Math 501, Fall Term 2009
 Final Exam

December $15^{\text {th }}, 2009$

Do not turn this page over until instructed

- On the top of each exam booklet write

1. Your student ID;
2. The serial number of this exam;
3. The number of the booklet (if you use more than one).

- On the sign-in sheet write

1. Your student ID;
2. The serial number of this exam;
3. Your name.

Instructions

- You will have 150 minutes for this exam.
- No books, notes or electronic devices.
- Solutions should be written clearly, in complete English sentences, showing all your work.
- If you use a result from the lectures or the problem sets, quote it properly.
- Good luck!

1. (20 pts) Define the following terms
(a) Sylow p-subgroup.
(b) Solvable group.
(c) Separable extension.
(d) Algebraic closure.
2. (15 pts) Let G be a finite group of order $561=3 \cdot 11 \cdot 17$.
(a) Show that G has unique subgroups A, B of order 11,17 respectively.
(b) Show that A and B are central in G.
(c) Show that G is cyclic.
3. (15 pts) Consider the polynomial $t^{3}+2 t+1$.
(a) Show that it is irreducible in $\mathbb{F}_{3}[t]$.
(b) Show that it is irreducible in $\mathbb{Q}[t]$.
(c) Show that it is irreducible in $\mathbb{F}_{3^{2009}}[t]$.
4. (30 pts) Let p, q be primes and let $f(x)=x^{p}-q \in \mathbb{Z}[x]$.
(a) Find a splitting field Σ for f over \mathbb{Q}.
(b) Find $[\Sigma: \mathbb{Q}]$.
(c) Find $\operatorname{Gal}(\Sigma: \mathbb{Q})$.
5. (10 pts) Let $\mathbb{Q} \subset K \subset L$ be number fields. Given $\alpha \in \mathcal{O}_{L}$ let $g \in K[x]$ be the minimal polynomial of α over K. Show that $g \in \mathcal{O}_{K}[x]$.
6. (10 pts) Let $r \in \mathbb{Q}$ and let $K=\mathbb{Q}(\cos (2 \pi r))$.
(a) Embed K in a radical extension of \mathbb{Q}.
(b) Show that K is normal over \mathbb{Q}.
(c) Show that $\operatorname{Gal}(K: \mathbb{Q})$ is Abelian.

Hint: Express $\cos (2 \pi r)$ using two roots of unity.

