math 516: Final exam

december 32008

1 Neumann/Dirichlet boundary value problem

We consider the following set of \mathbb{R}^{2} :

$$
U:=(-1,1) \times(-1,1):=\left\{(x, y) \in \mathbb{R}^{2} \text { such that }-1<x<1,-1<y<1\right\},
$$

and $\partial U=\Gamma_{1} \cup \Gamma_{2}$ with
$\Gamma_{1}:=(\{-1\} \cup\{1\}) \times(-1,1)=\left\{(x, y) \in \mathbb{R}^{2}\right.$ such that $\left.|x|=1,-1<y<1\right\}$.
$\Gamma_{2}:=(-1,1) \times(\{-1\} \cup\{1\})=\left\{(x, y) \in \mathbb{R}^{2}\right.$ such that $\left.|y|=1,-1<x<1\right\}$. and we want to solve on U the following equation, with $f \in L^{2}(U)$:

$$
\begin{align*}
-\Delta u & =f \text { in } U \tag{1}\\
u & =0 \text { on } \Gamma_{1} \tag{2}\\
\frac{\partial u}{\partial n} & =0 \text { on } \Gamma_{2} \tag{3}
\end{align*}
$$

We define the following functional spaces:

$$
\begin{gathered}
E:=\left\{u \in C^{\infty}(\bar{U}) \text { such that } \operatorname{supp}(u) \cap \Gamma_{1}=\emptyset\right\} \\
H:=\left\{u \in H^{1}(U) \text { such that }\left.u\right|_{\Gamma_{1}}=0\right\} .
\end{gathered}
$$

1. Show that the closure of E in $H^{1}(U)$ is H.
2. Prove the following Poincaré inequality

$$
\|u\|_{L^{2}(U)} \leq \sqrt{2}\|\nabla u\|_{L^{2}(U)}, \forall u \in H .
$$

Hint: Prove it first for $u \in E$, by writing $u(x, y)=\int_{-1}^{x} \frac{\partial u}{\partial x}(s, y) d s$.
3. Show that H, endowed with the following inner product is a Hilbert space.

$$
<u, v>_{H}:=\int_{U} \nabla u \cdot \nabla v
$$

4. $u \in H$ is said to be a weak solution of (1) with the boundary conditions $(2),(3)$ if we have

$$
\begin{equation*}
\int_{U} \nabla u \cdot \nabla v=\int_{U} f v, \forall v \in H \tag{4}
\end{equation*}
$$

Prove that if $u \in C^{2}(\bar{U})$ verifies (4), then u is a strong solution of (1) with the boundary conditions (2),(3).
5. Show that $\forall f \in L^{2}(U)$ there exists a unique weak solution of (4).
6. Show that $T: L^{2}(U) \rightarrow L^{2}(U)$ such that $T(f)$ is a the unique weak solution of (4), is a linear compact application.

2 Nonlinear problem

We consider here the same PDE , except that this time f depends on u :

$$
\begin{align*}
-\Delta u & =f(u) \text { in } U \tag{5}\\
u & =0 \text { on } \Gamma_{1} \\
\frac{\partial u}{\partial n} & =0 \text { on } \Gamma_{2}
\end{align*}
$$

with $f \in C^{\infty}(\mathbb{R})$ and lipschitz $\left(\left\|f^{\prime}\right\|_{L^{\infty}(\mathbb{R})}<+\infty\right)$.
u is a weak solution of (5) with boundary conditions (2),(3) if

$$
\begin{equation*}
\int_{U} \nabla u \cdot \nabla v=\int_{U} f(u) v, \forall v \in H \tag{6}
\end{equation*}
$$

In the whole problem, we consider that f verifies the following condition:

$$
\begin{equation*}
\left\|f^{\prime}\right\|_{L^{\infty}(\mathbb{R})}<\frac{1}{2} \tag{7}
\end{equation*}
$$

1. Show that u is a weak solution of (6) if and only if u is a critical point of $I: H \rightarrow \mathbb{R}$ defined by

$$
I(u)=\int_{U} \frac{|\nabla u|^{2}}{2}-F(u)
$$

with $F^{\prime}=f$ and $F(0)=0$.
2. Prove that I is coercive and bounded below. (You can use the Poincaré inequality proved in the first problem).
3. Show that I is weakly lower semi continuous on H.
4. Prove that there exists at least one weak solution of (6).
5. Show that there exists a constant $C>0$ (depending on $\left.\left\|f^{\prime}\right\|_{L^{\infty}(\mathbb{R})}\right)$ such that for any weak solution of (6)

$$
\|u\|_{H} \leq C|f(0)| .
$$

Hint: set $u=v$ in (6).
6. Prove that if $V \subset \subset U(\bar{V}$ is a compact subset of $U)$, then a weak solution u of (6) verifies the following

$$
\|u\|_{H^{2}(V)} \leq C_{V}|f(0)|
$$

where C_{V} depends only on V and $\left\|f^{\prime}\right\|_{L^{\infty}(\mathbb{R})}$.
7. Show that if $f(0)=0$, then the only weak solution (not necessarily minimizer) of (6) is zero.
8. According to question 5, what lower bound can you give for the first egenvalue of $-\Delta$ on U, with the boundary conditions (2),(3)?
9. Using the function

$$
(x, y) \longmapsto \cos \left(\frac{\pi}{2} x\right)
$$

give an upper bound for the first eigenvalue of $-\Delta$.

