The University of British Columbia
 Final Examination - April 12, 2006
 Mathematics 421/510, Real Analysis II, Term 2

Instructor: Dr. Brydges
Closed book examination
Time: 2.5 hours

Special Instructions:

- This exam has five questions

1. Let Y be a topological space and let A be a set. Let $Y^{A}=\{f: A \rightarrow Y\}$ be the product space $\prod_{\alpha \in A} Y$ with the product topology.
(a) The product topology on Y^{A} is the weakest topology such that \ldots ?
(b) Describe a neighbourhood base for a point $f \in Y^{A}$.
(c) Show that pointwise convergence, $f_{n}(\alpha) \rightarrow f(\alpha)$ for each $\alpha \in A$, implies $f_{n} \rightarrow f$.
(d) Does every sequence $\left\{f_{n}\right\}$ with $f_{n} \in\{0,1\}^{[0,1)}$ have a convergent subsequence? (Yes/No plus very brief comment in either case).
2. Let \mathcal{X} be a normed vector space over the complex numbers and let \mathcal{X}^{*} be the space of continuous linear functionals on \mathcal{X}.
(a) Define the norm $\|f\|$ of $f \in \mathcal{X}^{*}$.
(b) State the complex version of the Hahn Banach theorem.
(c) Let $x_{0} \in \mathcal{X}$. Show that there is a linear functional $f \in \mathcal{X}^{*}$ such that $f\left(x_{0}\right)=\left\|x_{0}\right\|$ and $\|f\|=1$.
(d) Suppose that $x_{n} \rightarrow x$ weakly. Prove that $\|x\| \leq \lim \inf \left\|x_{n}\right\|$.
(e) Suppose that \mathcal{X} is a Hilbert space, that $x_{n} \rightarrow x$ weakly and $\|x\|=\lim \left\|x_{n}\right\|$. Prove that $x_{n} \rightarrow x$ in norm.
(f) Is it possible for $x_{n} \rightarrow x$ weakly and $\|x\|<\lim \inf \left\|x_{n}\right\|$? Hint: Bessel inequality.
3. (a) Are continuous functions dense in $L^{\infty}([0,1], d x)$? (Yes/No plus brief explanation in either case).
(b) Define the term complete orthonormal set (orthonormal basis) in the context of a separable Hilbert space.
(c) Prove that if $f \perp \mathcal{D}$ where \mathcal{D} is a dense subset of a Hilbert space, then $f=0$.
(d) For $k \in \mathbb{Z}$ and $x \in[0,2 \pi]$, let $e_{k}(x)=(2 \pi)^{-1 / 2} e^{i k x}$. You may assume these functions are an orthonormal set in $L^{2}([0,2 \pi])$ and that continuous functions compactly supported in $(0,2 \pi)$ are dense in $L^{2}([0,2 \pi])$. Prove that $\left\{e_{k}\right\}$ is a complete orthonormal set in $L^{2}([0,2 \pi])$.
4. Let \mathcal{X} be a Banach space, let $\left\{T_{n}\right\} \in L(\mathcal{X}, \mathcal{X})$ be a sequence of continuous linear operators on \mathcal{X}.
(a) There are at least three notions of convergence for the sequence T_{n}. What are they?
(b) Suppose, $\forall x \in \mathcal{X}, \forall f \in \mathcal{X}^{*}$, that $f\left(T_{n} x\right) \rightarrow f(T x)$ where T is a linear operator. Show that $T \in L(\mathcal{X}, \mathcal{X})$.
5. Let $T \in L(\mathcal{X}, \mathcal{X})$, where \mathcal{X} is a Banach space.
(a) Define the resolvent set $\rho(T)$ and the resolvent R_{λ} of T.
(b) Prove that

$$
T=\frac{1}{2 \pi i} \oint_{\Gamma} R_{\lambda} \lambda d \lambda
$$

where Γ is the oriented boundary of an open disk $D \supset \sigma(T)$.

