The University of British Columbia

Department of Mathematics

Qualifying Examination—Differential Equations January 2023

1. (10 points) You are attempting to solve for x_1, x_2, x_3 in the matrix equation $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & -2 \\ 1 & 2 & -2 \\ 1 & 2 & 0 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ 1 \\ 0 \end{bmatrix}.$$

First, find the projection $\hat{\mathbf{b}}$ on the column space of A. Then, solve the new system $A\mathbf{x} = \hat{\mathbf{b}}$ for x_1, x_2, x_3 .

- 2. (10 points) Let A be an $n \times n$ diagonalizable matrix. Show that A and A^T are similar, i.e., there exists an invertible matrix M such that $A^T = MAM^{-1}$.
- 3. (10 points) Let A be a real $n \times n$ matrix such that $||A\mathbf{v}|| = ||\mathbf{v}||$ for all $\mathbf{v} \in \mathbb{R}^n$. Show that A is orthogonal.

- 4. (10 points) IVP-ODE problems
 - (a) [5 points] Find the explicit solution y(x) to the following IVP:

$$y' - \tan(x)y = 3x + 1$$
, $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, $y(0) = 1$.

(b) [5 points] Find the explicit solution y(t) as a function of $k \in \mathbb{R}$ to the following IVP:

$$y'' - y' - 2y = 120e^{-t}$$
, $y(0) = 215$, $y'(0) = k$.

Then, determine the value of k for which $\lim_{t\to\infty} y(t) = 0$.

5. (10 points) We consider the Laplace equation on a circular wedge with the following boundary conditions:

$$\Delta u = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$$
 , $0 \le r \le a$, $0 \le \theta \le \pi/4$
$$u(r,0) = 1$$
 , $u_{\theta}(r,\pi/4) = 0$
$$u(a,\theta) = \sin(2\theta) + 1$$
 , u remains finite as $r \to 0$

Here a > 0 is the radius of the wedge.

- (a) [3 points] We seek a solution of the form $u(r, \theta) = A + v(r, \theta)$ where $A \in \mathbb{R}$. Determine A and the problem solved by the function $v(r, \theta)$.
- (b) [7 points] Find $v(r, \theta)$ using the method of separation of variables and give the complete solution $u(r, \theta)$.

Tip: the eigenvalues and eigenfunctions of the 1D negative Laplacian operator $-\Delta$ over $x \in [0, L]$ with homogeneous Dirichlet boundary condition at x = 0 and homogeneous Neumann boundary condition at x = L are $\lambda_n = \left(\frac{(2n-1)\pi}{2L}\right)^2$ and $\sin\left(\frac{(2n-1)\pi}{2L}x\right)$, respectively, for $n = 1, 2, \ldots$

6. (10 points) Convolution and Laplace transform We define the convolution of two functions f(t) and g(t) as

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau)d\tau.$$

(a) [5 points] Prove the convolution theorem for Laplace tranforms

$$\mathcal{L}\{(f*g)(t)\}(s) = F(s)G(s),$$

where $F(s) = \mathcal{L}{f(t)}(s)$ and $G(s) = \mathcal{L}{g(t)}(s)$.

(b) [5 points] Use the convolution theorem (and not any other method) to calculate the inverse Laplace transform of $H(s) = \frac{a}{s^2(s^2 + a^2)}$ for any $a \in \mathbb{R}$, $a \neq 0$.

Help with Laplace transforms

$f(t) = \mathcal{L}^{-1}\{F(s)\}(t)$	$F(s) = \mathcal{L}\{f(t)\}(s)$
$1. \sin(xt)$	$\frac{x}{s^2 + x^2}, s > 0$
$2. \cos(xt)$	$\frac{s}{s^2 + x^2}, s > 0$
3. t^n , n positive integer	$\frac{n!}{s^{n+1}}, s > 0$