Math 422/501, Winter 2006, Term 1

Final Exam

Tuesday, December 12, 2006

No books, notes or calculators

Problem 1.

Define the following terms:

- (a) centre of a group
- (b) normal subgroup
- (c) solvable group
- (d) Sylow subgroup
- (e) minimal polynomial
- (f) Galois extension
- (g) separable polynomial

Problem 2.

Carefully state:

- (a) the orbit equation,
- (b) a result describing the orbits of an action of the Galois group of the splitting field of a polynomial,
- (c) a criterion by which to recognize Galois extensions.

Problem 3.

Give examples of the following phenomena (without proofs):

- (a) a non-trivial normal subgroup of the group of isometries of the Euclidean plane,
- (b) a Sylow 5-subgroup which is not normal,
- (c) a finite group which is not solvable,
- (d) a field with 9 elements,
- (e) a field extension of degree 3 which is not Galois,
- (f) a field extension of degree 2 which is not Galois,
- (g) a Galois extension with cyclic Galois group of order 3.

Problem 4.

Let $(\mathbb{Z}/n\mathbb{Z})^*$ be the multiplicative group of the ring $\mathbb{Z}/n\mathbb{Z}$. In other words, $(\mathbb{Z}/n\mathbb{Z})^*$ is the group of residue classes $a + n\mathbb{Z}$ modulo n, such that a is coprime to n, with multiplication as group operation. Let G be a cyclic group of order n. Prove that $\operatorname{Aut}(G)$ is isomorphic to $(\mathbb{Z}/n\mathbb{Z})^*$.

Problem 5.

Let G be the group of rotational symmetries of the cube.

- (a) Prove that G contains 24 elements.
- (b) How many Sylow 3-subgroups does G contain? Describe them geometrically.
- (c) How many Sylow 2-subgroups does G contain? Describe them geometrically.

Problem 6.

Prove that the fields $\mathbb{Q}(\sqrt{2}) \subset \mathbb{R}$ and $\mathbb{Q}(\sqrt{3}) \subset \mathbb{R}$ are not isomorphic.

Problem 7.

Let K be a field and assume that the characteristic of K does not divide the integer n > 0. Let L/K be a splitting field of the polynomial $x^n - 1 \in K[x]$. Denote by $\mu_n \subset L$ the group of n-th roots of unity in L.

- (a) Prove that L/K is a Galois extension. Let G be the Galois group.
- (b) Construct an injective homomorphism of groups $G \to \operatorname{Aut}(\mu_n)$.
- (c) Conclude that G is abelian.

Problem 8.

Let $\zeta = e^{2\pi i/12}$ and $K = \mathbb{Q}(\zeta) \subset \mathbb{C}$.

- (a) Prove that K/\mathbb{Q} is a Galois extension. Let G be the Galois group.
- (b) Prove that G is isomorphic to the Kleinian 4-group.
- (c) Find the minimal polynomial of ζ over \mathbb{Q} .
- (d) Factor the polynomial $x^{12} 1 \in \mathbb{Q}[x]$ into irreducible factors.