Math 501, Fall Term 2009 Final Exam

December $15^{\text{th}},2009$

Do not turn this page over until instructed

- On the top of each exam booklet write
 - 1. Your student ID;
 - 2. The serial number of this exam;
 - 3. The number of the booklet (if you use more than one).
- On the sign-in sheet write
 - 1. Your student ID;
 - 2. The serial number of this exam;
 - 3. Your name.

Instructions

- You will have 150 minutes for this exam.
- No books, notes or electronic devices.
- Solutions should be written clearly, in complete English sentences, showing all your work.
- If you use a result from the lectures or the problem sets, quote it properly.
- Good luck!

- 1. (20 pts) Define the following terms
 - (a) Sylow *p*-subgroup.
 - (b) Solvable group.
 - (c) Separable extension.
 - (d) Algebraic closure.
- 2. (15 pts) Let G be a finite group of order $561 = 3 \cdot 11 \cdot 17$.
 - (a) Show that G has unique subgroups A, B of order 11, 17 respectively.
 - (b) Show that A and B are central in G.
 - (c) Show that G is cyclic.
- 3. (15 pts) Consider the polynomial $t^3 + 2t + 1$.
 - (a) Show that it is irreducible in $\mathbb{F}_3[t]$.
 - (b) Show that it is irreducible in $\mathbb{Q}[t]$.
 - (c) Show that it is irreducible in $\mathbb{F}_{3^{2009}}[t]$.
- 4. (30 pts) Let p, q be primes and let $f(x) = x^p q \in \mathbb{Z}[x]$.
 - (a) Find a splitting field Σ for f over \mathbb{Q} .
 - (b) Find $[\Sigma : \mathbb{Q}]$.
 - (c) Find $\operatorname{Gal}(\Sigma : \mathbb{Q})$.
- 5. (10 pts) Let $\mathbb{Q} \subset K \subset L$ be number fields. Given $\alpha \in \mathcal{O}_L$ let $g \in K[x]$ be the minimal polynomial of α over K. Show that $g \in \mathcal{O}_K[x]$.
- 6. (10 pts) Let $r \in \mathbb{Q}$ and let $K = \mathbb{Q}(\cos(2\pi r))$.
 - (a) Embed K in a radical extension of \mathbb{Q} .
 - (b) Show that K is normal over \mathbb{Q} .
 - (c) Show that $\operatorname{Gal}(K : \mathbb{Q})$ is Abelian.

Hint: Express $\cos(2\pi r)$ using two roots of unity.