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PROF. DRAGOS GHIOCA

Problem 1. Let {Fn}n≥1 be the Fibonacci sequence, i.e.,

F1 = 1, F2 = 1 and Fn+2 = Fn+1 + Fn for each n ≥ 1.

Find all positive real numbers a and b with the property that for each n ≥ 1, we
have that aFn + bFn+1 is another element of the Fibonacci sequence.

Solution. We let α : N −→ N be the function having the property that

aFn + bFn+1 = Fα(n) for all n ≥ 1.

Adding the above identity for two consecutive integers, we get

Fα(n+1) + Fα(n)

= (aFn+1 + bFn+2) + (aFn + bFn+1)

= a(Fn+1 + Fn) + b(Fn+2 + Fn+1)

= aFn+2 + bFn+3

= Fα(n+2).

Now, for any r, s, t ≥ 3 we have that Fr + Fs = Ft if and only if r + 2 = s+ 1 = t
(after possibly interchanging r and s). Indeed, in order to prove this, we note that
we may assume without loss of generality that r ≤ s and also, we definitely need
t ≥ s+ 1. Furthermore, for 3 ≤ r ≤ s, we observe that we cannot have r = s since

Fr + Fs = 2Fs < Fs + Fs+1 = Fs+2 and also Fr + Fs > Fs−1 + Fs = Fs+1.

So, indeed, r < s < t. Now, if t ≥ s+ 2, then

Ft ≥ Fs+2 = Fs+1 + Fs > Fs + Fr.

So, we must have that s+1 = t and then Ft−Fs = Fs−1, which means that r = s−1
(note that r ≥ 3 and so, Fr > 1). Therefore, Fr + Fs = Ft with 3 ≤ r ≤ s ≤ t
occurs only if r + 2 = s+ 1 = t yields that for n ≥ 2 (which would guarantee that
α(2) > 1) we have that

Fα(n) + Fα(n+1) = Fα(n+2),

which yields α(n) + 2 = α(n+ 1) + 1 = α(n+ 2). So, α(n) = n+ c for some integer
c. On the other hand, a simple induction - using the general form of the Fibonacci
sequence:

Fn =
1√
5
·

((
1 +
√

5

2

)n
−

(
1−
√

5

2

)n)
,

we obtain that

Fc−1Fn + FcFn+1 = Fn+c.

So, for any (a, b) of the form (Fc−1, Fc) for c ≥ 2 (so that both a and b need to be
strictly positive) we obtain the desired conclusion for this Problem.

1



2 PROF. DRAGOS GHIOCA

Problem 2. For any polynomial P ∈ C[x] and for each complex number a, we
denote by Pa the set of all z0 ∈ C such that P (z0) = a. Let P,Q ∈ C[x] such that
P2 = Q2 and P5 = Q5. Prove that P = Q.

Solution. Let α1, . . . , αr be the elements of P2 = Q2 and also, let β1, . . . , βs be
the elements of P − 5 = Q5; then we let k1, . . . , kr be the respective multiplicities
of α1, . . . , αr as roots for P (x) − 2, and also we let m1, . . . ,ms be the respective
multiplicities of β1, . . . , βs as roots of P (x) − 5. Then k1 − 1, . . . , kr − 1 are the
multiplicities of α1, . . . , αr as roots of P ′(x) and similarly, m1 − 1, . . . ,ms − 1 are
the multiplicities of β1, . . . , βs as roots of P ′(x) = 0. Then - letting d be the degree
of P (x) - we get that

d− 1 ≥
r∑
i=1

(αi − 1) +

s∑
j=1

(βj − 1).

On the other hand, we have d =
∑r
i=1 αi and d =

∑s
j=1 βj (since these are the

multiplicities of the roots of P (x)− 2, respectively of P (x)− 5); so, we obtain

d− 1 ≥ 2d− r − s, which yields r + s ≥ d+ 1.

Similarly, we get r + s ≥ D + 1, where D is the degree of Q(x). Thus we get
that the polynomial P (x)−Q(x), which has degree bounded above by max{d,D}
has at least r + s roots α1, . . . , αr, β1, . . . , βs; in conclusion, we must have P = Q
identically.

Problem 3. Let N0 := N ∪ {0}. We have a function f : N2
0 −→ N0 satisfying the

following properties:

• f(0, y) = y + 1 for each y ∈ N0;
• f(x+ 1, 0) = f(x, 1) for each x ∈ N0; and
• f(x+ 1, y + 1) = f(x, f(x+ 1, y)) for each x, y ∈ N0.

Find f(4, 2019).

Solution. We have f(1, y + 1) = f(0, f(1, y)) = f(1, y) + 1 for all y ∈ N0 and so,
f(1, y) = f(1, 0) + y = f(0, 1) + y = 2 + y. Next, we find

f(2, y + 1) = f(1, f(2, y)) = f(2, y) + 2 for all y ∈ N0

and so, f(2, y) = f(2, 0) + 2y = f(1, 1) + 2y = 3 + 2y for all y ∈ N0. Next,

f(3, y + 1) = f(2, f(3, y)) = 3 + 2f(3, y).

Thus, letting g(y) := f(3, y) + 3, we obtain that

g(y + 1) = 2g(y) for all y ∈ N0

and so, f(3, y) = 2y(f(3, 0) + 3) − 3 = 2y(f(2, 1) + 3) − 3 = 2y · 8− 3 = 2y+3 − 3.
Finally,

f(4, y + 1) = f(3, f(4, y)) = 2f(4,y)+3 − 3

for all y ∈ N0. We let h(y) := f(4, y) + 3 and thus

h(y + 1) = 2h(y) for all y ∈ N0

and so, h(y) = 22
2···

, where there are y + 3 iterated powers of 2 (note that h(0) =

f(4, 0) + 3 = f(3, 1) + 3 = 24 = 22
2

). Hence

f(4, 2019) = 22
22

···

− 3,
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where there are 2022 iterated powers of 2 in the above formula.

Problem 4. We consider all possible sequences {xn}n≥0 of positive real numbers
having the properties that x0 = 1 and also that xn+1 ≤ xn for each n ≥ 0.

(I) Prove that for each such sequence {xn}n≥0, we have that the series
∞∑
i=0

x2i
xi+1

is either divergent to +∞, or it coverges to a real number at least equal to
4.

(II) Prove that there exists exactly one such sequence {xn}n≥0 for which the
series

∞∑
i=0

x2i
xi+1

equals 4.

Solution. We let {yn}n≥1 with the property that

xn =

n∏
i=1

yi for each n ≥ 1;

in other words, yn := xn

xn−1
. By our hypothesis, we have that yn ≤ 1 for each n ≥ 1.

So, the above series
∑
n≥0

x2
n

xn+1
equals

1

y1
+
y1
y2

+
y1y2
y3

+ · · ·+ y1y2 · · · yn
yn+1

+ · · ·

We denote by f(y1, . . . , yn, . . . ) the above sum. Clearly,

f(y1, . . . , yn, . . . ) =
1

y1
+ y1 · f(y2, . . . , yn, . . . ).

So, letting f0 be the smallest possible sum attained by a choice of some sequence
{yn} and then we see that

f0 =
1

y1
+ y1f0.

So, f0 := 1
y1(1−y1) and clearly, we see that the minimum value of f0 is obtained for

y1 = 1
2 . So, the smallest value for the above sum of the series is 4 and it is attained

when y1 = 1
2 and inductively, when each yn = 1

2 , which translates to xn = 1
2n .


