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Problem 1. Find the sum of the series
∞∑
m=1

∞∑
n=1

m2n

3m(3mn+ 3nm)
.

Solution. We let an := n
3n and then we notice that our series is precisely

S :=

∞∑
m=1

∞∑
n=1

a2man
an + am

.

Clearly, since the series is absolutely convergent,

2S =

∞∑
m=1

∞∑
n=1

a2man
an + am

+
ama

2
n

am + an
=

∞∑
m=1

∞∑
n=1

aman =

( ∞∑
n=1

an

)2

.

Now, the series
∑∞
n=1

n
3n represents f ′(1) for the function

f(x) =

∞∑
n=1

xn

3n
=
x

3
· 1

1− x
3

=
x

3− x
.

So, f ′(x) = 3
(3−x)2 and therefore, f ′(1) = 3

4 ; so, we conclude that S = 9
32 .

Problem 2. Prove that there exists a positive ocnstant C such that for any
polynomial P ∈ R[x] of degree less than 2020, we have that

P (0) ≤ C ·
∫ 1

−1
|P (x)|dx.

Solution. First, we note that if P (0) = 0, then any positive constant C would
work. So, from now on, assume P (0) 6= 0, i.e., 0 is not a root of the polynomial
P (x).

Secondly, we observe that if the ri’s are the roots of P (x) (listed with their
corresponding multiplicities). So, the problem asks for proving that there exists a
positive lower bound for the integral∫ 1

−1

∏
i

∣∣∣∣x− riri

∣∣∣∣dx.

Our strategy is to show that there exists a subinterval I ⊂ [−1, 1] of length larger
than some given positive quantity such that for all points x in I, each of the factors
|(x − ri)/ri| are bounded below by another positive quantity (note that each ri is
nonzero according to our initial assumption as above).

Since P (x) has less than 2020 distinct roots, then there exists an interval I ⊂
[0, 1/2] of length at least 1

104 such that none of the roots of P (x) are within 1
104 of

some point contained in I.
1
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Now, for any root r of P (x) and for any point x ∈ I, we claim that∣∣∣∣x− rr
∣∣∣∣ > 1

104
.

Indeed, if |r| ≤ 1, then since |x − r| > 1
104 , then indeed |(x − r)/r| > 1/104. So,

assume next that |r| > 1; but then∣∣∣∣x− rr
∣∣∣∣ =

∣∣∣1− x

r

∣∣∣ ≥ 1−
∣∣∣x
r

∣∣∣ > 1− 1

2
>

1

104
,

as claimed. So,∫ 1

−1

∣∣∣∣P (x)

P (0)

∣∣∣∣ dx ≥
∫
I

∏
i

∣∣∣∣x− riri

∣∣∣∣ > ∫
I

(
1

104

)2020

dx =
1

108084
.

Problem 3. The sequence {an} satisfies

a1 = 1; a2 = 2; a3 = 24 and for n ≥ 4 :

an =
6a2n−1an−3 − 8an−1a

2
n−2

an−2an−3
.

Prove that for each positive integer n, we have that an is an integer multiple of n.

Solution. We let bn := an/an−1 for each n ≥ 2 and so, for all n ≥ 4, we have:

bn = 6bn−1 − 8bn−2, where

b2 = 2 and b3 = 12.

We solve first for the sequence {bn} whose characteristic roots are 2 and 4 and a
simple computation yields that for all n ≥ 2, we have:

bn = −2n−1 + 4n−1.

So, using that a1 = 1, we conclude that

an =

n−1∏
i=1

(4i − 2i).

Now, for each positive integer n, we write it as n = 2a · b, where a ≥ 0 and b is
an odd integer. We have that, after denoting by φ(m) the Euler-totient function
corresponding to each integer m,

4a·φ(b) − 2a·φ(b) ≡ 0 (mod n).

Indeed, clearly, the above expression is divisible by 2a, so we’re left to prove that
it must also be divisible by b. However,

4aφ(b) − 2aφ(b) = 2aφ(b) ·
(

2aφ(b) − 1
)
≡ 0 (mod b),

using Euler’s theorem because 2φ(b) ≡ 1 (mod b) (and then 2mφ(b) ≡ 1 (mod b) for
any positive integer m). Finally, we observe that

a · φ(b) < n = 2a · b,
because φ(b) ≤ b and a < 2a for any b ≥ 1 and any a ≥ 0.

Problem 4. Let P ∈ C[x] be a polynomial of degree n such that P (x) = Q(x) ·
P ′′(x), where Q(x) is a quadratic polynomial and P ′′ is the double derivative of
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P . Show that if P (x) has at least two distinct roots, then it must have n distinct
roots.

Solution. Assume r is a root of P (x) of multiplicity m ≥ 2. Then P ′′(x)
has the root r with multiplicity m − 2; therefore, Q(x) must have the root r with
multiplicity 2. Furthermore, looking the leading coefficients of both P (x) and of
P ′′(x), we conclude that Q(x) = 1

n(n−1) · (x− r)
2. Now, we write

P (x) =

n∑
i=0

ci(x− r)i;

actually, from our assumption, we know that ai = 0 for 0 ≤ i < m (where m ≥ 2).
Then

P ′′(x) =

n∑
i=m

i(i− 1)ci(x− r)i−2

and then equating P (x) = (x−r)2
n(n−1) · P

′′(x) (in their expansions around x = r), we

get that ci must be equal to 0 whenever i < n, which contradicts the assumption
that P (x) has at least two distinct roots. This concludes our proof.


