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Do not define terms in theorems unless explicitly requested.
If short of time, show good judgment by focusing on key steps.

1. (a)(25 points) Define: the Cartesian product X =
∏

α∈AE. What does the axiom of choice say about
X?

(b) Define: σ algebra; Borel measure on Rn.

(c) State: the Carathéodory extension theorem for an outer measure, defining terms in it
that are not already defined.
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2. (a)(15 points) Define: regular as in regular Borel measure.

(b) Let A be an algebra, µ be a finite measure on σ(A), B ∈ σ(A), and ε > 0. Prove there
exists A ∈ A with µ(A∆B) < ε.
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3. (a)(15 points) State the Fatou and Dominated Convergence Lemmas.

(b) Prove that limn→∞
∫∞
−∞

n
1+(nx)2

sin(x) dx exists and evaluate it. (First think about the
graph of n

1+(nx)2
).

(c) Let f be continuously differentiable. Prove that limn→∞
∫ 1
0 n

(
f(x + 1/n)− f(x)

)
dx

exists and evaluate it. The mean value theorem may be useful.
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4. (a)(15 points) State the Lebesgue-Radon-Nikodym theorem.

(b) Let (X,M, µ) be a finite measure space, let N be a sub-σ-algebra of M, and let ν be the
restriction of µ to N . If f ∈ L1(µ) prove there exists g ∈ L1(ν) such that∫
E f dµ =

∫
E g dν, ∀E ∈ N .

(c) Give a counter-example to the conclusion of the previous part when µ is not finite.
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5. (a)(10 points) State the Lebesgue differentiation theorem.

(b) Let f ∈ L1 and equal to zero in an open interval containing 0. Prove that
limn→∞

∫ y
0 n

(
f(x + 1/n)− f(x)

)
dx exists for almost all y and evaluate it. Hint.∫ y

0 nf(x + 1/n) dx−
∫ y
0 nf(x) dx.
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6. (a)(20 points) Define the L∞ norm of a measurable function f defined on a measure space (X,M, µ).

(b) Let Ea = {x : |f(x)| ≤ a}. For a = ‖f‖∞ prove that µ
(
Ec

a

)
= 0, and for all b < a,

µ
(
Ec

b

)
> 0.

(c) Prove that ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞ for f, g ∈ L∞.

(d) Let X be an uncountable set. Let M be the sigma algebra of sets E such that either E
is countable or Ec is countable. Let µ be counting measure. Prove that if f ∈ L∞ then
(a) f is bounded by ‖f‖∞ and (b) there exists a countable set E such that f is constant
on Ec.


