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Marks

[10] 1. Define

(a) the completion of a measure

(b) measurable function

(c) mutually singular measures

Continued on page 3
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[15] 2. Give an example of each of the following, together with a brief explanation of your example.
If an example does not exist, explain why not.

(a) A measure which is semi–finite, but not σ–finite.

(b) A function f : IR → IR such that f is not Lebesgue measurable but |f | is Lebesgue
measurable.

(c) Two measures µ1, µ2 on the measurable space (X,M) for which µ1 − µ2 is not a signed
measure.

Continued on page 5
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[15] 3. Let X be a metric space and BX be the σ–algebra of Borel subsets of X. Let µ be a measure
on (X,BX) and µ∗ be the outer measure determined by µ. Prove that if V1 and V2 are two
disjoint Borel subsets of X and E1 ⊂ V1 and E2 ⊂ V2, then

µ∗(E1 ∪ E2) = µ∗(E1) + µ∗(E2)

Note that E1 and E2 need not be Borel.

Continued on page 7
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[15] 4. Let (X,M, µ) be a measure space and E ∈ M. Prove, directly from the definitions of the two
integrals, that

∫

E

f dµ =

∫

X

fχE dµ

for any nonnegative measurable function f .

Continued on page 8
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[15] 5. Guess the limit of
∫ n

0

(

1 +
x

n

)n

e−2xdx

as n tends to infinity. Prove that your guess is correct.

Continued on page 10
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[15] 6. Let X, Y, Z be nonempty sets and L ⊂ P(X), M ⊂ P(Y ), N ⊂ P(Z) be σ–algebras. Define
L⊗M⊗N ⊂ P(X × Y × Z) to be the σ–algebra generated by

{

A × B × C
∣

∣ A ∈ L, B ∈ M, C ∈ N
}

Prove that (L⊗M) ⊗N = L⊗M⊗N .

Continued on page 11
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[15] 7. For j = 1, 2, let µj and νj be σ–finite measures on (Xj ,Mj) with νj � µj . Prove that
ν1 × ν2 � µ1 × µ2 and

d(ν1×ν2)
d(µ1×µ2) (x1, x2) = dν1

dµ1

(x1)
dν2

dµ2

(x2)

Continued on page 13
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The End
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