Mathematics 437/537 - Final Examination, December 11, 2006

Instructions

(i) Each question is worth 10 marks.
(ii) Don't rush. Complete solutions to a smaller number of questions will be more valuable than partial solutions to a larger number.

Questions

1. Suppose that x, y, z are positive integers satisfying $(x, y)=1$ and $x y=z^{2}$. Show that there are integers u and v for which $x=u^{2}$ and $y=v^{2}$.
2. Find all values of a for which the congruence $x^{6} \equiv a(\bmod 31)$ has integer solutions.
3. Suppose that $p=8 n+5$ is a prime and that a is a quadratic residue modulo p. Show that the two solutions of $x^{2} \equiv a(\bmod p)$ are given by one of the following possibilities: $x \equiv \pm a^{n+1}(\bmod p)$ or $x \equiv \pm 2^{2 n+1} a^{n+1}(\bmod p)$.
4. For which of the following values of k does $x^{2}+y^{2}=k$! have a solution with x, y integers: $\quad(\mathrm{a}) k=6$, (b) $k=12$, (c) $k=24$, (d) $k=48$?
5. Show that if d is an odd squarefree integer then a necessary condition for the equation $x^{2}-d y^{2}=-1$ to have an integer solution is that all the primes dividing d must be of the form $4 n+1$.
6. Let $d=4 k^{2}+k$, where $k>1$ is an integer. Show that $x^{2}-d y^{2}=-1$ has no integer solutions.
7. Show that the only integer solutions of the equation $y^{2}+11=x^{3}$ are $(x, y)=(3, \pm 4)$ and $(15, \pm 58)$.
8. Suppose that the positive integer n satisfies $2^{n} \equiv-1(\bmod n)$. Let p be the smallest prime divisor of n. Show that $p=3$.

End of the Examination

