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PROF. DRAGOS GHIOCA

Problem 1. Find the sum of the series
= 13’” 3mn+3" )

Solution. We let a,, : and then we notice that our series is precisely
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Clearly, since the series is absolutely convergent,
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Now, the series >_° | 2+ represents f’(1) for the function
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So, f'(x) = ﬁ and therefore, f/(1) = %; so, we conclude that S = 3%.
Problem 2. Prove that there exists a positive ocnstant C' such that for any
polynomial P € R[z] of degree less than 2020, we have that
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Solution. First, we note that if P(0) = 0, then any positive constant C' would
work. So, from now on, assume P(0) # 0, i.e., 0 is not a root of the polynomial
P(z).
Secondly, we observe that if the r;’s are the roots of P(x) (listed with their
corresponding multiplicities). So, the problem asks for proving that there exists a
positive lower bound for the integral
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Our strategy is to show that there exists a subinterval I C [—1, 1] of length larger
than some given positive quantity such that for all points z in I, each of the factors
|(x —r;)/r;| are bounded below by another positive quantity (note that each r; is
nonzero according to our initial assumption as above).

Since P(x) has less than 2020 distinct roots, then there exists an interval I C
[0,1/2] of length at least 15z such that none of the roots of P(x) are within 1§ of
some point contained in I



2 PROF. DRAGOS GHIOCA

Now, for any root r of P(x) and for any point = € I, we claim that
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Indeed, if |r| < 1, then since | — r| > 15, then indeed |(x —r)/r| > 1/10%. So,
assume next that || > 1; but then
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’ rl = T - 2 = 104
as claimed. So,
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Problem 3. The sequence {ay} satisfies
a1 =1; a3 =2; a3 =24 and forn > 4 :
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Prove that for each positive integer n, we have that a,, is an integer multiple of n.
Solution. We let b,, := a,/a,—1 for each n > 2 and so, for all n > 4, we have:
b, = 6b,_1 — 8b,,_2, where
by =2 and b3 = 12.

We solve first for the sequence {b,} whose characteristic roots are 2 and 4 and a
simple computation yields that for all n > 2, we have:

bn _ _2n—1 + 471—1.

So, using that a; = 1, we conclude that

n—1
a, = [J (4" —2").
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Now, for each positive integer n, we write it as n = 2% - b, where ¢ > 0 and b is
an odd integer. We have that, after denoting by ¢(m) the Euler-totient function
corresponding to each integer m,

4a#®) _9a:¢(4) = (mod n).

Indeed, clearly, the above expression is divisible by 2%, so we’re left to prove that
it must also be divisible by b. However,

436() _ 9ad(b) _ 9ad(b) . (2a¢<b> _ 1) =0 (mod b),
using Euler’s theorem because 2¢(®) =1 (mod b) (and then 27%®) =1 (mod b) for
any positive integer m). Finally, we observe that
a-p(b) <n=2%b,
because ¢(b) < b and a < 2% for any b > 1 and any a > 0.

Problem 4. Let P € C[z] be a polynomial of degree n such that P(z) = Q(z) -
P"(z), where Q(z) is a quadratic polynomial and P” is the double derivative of
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P. Show that if P(x) has at least two distinct roots, then it must have n distinct
roots.

Solution. Assume r is a root of P(z) of multiplicity m > 2. Then P"(z)
has the root r with multiplicity m — 2; therefore, Q(x) must have the root r with
multiplicity 2. Furthermore, looking the leading coefficients of both P(z) and of
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P (z), we conclude that Q(z) = eyl G r)2. Now, we write

P(z) = ch(a: —r)h
i=0
actually, from our assumption, we know that a; = 0 for 0 < i < m (where m > 2).
Then

n
P'(z) =" i(i — 1)ej(x —r)"">
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and then equating P(z) = 7(1?;1)12) - P"(z) (in their expansions around x = r), we
get that ¢; must be equal to 0 whenever ¢ < n, which contradicts the assumption
that P(x) has at least two distinct roots. This concludes our proof.




