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Do not define terms in theorems unless explicitly requested.
If short of time, show good judgment by focusing on key steps.

(25 points) 1. (a) Define: the Cartesian product X =[] ., E. What does the axiom of choice say about
X7

(b) Define: o algebra; Borel measure on R”.

(c) State: the Carathéodory extension theorem for an outer measure, defining terms in it
that are not already defined.
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(15 points) 2. (a) Define: regular as in regular Borel measure.

(b) Let A be an algebra, pu be a finite measure on o(A), B € 0(A), and € > 0. Prove there
exists A € A with u(AAB) < e.
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(15 points) 3. (a) State the Fatou and Dominated Convergence Lemmas.

(b) Prove that lim,_ [~ % sin(z) dz exists and evaluate it. (First think about the

oo 1+(nx

graph of l—k(nT)?)

. . . . 1
(¢) Let f be continuously differentiable. Prove that lim, .o [y n(f(z +1/n) — f(z)) dx
exists and evaluate it. The mean value theorem may be useful.
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(15 points) 4. (a) State the Lebesgue-Radon-Nikodym theorem.

(b) Let (X, M, u) be a finite measure space, let N be a sub-c-algebra of M, and let v be the
restriction of p to N. If f € L'(u) prove there exists g € L(v) such that
Jpfdu= [pgdv, YE € N.

(c) Give a counter-example to the conclusion of the previous part when g is not finite.
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(10 points) 5. (a) State the Lebesgue differentiation theorem.

(b) Let f € L' and equal to zero in an open interval containing 0. Prove that
limp, oo [ n(f(x + 1/n) — f(x)) dz exists for almost all y and evaluate it. Hint.

Jynf(z+1/n)de — [/ nf(x)da.
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(20 points) 6. (a) Define the L® norm of a measurable function f defined on a measure space (X, M, p).

(b) Let Eq = {z :|f(z)| < a}. For a = || f|ls prove that p(ES) =0, and for all b < a,
u(Eg) > 0.

(c) Prove that ||f + gllco < [[fllec + llglleo for f,g € L.

(d) Let X be an uncountable set. Let M be the sigma algebra of sets E such that either
is countable or E° is countable. Let p be counting measure. Prove that if f € L* then
(a) f is bounded by || f||c and (b) there exists a countable set E such that f is constant
on E°.



