The University of British Columbia

Final Examination - April 12, 2006

Mathematics 421/510, Real Analysis II, Term 2

Instructor: Dr. Brydges

Closed book examination

Time: 2.5 hours

Special Instructions:

- This exam has five questions

- 1. Let Y be a topological space and let A be a set. Let $Y^A = \{f : A \to Y\}$ be the product space $\prod_{\alpha \in A} Y$ with the product topology.
 - (a) The product topology on Y^A is the weakest topology such that ...?
 - (b) Describe a neighbourhood base for a point $f \in Y^A$.
 - (c) Show that pointwise convergence, $f_n(\alpha) \to f(\alpha)$ for each $\alpha \in A$, implies $f_n \to f$.
 - (d) Does every sequence $\{f_n\}$ with $f_n \in \{0, 1\}^{[0,1)}$ have a convergent subsequence? (Yes/No plus very brief comment in either case).
- 2. Let \mathcal{X} be a normed vector space over the complex numbers and let \mathcal{X}^* be the space of continuous linear functionals on \mathcal{X} .
 - (a) Define the norm ||f|| of $f \in \mathcal{X}^*$.
 - (b) State the complex version of the Hahn Banach theorem.
 - (c) Let $x_0 \in \mathcal{X}$. Show that there is a linear functional $f \in \mathcal{X}^*$ such that $f(x_0) = ||x_0||$ and ||f|| = 1.
 - (d) Suppose that $x_n \to x$ weakly. Prove that $||x|| \le \liminf ||x_n||$.
 - (e) Suppose that \mathcal{X} is a Hilbert space, that $x_n \to x$ weakly and $||x|| = \lim ||x_n||$. Prove that $x_n \to x$ in norm.
 - (f) Is it possible for $x_n \to x$ weakly and $||x|| < \liminf ||x_n||$? Hint: Bessel inequality.
- 3. (a) Are continuous functions dense in $L^{\infty}([0,1], dx)$? (Yes/No plus brief explanation in either case).

- (b) Define the term *complete* orthonormal set (orthonormal basis) in the context of a separable Hilbert space.
- (c) Prove that if $f \perp D$ where D is a dense subset of a Hilbert space, then f = 0.
- (d) For $k \in \mathbb{Z}$ and $x \in [0, 2\pi]$, let $e_k(x) = (2\pi)^{-1/2} e^{ikx}$. You may assume these functions are an orthonormal set in $L^2([0, 2\pi])$ and that continuous functions compactly supported in $(0, 2\pi)$ are dense in $L^2([0, 2\pi])$. Prove that $\{e_k\}$ is a *complete* orthonormal set in $L^2([0, 2\pi])$.
- 4. Let \mathcal{X} be a Banach space, let $\{T_n\} \in L(\mathcal{X}, \mathcal{X})$ be a sequence of continuous linear operators on \mathcal{X} .
 - (a) There are at least three notions of convergence for the sequence T_n . What are they?
 - (b) Suppose, $\forall x \in \mathcal{X}, \forall f \in \mathcal{X}^*$, that $f(T_n x) \to f(Tx)$ where T is a linear operator. Show that $T \in L(\mathcal{X}, \mathcal{X})$.
- 5. Let $T \in L(\mathcal{X}, \mathcal{X})$, where \mathcal{X} is a Banach space.
 - (a) Define the resolvent set $\rho(T)$ and the resolvent R_{λ} of T.
 - (b) Prove that

$$T = \frac{1}{2\pi i} \oint_{\Gamma} R_{\lambda} \lambda \, d\lambda,$$

where Γ is the oriented boundary of an open disk $D \supset \sigma(T)$.