The University of British Columbia Department of Mathematics Qualifying Examination—Algebra January 2022

1. (8 points) (a) (2 points) Find a basis for the space M_2 of 2×2 matrices.

- (b) (2 points) What is the dimension of M_2 ?
- (c) (2 points) Find a basis for the subspace D_2 of diagonal 2×2 matrices.
- (d) (2 points) What is the dimension of D_2 ?
- 2. (12 points) Let $x_1 = (-1, 1)$ and $x_2 = (1, 0)$ and consider the sets $S_1, S_2 \subset \mathbb{R}^2$ given by

$$S_1 = \{v : v^T x_1 = 0\}$$

and

$$S_2 = \{ v : v^T x_2 = 0 \}.$$

- (a) (4 points) Find an expression for the projection operators P_1 onto S_1 and P_2 onto S_2 .
- (b) (4 points) Let y = (1, 2). Compute $P_2 y$, the projection of y onto S_2 , and $P_1 P_2 y$, and $P_2 P_1 P_2 y$.
- (c) (4 points) Find $\lim_{n\to\infty} (P_1P_2)^n y$. Justify your answer.
- 3. (10 points) Let M be a square matrix of size $n \times n$ with distinct eigenvalues $\lambda_1 > \lambda_2 > \ldots > \lambda_n$. Show that the determinant of M is the product of its eigenvalues: $\det(M) = \prod_{i=1}^n \lambda_i$.

- 4. (8 points) Let Γ be a cyclic group of order 2^n for some integer n > 0.
 - (a) Prove that when n = 1 the group Γ is unique up to isomorphism.
 - (b) Prove that the group G of isomorphisms $\Gamma \to \Gamma$ is a group of order 2^{n-1} .
 - (c) When n = 3, prove that G from part (b) is not a cyclic group.
- 5. (10 points) Let R be a principal ideal domain and let $I \subset R$ be a proper ideal.
 - (a) If I is prime, show that R/I is a principal ideal domain.
 - (b) If I is not prime, show that R/I is not a unique factorization domain.
 - (c) If \mathbf{k} is a field, prove that $\mathbf{k}[x]$ is a principal ideal domain. You should assume the existence of the division algorithm for this part.
 - (d) Show that no quotient of $\mathbb{Q}[x]$ is isomorphic to $\mathbb{Z}[x]$.
- 6. (12 points) For this problem, \mathbf{k} is a field, with $\mathbf{k}^{\times} = \mathbf{k} \setminus \{0\}$ the (multiplicative) group of units, and \mathbb{Z} denotes the integers. Recall that elements of $GL(2, \mathbf{k})$ are 2×2 invertible matrices with coefficients in \mathbf{k} . You will need the following definition: A valuation is a surjective group homomorphism $v \colon \mathbf{k}^{\times} \to \mathbb{Z}$ satisfying

$$v(a+b) \ge \min\{v(a), v(b)\}$$

whenever $a, b, a + b \in \mathbf{k}^{\times}$.

- (a) Show that if $v(a) \neq v(b)$ then $v(a+b) = \min\{v(a), v(b)\}$.
- (b) Show that the set $\mathcal{O}_v = \{a \in \mathbf{k} \mid v(a) \ge 0\}$ is a subring of \mathbf{k} and determine its group of units.
- (c) Let $V = \mathbf{k}^2$ be the standard 2-dimensional vector space. Observe that \mathcal{O}_v acts by multiplication on V in such a way that for $a, b \in \mathcal{O}_v$ and for $x, y \in V$ we have
 - a(x+y) = ax + ay;
 - (a+b)x = ax + ab; and
 - (ab)x = a(bx).

This certifies that V is a module over \mathcal{O}_v . A lattice in this setting is a $\Lambda \subseteq V$ such that for any $x \in \Lambda$ and any $a \in \mathcal{O}_v$ the product ax is in Λ . A basic fact, that you may assume, is that every Λ is free as a module over \mathcal{O}_v with free basis $\{e, f\}$, in the sense that every $x \in \Lambda$ may be uniquely expressed as $x = \alpha e + \beta f$ for $\alpha, \beta \in \mathcal{O}_v$, such that span_k $\{e, f\} = V$ as a **k** vector space. Verify that for any two lattices Λ_0 and Λ_1 there is an element of $GL(2, \mathbf{k})$ carrying Λ_0 bijectively to Λ_1 .

- (d) Show that any lattice automorphism is given by an element in $GL(2, \mathcal{O}_v)$.
- (e) Given lattices Λ_0 and Λ_1 define $\delta(\Lambda_0, \Lambda_1) = v(\det(A))$ where A carries Λ_0 bijectively to Λ_1 . Prove that the quantity $\delta(\Lambda_0, \Lambda_1)$ does not depend on the choice of matrix A.
- (f) Verify that $\delta(\Lambda_0, \Lambda_2) = \delta(\Lambda_0, \Lambda_1) + \delta(\Lambda_1, \Lambda_2)$ and that $\delta(\Lambda, \Lambda) = 0$.