Name:
Student ID:

Exam rules:

- You can refer to any result that was proved in class or that appeared in a homework. Ask if you want to refer to some other result.
- There are 16 problems in this exam. Each problem is worth 5 marks.

Problem 1. Let G be a finite abelian group that is not cyclic. Prove that G contains a subgroup isomorphic to $\mathbb{I}_{p} \oplus \mathbb{I}_{p}$ for some prime p.

Problem 2. Let P be a normal Sylow p-subgroups of a finite group G. Prove that if $\phi: G \rightarrow G$ is a group homomorphism, then $\phi(P) \subset P$.

Problem 3. Prove that a group of order $31 \cdot 32$ cannot be simple.

Problem 4. Let G be a finite group, such that the group of automorphisms Aut (G) is cyclic. Prove that G is abelian. (Hint: There is a homomorphism $G \rightarrow \operatorname{Aut}(G)$. Study the kernel and the image of this homomorphism.)

Problem 5. Prove that there is no simple group G of order 300. (Hint: Let G act on its Sylow 5-subgroups.)

Problem 6. Let G be a p-group, $|G|=p^{n}$ for some prime p and integer n. Let N be a normal subgroup of G of order p. Prove that N lies in the center of G. (Hint: Let G act on N by conjugation and consider the orbits of this action.)

Problem 7. Let I be an ideal in a ring R (commutative, with 1) and define

$$
\operatorname{Rad}(I)=\left\{r \in R \mid r^{n} \in I \text { for some } n>0\right\}
$$

1. Prove that $\operatorname{Rad}(I)$ is an ideal.
2. If $R=\mathbb{Q}[x]$ and $I=(f(x))$, describe a generator of $\operatorname{Rad}(I)$ in terms of irreducible factors of $f(x)$.

Problem 8. Let F be a field and $f(x), g(x) \in F[x]$ irreducible polynomials of degree 6 and 7, respectively. Let α be a root of $f(x)$ in some extension field. Prove that $g(x)$ is irreducible in $F(\alpha)[x]$.

Problem 9. Let $f(x)=\left(x^{3}-2\right)\left(x^{2}-5\right) \in \mathbb{Q}[x]$. Let E be the splitting field of $f(x)$ over \mathbb{Q}. Find an intermediate field $\mathbb{Q} \subset K \subset E$, such that $\operatorname{Gal}(E / K)=\mathbb{I}_{6}$.

Problem 10. Let $p \neq 2$ be a prime and let $\xi \in \mathbb{C}$ be a primitive p-th root of 1 .

1. Show that

$$
\left[\mathbb{Q}(\xi): \mathbb{Q}\left(\xi+\xi^{-1}\right)\right]=2 .
$$

2. Show that $\mathbb{Q} \subset \mathbb{Q}\left(\xi+\xi^{-1}\right)$ is a Galois extension and find its Galois group.

Problem 11. Let F be a finite field, $f(x) \in F[x]$ an irreducible polynomial, and E the splitting field of $f(x)$. If $\alpha \in E$ is a root of $f(x)$, prove that $E=F(\alpha)$. (Hint: Is $F(\alpha)$ Galois over F ?)

Problem 12. We proved in class that the primitive element theorem holds for finite extensions of a finite field \mathbb{F}_{q}.

1. Prove that $\mathbb{F}_{q}[x]$ contains irreducible monic polynomials of every degree $n>0$.
2. Prove that $\mathbb{Q}[x]$ contains irreducible monic polynomials of every degree $n>0$.

Problem 13. Prove that $\mathbb{F}_{p^{n}}$ contains a primitive m-th root of 1 if and only if m divides $p^{n}-1$.

Problem 14. Prove that if a Galois extension $F \subset E$ has Galois group S_{6}, then there is no intermediate field $F \subset K \subset E$, such that $[K: F]=5$.

Problem 15. Let F be a field, $f(x) \in F[x]$ an irreducible polynomial of degree 4, such that the Galois group of $f(x)$ is S_{4}. If α is a root of $f(x)$ in a splitting field, prove that there is no intermediate field

$$
F \subsetneq K \subsetneq F(\alpha) .
$$

Problem 16. Let p be a prime, and let F be a field of characteristic 0 , such that every irreducible polynomial $g(x) \in F[x]$ has degree p^{n} for some n. Prove that every polynomial $f(x) \in F[x]$ is solvable by radicals.

