some c strictly between x and a,

f (x)− Tn(x) =
1

(n + 1)!
f (n+1)(c)(x− a)n+1

Suppose you want to approximate the value of e, knowing only that it
is somewhere between 2 and 3. You use a 4th degree Maclaurin
polynomial for f (x) = ex to approximate f (1) = e1 = e. Bound your
error.
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Computing approximations uses resources. We might want to use as
few resources as possible while ensuring sufficient accuracy.

A reasonable question to ask is: which approximation will be good
enough to keep our error within some fixed error tolerance?
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WHICH DEGREE?

Suppose you want to approximate sin 3 using a Taylor polynomial of
f (x) = sin x centered at a = π. If the magnitude of your error must be
less than 0.001, what degree Taylor polynomial should you use?
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WHICH DEGREE?

Suppose you want to approximate e5 using a Maclaurin polynomial
of f (x) = ex. If the magnitude of your error must be less than 0.001,
what degree Maclaurin polynomial should you use?
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WHICH DEGREE?

Suppose you want to approximate log 4
3 using a Taylor polynomial of

f (x) = log x centred at a = 1. If the magnitude of your error must be
less than 0.001, what degree Taylor polynomial should you use?
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WHICH DEGREE?

Let f (x) = 4
√

x. Suppose you use a second-degree Taylor polynomial
of f (x) centered at a = 81 to approximate 4

√
81.2. Bound your error,

and tell whether T2(10) is an overestimate or underestimate.
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